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EMBEDDINGS INTO THE TURING DEGREES.

ANTONIO MONTALBÁN

1. Introduction

The structure of the Turing degrees was introduced by Kleene and Post in 1954 [KP54].
Since then, its study has been central in the area of Computability Theory. One approach
for analyzing the shape of this structure has been looking at the structures that can be
embedded into it. In this paper we do a survey of this type of results.

The Turing degree structure is a very natural object; it was defined with the intention of
abstracting the properties of the relation “computable from”, which is the most important
notion in computability theory introduced by Turing in [Tur39]. It is defined as follows.
Consider P(ω), the set of sets of natural numbers. Given A,B ∈ P(ω), we say that A
is computable from B, if there is a computer program which, on input n ∈ ω, decides
whether n ∈ A or not using B as an oracle. That means that the program is allowed to
ask questions to the oracle of the form “does m belong to B?” We write A 6T B if A
is computable from B. The relation 6T is a quasi-ordering on P(ω). This quasi-ordering
induces an equivalence relation on P(ω), given by

A ≡T B ⇔ A 6T B & B 6T A,

and a partial ordering on the equivalence classes. The equivalence classes are called Turing
degrees. (The concept of Turing degree was introduced by Post [Pos44].) We use 〈D,6T 〉
to denote this partial ordering. One of the main goals of Computability Theory is to
understand the structure of 〈D,6T 〉.

There are two basic but important remarks to make here. First, when we talk about a
computer program, we are fixing a programming language, say for example the language of
Turing machines, or Java. The notion of computability is independent of the programming
language chosen. Second, we note that we chose to work with subsets of ω because
every finite object can be encoded by a single number (using, for instance, the binary
representation of the number). For example, strings, graphs, trees, simplicial complexes,
group presentations, etc., if they are finite, they can be effectively coded by a natural
number. There would be no essential difference if we had chosen to work with subsets of
Z, 2<ω or V (ω), instead of ω.

Before we go into the embeddability results, we will start by mentioning basic facts
about the structure of the Turing Degrees. The embeddability results are divided in four
sections: embeddings of countable structures, initial segments embeddings, embeddings
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2 ANTONIO MONTALBÁN

of larger structures, and embedding into the high/low hierarchy. Embeddability results
are very closely related to decidability results, so we dedicate our last section to them.

No knowledge of Computability Theory is assumed. Basic references on the topic are
[Ler83] and [Soa87]. Two nice surveys have been recently written. One is by Ambos-Spies
and Fejer [ASF], where they describe the history of the Turing Degrees. The other one,
by Shore [Sho06], describes the current situation of this research program, and also looks
at its history and possible future directions. Our paper has something of both of those
papers, but it concentrates just on embeddability results, and is mostly about the global
structure. We will not mention results about other reducibilities, even though many have
been considered and studied.

2. Background

2.1. First observations. Let us start by making the most basic observations about the
structure of the Turing degrees.

There is a least Turing degree that we denote by 0. It is the degree whose members are
the computable sets.

Every degree has at most countably many degrees below it. We call this property, the
countable predecessor property or c.p.p. The reason is that there are only countably many
programs one can write, so there are at most countably many sets that are computable
from a fixed set. It also follows that each Turing degree contains at most countably many
sets.

There are 2ℵ0 many Turing degrees. Because there are 2ℵ0 many subsets of ω and each
equivalence class is countable.

The Turing degrees form an upper semilattice, or usl; that is, every pair of elements has
a least upper bound. We denote the least upper bound of a and b by a∨ b, and we refer
to it as the join of a and b. Given A,B ∈ P(ω), let

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.

Is not hard to note that A 6T A⊕B, B 6T A⊕B, and that if both A 6T C and B 6T C,
then A⊕B 6T C. We let a∨b be the degree of A⊕B, where A and B are sets in a and
b respectively.

2.2. Turing Jump. There is another naturally defined operation on the Turing degrees
called the Turing jump (or just jump). The jump of a degree a, denoted a′, is given by the
degree of the Halting Problem relativized to some set in a. Given A ⊆ P(ω), we define
A′, the Halting Problem relative to A, as follows.

A′ is the set of codes for programs that, when run with oracle A, halt.

Note that a computer program is a finite sequence of characters and hence can be encoded
by a natural number. It can be shown that the jump operation is strictly increasing and
monotonic. That is, for every a,b ∈ D,

(1) a <T a′, and
(2) a 6T b ⇒ a′ 6T b′.

The only non-trivial fact here is that A′ 66T A, and it is proved the same way one proves
that the Halting problem is not computable.



EMBEDDINGS INTO THE TURING DEGREES. 3

Definition 2.1. A jump upper semilattice is a structure

J = 〈J,6J ,∪, j〉
such that

• 〈J,6J 〉 is a partial ordering,
• for all x, y ∈ J , x ∪ y it is the least upper bound of x and y, and
• j(·) is a unary operation such that for all x, y ∈ J , x <J j(x); and if x 6J y, then

j(x) 6J j(y).

2.3. The picture. We have observed so far that D = 〈D,6T ,∨, ′〉 is a jump upper
semilattice of size 2ℵ0 , with a least element called 0, and with the countable predecessor
property.

The next natural question is whether D is a lattice. The answer is no. Kleene and Post
[KP54] proved that there exists degrees a and b with no greatest lower bound. There are
aslo pairs of incomparable degrees which do have greatest lower bounds.

The only particular degree we have mentioned so far is 0. We have also mentioned
the Halting problem, which has degree 0′. The structure of degrees below 0′, that we
denote by D(6T0′), is already very rich. For instance, all the computable enumerable sets
are computable from 0′. A set is computable enumerable, or c.e., if there is a computer
program that lists all its elements. The study of the structure of the c.e. degrees is also
a topic where extensive research has been done.

0′ is very low down inside the whole structure of the Turing degrees. We can start
going up and construct a sequence of degrees 0 <T 0′ <T 0′′ <T .... This way we get
all the way up the arithmetic hierarchy: It is not hard to show that the sets that are
Turing below 0(n) for some n ∈ ω are exactly the arithmetic ones, that is, the ones that
can be defined by a formula of first order arithmetic. (We use X(n) to denote the nth
iteration of the Turing jump.) Then, we can take the uniform join of all these sets and get
0(ω) = {〈n,m〉 : m ∈ 0(n)}, which is Turing equivalent to the set of sentences true in first
order arithmetic. We can then continue taking jumps and define 0(ω+1) = 0(ω)′, and even
define 0(α) for any countable computable ordinal α by taking uniform joins at limit levels.
The situation when α is a non-computable ordinal is a bit more delicate. A computable
ordinal is one which can be presented as a computable ordering of a computable subset
of the natural numbers. We use ωCK

1 to denote the first ordinal which does not have a
computable presentation. A set which is computable in 0(α) for some α < ωCK

1 is said to
be hyperarithmetic. These are exactly the ∆1

1 sets (Kleene and Suslin [Kle55]). Higher
up comes Kleene’s O, the set of computable indices (i.e. programs) of computable well-
orderings. Kleene’s O is Π1

1-complete and computes all the hyperarithmetic sets. We
could then take Kleene’s O relative to Kleene’s O, and so on. Much higher up is the set
of true sentences of second order arithmetic, and there are still many more degrees higher
up. Whenever we have a countable set of degrees, there exists a degree that bounds them
all.

So far, our picture looks thin and tall. But actually, D not taller than it is wide.
Since D has the countable predecessor property, every chain in D can have size at most
ℵ1. However, it is known that there is an antichain that contains 2ℵ0 minimal degrees
(Lacombe [Lac54]). A degree a >T 0 is minimal if there is no degree x, with 0 <T x <T a.
(The existence of minimal degrees is due to Spector [Spe56].)
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3. Embeddings of countable structures

We now start analyzing the structures that embed into D.

3.1. Upper semilattices. The first result in this direction was proved by Kleene and
Post [KP54] in the same paper where they introduced the Turing degrees. They showed
that there is an infinite independent set of degrees, that is, a set of degrees none of which
can be computed from the other ones altogether. They prove it using the method of finite
approximations. Today we would refer to such a construction as a forcing construction.
The ideas in [KP54] can be easily extended to get the following result.

Theorem 3.1 (Kleene and Post). Every countable upper semilattice embeds into the Tur-
ing degrees.

Proof sketch: It is enough to show that the countable atomless Boolean algebra
embeds into D since every countable upper semilattice embeds into it. Let G ⊆ ω be suf-
ficiently generic. In other words, G meets the countably many dense open sets considered
for the proof. Via a computable bijection between ω and the set of rational numbers Q,
think of G as a subset of Q. It is well know that the countable atomless Boolean algebra
is isomorphic to Int(Q), the interval algebra of Q, that is, the algebra whose elements
are the finite unions of closed-open intervals of Q. Now, define h : Int(Q) → P(Q) by
h(I) = G ∩ I. The proof that h preserves 6T , ∨ and 0 does not use the genericity of G
and is quite simple. The genericity of G is used to show that h preserves 66T . It can also
be used to show that h preserves greatest lower bounds. �

It also follows from the proof above that every countable distributive lattice can be
embedded into D, even preserving greatest lower bounds, since they can be embedded
into the atomless Boolean algebra.

The fact that every countable lattice can be embedded into D preserving greatest lower
bounds follows from a much stronger result of Lachlan and Lebeuf (see Theorem 4.1
below).

3.2. Local structures. A local structure is one of the form D(6Ta) = {x ∈ D : x 6T a}.
There has been a lot of research done on local structures, and we will just quickly refer to
some of it.

The first approach here is usually of the following sort. Theorem 3.1 says that every
usl can be embedded into D. Of course, the construction of this embedding cannot be
computable, although, if we had an oracle smart enough, we could produce this embedding
computably in the oracle. The question is how complex this oracle has to be. In the case
of Theorem 3.1, a good answer is 0′. A better answer is 1-generic. A 1-generic set is
like a Cohen generic set, but it only needs to meet a small class of dense open sets: An
infinite binary sequence G ∈ 2ω, is 1-generic if for every Σ0

1 set S ⊆ 2<ω there exists a
string σ ⊆ G such that either σ ∈ S or ∀τ ∈ 2<ω (τ ⊇ σ ⇒ τ 6∈ S). (We are abusing
notation and identifying 2ω and P(ω).) It is not hard to show that 0′ is able to compute a
1-generic set. (Moreover, any computable enumerable set or non-GL2 set can compute a
1-generic.) So we get that every countable usl, and also every distributive lattice, embeds
in D(6T0′). Relativizing, one can get the whole embedding between a and a′ for any
a ∈ D.
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For lattices in general it is not possible to get such a result. The reason is that there
are 2ℵ0 many lattices with finitely many generators [Sho82], but there are only countably
many possibilities for those generators below 0′. However, Lerman [Ler83] proved that
every computable presentable lattice embeds in D(6T0′). Actually he proved this for
0′′-computable lattices and embedded them even as initial segments below 0′. Moreover,
if a bounds a 1-generic degree, then every computable lattice embeds in D(6Ta) (Shore
[Sho82]). This is not true if we also want to preserve top element. This follows from
Kumabe’s [Kum00] construction of a strong minimal cover of a 1-generic. However, it
is true for a = 0′, as it was proved by Fejer [Fej89]. Moreover, it is known that every
computable lattice embeds in D(6Ta) preserving top element if a is non-GL2 [Fej89], even
array non-recursive (Downey, Jockusch and Stob [DJS96]) or if it is 1-generic (Greenberg
and Montalbán [GM03]).

Since we are here, we should mention that the question of which lattices embed into
the structure of the c.e. degrees is open, and a lot of effort has been put into it. (For a
survey on this topic see Lempp, Lerman and Solomon [LLS06].)

3.3. Jump Partial orderings. If we forget about joins but add jump to the language,
we get the the following type of structure.

Definition 3.2. A jump partial ordering, or jpo, is a structure

P = 〈P,6
P
, j〉

such that

• 〈P,6
P
〉 is a partial ordering, and

• j is a unary operation such that for all x, y ∈ P , x <
P

j(x); and if x 6
P
y, then

j(x) 6
P

j(y).

A jump partial ordering with 0, or jpo w/0, is a structure P = 〈P,6
P
, j, 0〉, where P =

〈P,6
P
, j〉 is a jump partial ordering and 0 is the least element.

As we mentioned in Section 2.3, if 〈P,6
P
〉 is a well ordering and the jump function

corresponds to the successor function on 〈P,6
P
〉, then P can be embedded into D. Such

an embedding is called a jump hierarchy. Even if 〈P,6
P
〉 ∼= ωCK

1 (1 + η), we get the
embeddability result, where ωCK

1 is the least non-computable ordinal and η is the order
type of the rationals. Such an embedding is a Harrison pseudo-hierarchy [Har68].

If we let 〈P,6
P
〉 ∼= Z, the ordering of the integers, and we let j(n) = n + 1, the

fact that P embeds into D follows from Harrison’s pseudo-hierarchy theorem [Har68] and
Friedberg’s jump inversion theorem [Fri57]. Such an embedding has to be high up in D;
it can be proved that every degree in the image of such an embedding has to compute all
the hyperarithmetic sets (Enderton and Putnam [EP70]). A curiosity, is that if we want
to get an embedding h : Z → P(ω) such that h(n)′ = h(n+ 1), (where equality here is as
sets, not only as Turing degrees,) we cannot (Steel [Ste75]).

The most general theorem in this setting is the following one.

Theorem 3.3 (Hinman and Slaman [HS91]). Every countable jump partial ordering can
be embedded into the Turing Degrees (of course, preserving order and jump).
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The proof is via a complicated forcing construction. Much more that 1-genericity is
needed in this case. One needs to consider sets that are arithmetically generic over a
Harrison pseudo-hierarchy.

3.4. Jump Partial orderings with 0. If we add 0 to the language the problem becomes
much more complicated, and very different techniques are required. The reason is that
the constructions before used sets which are very generic and very far from arithmetically
definable. But now, if for example we have that x 6

P
jn(0), then we need to map x to a

degree below 0(n), and hence to a set which is arithmetically definable, with no more than
n+ 1 quantifiers.

Hinman and Slaman [HS91] started to look at the quantifier-free 1-types of jump partial
orderings with 0 realizable in D. Note that realizing a quantifier-free n-type is equivalent
to embedding a jpo w/0 and with n many generators. They got some partial results,
that were rounded off later by Hinman in [Hin99]. He showed that every quantifier-free
1-type p(x) of jump partial orderings with 0, and with a formula of the form x 6

P
jm(0),

is realizable in D. Then, Montalbán [Mon03], showed the same for 1-types p(x) with no
formula of the form x 6

P
jm(0). Putting these results together we get the following one.

Theorem 3.4 (Hinman [Hin99], Montalbán [Mon03]). Every quantifier-free 1-type of
jump partial orderings with 0, is realizable in D.

The following question remainds open.

Question 3.5. Which quantifier-free n-type of jpo w/0 can be realized in D?

Here is one of the difficulties to solve this question. The main tool used in Hinman’s
result about 1-types is the Shoenfield [Sho59] jump inversion theorem: If A is c.e.a. B′,
there there is a set C, c.e.a. B such that C ′ ≡T A. (By Y c.e.a. X we mean that Y
computable enumerable in X and is Turing above X.) For n-types, we do not have such
an inversion theorem. Worst than that, we have Shore’s non-inversion theorem [Sho88]:
There are sets B0, B1 and B2 c.e. over 0′ with 0′ <T B0, B1 6T B2, for which there are
no sets A0, A1 6T A2 6T 0′ with A′

i ≡T Bi.
On the positive side, Montalbán [Mon03] showed that if every quantifier free n-type

p(x1, ..., xn) of jpo w/0, which contains a formula x1 6 jm(0) & ... & xn 6 jm(0) for some
m, is realized in D, then every quantifier free n-type of jpo w/0 is realized in D.

A very nice result is the following one. In [LL96], Lempp and Lerman used their method
of Iterated Trees of Strategies and showed that every formula ϕ(x1, ..., xn) consistent with
the axioms jpo w/0 plus x1 6 j(0) & ... & xn 6 j(0) is realizable in D, getting some
interesting decidability results as corollaries.

3.5. Jump upper semilattices. The reader might be wondering by now what happens
if we have both join and jump. We get the following extension of Hinman and Slaman’s
theorem.

Theorem 3.6 (Montalbán [Mon03]). Every countable jump upper semilattice can be em-
bedded into the Turing Degrees (of course, preserving jump and join).

The proof uses ideas from Hinman and Slaman [HS91], but it also needs a array of new
ideas.
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Outline of the proof: The proof has two main steps. First, we introduce the notion
of h-embeddable jusl. We say that a jusl J is h-embeddable (‘h’ for hierarchy) if there is
a map H : J → P(ω) such that for all x, y ∈ J ,

• if x <J y then H(x)′ 6T H(y),
• J 6T H(y), and

⊕
x6J y H(x) 6T H(y).

We call such a map H, a jump hierarchy.
Via a forcing construction, we get that for every h-embeddable jusl J , there is an

embedding f : J → D. Essentially, the forcing notion has to make sure that x 6J y ⇒
f(x) 6T f(y); f(x ∨ y) ≡T f(x) ∨ f(y) and that f(j(x)) 6T (f(x))′. Genericity is used
to ensure that x 66J y ⇒ f(x) 66T f(y) and that (f(x))′ 6T f(j(x)). The jump hierarchy
is used for this last reduction, (f(x))′ 6T f(j(x)). The point is to have that for every x,
f(x) >T H(x), and use H(j(x)) to decode (f(x))′ from f(j(x)) . There are many subtleties
one has to worry about here.

Now we can embed a big family of jusl’s. For instance, every well founded jusl is h-
embeddable: If J and the rank function on it are computable in X, take H(x) = Xrk(x).
However, there is no reason to believe that every jusl is h-embeddable.

The second step is to prove that every jusl embeds into an h-embeddable one. This
part of the proof is more algebraic and uses Harrison linear orderings, Fräıssé limits and
well-quasi-orderings. �

As we mentioned right after Definition 3.2, even for simple jpo’s such as Z, these
embeddings cannot be done inside the hyperarithmetic degrees. For the proof above,
again one needs to consider a Harrison pseudo-hierarchy and a set arithmetically generic
over it. These sets can be found below Kleene’s O, and even hyperarithmetically-low. So
we get that every computable jusl embeds in D(6T Kleene’s O).

3.6. Jump upper semilattices with 0. The situation when we add 0 to the language
is again very different. In this case we get a negative answer right away.

Theorem 3.7 (Montalbán [Mon03]). Not every countable jusl w/0 can be embedded into
D. Indeed, there is a jusl w/0 and with only one generator (other than 0) which cannot
be embedded in D.

Idea of the proof: The reason is that there are 2ℵ0 many jusl w/0 with one generator
x satisfying x 6J j2(0). But there are only countably many degrees x 6T 0′′. �

Question 3.8. Is there a simple (say computable) jusl w/0 and with one generator that
cannot be embedded into D?

If we do not require the jump operation to be total, it makes sense to talk about finite
jusl’s. The problem of whether every finite jusl w/0 can be embedded into D is still open.
It is believed that a positive answer could be achieved using Lempp and Lerman’s method
of Iterated Trees of Strategies (see for instance [LL96]). This method gives a general
framework to do 0(n)-priority arguments and is very complicated. 1

1 A positive answer to this question has been recently claimed by Lerman. He is now in the process of
circulating a 39 page manuscript called The Existential Theory of the Uppersemilattice of Turing Degrees
with Least Element and Jump is Decidable.
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4. Initial segment embeddings

A completely different family of embeddability results are initial segment embeddings.
There is a long history of results in this area. We mention only some of them. Hugill

[Hug69] showed that every countable linear ordering embeds into D as an initial segment.
In [Lac68], Lachlan proved that every countable distributive lattice is isomorphic to an
initial segment of D. Then, in [Ler71], Lerman showed the same for every finite usl. A
complete characterization of the countable initial segments of D was later given Lachlan
and Lebeuf.

Theorem 4.1 (Lachlan and Lebeuf [LL76]). Every countable upper semilattice with least
element is isomorphic to an initial segment of D

These embeddings can be done quite locally, as long as the usl is not too complex.
Lerman [Ler83, XII] showed that every countable usl w/0 that is computable in 0′′ is
isomorphic to an initial segment of D below 0′. This result was later extended by Kjos-
Hanssen [KH03], who showed that a countable usl w/0 is isomorphic to an initial segment
of D below 0′ if and only if it has a presentation c.e. in 0′′.

The methods used for this kind of results are forcing with computable perfect trees and
lattice tables. Forcing with computable perfect trees, or Sacks forcing, was already used in
the first construction of a minimal degree by Spector [Spe56], as noticed by Sacks [Sac71].
A more complex class of trees is necessary to get other initial segments results. Lerman’s
book [Ler83] contains all these embeddability results.

5. Embeddings of larger structures

Now we look at uncountable structures. Recall that D has the countable predecessor
property (c.p.p.), and hence any subordering of it has to have it too.

5.1. Partial Orderings. The first result of this sort is due to Sacks and the key step
of his proof is the following extensions-of-embeddings lemma. The finite version of this
lemma is due to Kleene and Post [KP54].

Lemma 5.1 (Sacks [Sac61]). Let P ⊆ Q be two countable partial orderings such that P
is downward closed in Q and for every q ∈ Q we have that every two elements of P below
q have an upper bound in P also below q. Then any embedding of P into D extends to an
embedding of Q into D.

Sacks actually proved a slightly stronger lemma where |P| < 2ℵ0 , |QrP| 6 ℵ0, and Q
has the c.p.p.

Theorem 5.2 (Sacks [Sac61]). Every partial ordering of size ℵ1 with the c.p.p. can be
embedded into D.

Proof: First extend the partial ordering to an usl, also with the c.p.p., and then de-
compose it as an increasing union of countable partial orderings so that we can apply the
lemma above. �

He also showed that there is a maximal independent set of degrees size 2ℵ0 . That is, a
set {xξ : ξ < 2ℵ0} such that for every ξ0, ..., ξk ∈ 2ℵ0 , xξ0 66T (xξ1 ∨ ... ∨ xξk

) (unless, of
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course, ξ0 = ξi for some i = 1, .., k). It followed that every partial ordering with the finite
predecessor property and size 2ℵ0 embeds into D.

He made the following conjecture which is still unsolved.

Conjecture 5.3 (Sacks [Sac63]). Every partial ordering of size 2ℵ0 with the c.p.p. embeds
into D.

Of course, the affirmative answer is consistent with ZFC, as it is implied by the theorem
above if 2ℵ0 = ℵ1. However, the lemma used to show Theorem 5.2 cannot be extended to
higher cardinalities in ZFC. Groszek and Slaman [GS83] showed that it is consistent with
ZFC that 2ℵ0 > ℵ2 and there is an independent set of size ℵ2 which cannot be extended
to a larger independent set. In contrast, Simpson [Sim77] pointed out that if Martin’s
Axiom holds at κ, then there is no maximal independent set of size κ. (See, for instance,
[Kun80] for information on Martin’s Axiom.)

5.2. Upper semilattices. Sacks theorem was improved by Abraham and Shore the fol-
lowing way.

Theorem 5.4 (Abraham and Shore [AS86]). Every usl of size ℵ1 with the c.p.p. and with
0 is isomorphic to an initial segment of D.

With respect to usl embeddings, this is as far we can go in ZFC. Slaman and Groszek
[GS83] show that there is a model of ZFC where 2ℵ0 > ℵ2, and there is an usl of size ℵ2

with the c.p.p. which does not embed into D preserving joins.

5.3. Jump partial orderings. If we add jump to the language, we get the following
negative result.

Theorem 5.5 (Montalbán [Mon03]). There is a jpo of size 2ℵ0 and with the c.p.p. which
cannot be embedded into D.

Montalbán [Mon03] also showed that if Martin’s Axiom holds at κ, then every jusl with
the c.p.p. and size 6 κ can be embedded into D. As a corollary we get that whether
every jpo (or jusl) with the c.p.p. and size ℵ1 is embeddable into D or not is independent
of ZFC. It is false if ℵ1 = 2ℵ0 and true if Martin’s Axiom holds at ℵ1.

6. GH-embeddings

There are other very meaningful predicates on the Turing degrees that are defined in
terms of 6T , ∨ and ′. To understand these predicates better, we now look a embeddings
of structures which preserve them.

6.1. The Low/High hierarchy. The degrees below 0′ are classified depending on how
close they are to being computable or how close they are to being complete (i.e. to
compute 0′) via the Low/High hierarchy. This classification has been extremely useful in
the study of the degrees below 0′. We say that a degree a 6T 0′ is low, if its jump is as
low as it could be, that is, if a′ ≡T 0′. We say that a 6T 0′ is high, if its jump is as high
as it could be, that is, if a′ ≡T 0′′. More generally:

Definition 6.1 (Soare [Soa74], Cooper [Coo74]). A Turing degree a 6T 0′ is

• lown (Ln) if a(n) = 0(n).
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• highn (Hn) if a(n) = 0(n+1).
• intermediate (I) if ∀n (0(n) <T a(n) <T 0(n+1)).

Note that for each n, Ln ⊆ Ln+1, Hn ⊆ Hn+1, and Ln, Hn and I are disjoint. These
classes induce a partition, C∗, of the degrees 6 0′.

C∗ = {L∗
1, L

∗
2, ...} ∪ {I∗} ∪ {H∗

1 , H
∗
2 , ...},

where L∗
1 = L1, H

∗
1 = H1, I

∗ = I and for n > 1, L∗
n = Ln r Ln−1, and H∗

n = Hn rHn−1.
We define an ordering, ≺, on C∗ as follows:

L∗
1 ≺ L∗

2 ≺ · · · ≺ I∗ ≺ · · · ≺ H∗
2 ≺ H∗

1 .

It follows from the monotonicity of the jump that if x 6T y, x ∈ X ∈ C∗ and y ∈
Y ∈ C∗, then X � Y . The following theorem of Lerman’s helps us to understand how the
degrees in the different classes of the hierarchy are located.

Definition 6.2. An H-poset is a structure P = 〈P,6, 0, 1, f(·)〉, where 〈P,6〉 is a partial
ordering, 0 and 1 are the least and greatest elements respectively, and f is a labeling
function from P to C∗ such that for every x, y ∈ P ,

x 6 y ⇒ f(x) � f(y),

f(0) = L∗
1 and f(1) = H∗

1 .

Theorem 6.3 (Lerman [Ler85]). Every finite H-poset can be embedded into D (of course,
preserving labels).

6.2. The Generalized Low/High hierarchy. As a generalization of this hierarchy to
all the Turing degrees we get the generalized high/low hierarchy. In [JP78], Jockusch and
Posner defined the generalized high/low hierarchy with the intention of classifying all the
Turing degrees depending on how close a degree is to being computable, and on how close
it is to computing the Halting Problem. This classification coincides with the High/Low
hierarchy on the degrees below 0′.

Definition 6.4. For n > 1 we say that a degree x is generalized lown, orGLn, if x(n) = (x∨
0′)(n−1). We say that a degree x is a generalized highn degree, or GHn, if x(n) = (x∨0′)(n),
and it is generalized intermediate, or GI, if ∀n

(
(x ∨ 0′)(n−1) <T x(n) <T (x ∨ 0′)(n)

)
.

This classification has also been very useful in the study of D. Many order-theoretic
properties of 0′ have been proven to hold for the members in the higher classes of this
hierarchy. For instance, every non-GL2 cups to every degree above it [JP78]; every GH1

degree bounds a minimal degree [Joc77], but not every GH2 does [Ler86]; and every GH1

degree has the complementation property [GMS04]. Also, degrees that should not contain
much information appear in the lower classes: every 1-generic set is GL1 (see [Ler83,
IV.2]); every 2-random real is GL1 [Kau91]; every minimal degree is GL2 [JP78]. So, one
could argue that degrees in the upper classes of this hierarchy are more complex than the
ones in the lower classes. One would think that generalized high degrees should be above
generalized low degrees, or at least not below. However, there are generalized low degrees
which compute generalized high degrees. (Take an H1 degree x <T 0′. By the Posner and
Robinson join theorem relative to x [PR81], there exists y >T x with y∨0′ = y′ = x′ = 0′′.
So we get that y >T x, x is GH1 and y is GL1.) Moreover, we have the worst situation
possible in this respect:
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Let
G∗ = {GL∗

1, GL
∗
2, ...} ∪ {GI∗} ∪ {GH∗

1, GH
∗
2, ...},

where GL∗
1 = GL1, GH

∗
1 = GH1, GI

∗ = GI and for n > 1, GL∗
n = GLn r GLn−1, and

GH∗
n = GHn rGHn−1.

A GH-poset is a structure P = 〈P,6, 0, f(·)〉, where 〈P,6〉 is a partial ordering, 0 is
the least element and f is a function from P to C∗ such that f(0) = GL∗

1. Note that no
condition at all is imposed on the labels of a GH-poset except for f(0) = GL∗

1.

Theorem 6.5 (Montalbán [Mon06]). Every finite GH-poset can be embedded into D.

7. Decidability

It is impossible to talk about embeddings, extensions of embeddings and initial segment
results without mentioning decidability results. For instance, since every finite distribu-
tive lattice embeds into D as an initial segment [Lac68], we can reduce the theory of
distributive lattices to the theory of 〈D,6T 〉 (by quantifying over all the top elements of
initial segments of D which are distributive). Since the theory of distributive lattices is
undecidable (Ervsov and Taŭıclin [ET63]), we get the following theorem:

Theorem 7.1 (Lachlan [Lac68]). The theory of 〈D,6T 〉 is undecidable.

However, if we restrict ourself to certain classes of formulas, many decidability results
have been proved. The next question is what fragments of the theory of 〈D,6T 〉 are
decidable.

7.1. Existential Theories. The decidability of existential theories is closely related to
embeddability results.

Lemma 7.2. Let L be a finite relational language, and let F be an L-structure. Then the
following are equivalent

(1) The ∃-theory of F in the language L is decidable;
(2) There is an algorithm that decides which finite L-structures can be embedded into

F .

Proof: For the implication 1⇒2 note that for each finite L-structure there is an exis-
tential formula in L which holds in F if and only if P embeds in F .

For the other direction consider a existential sentence ϕ of L. We can write ϕ as a
disjunction of formulas of the form ψj = ∃x1, ..., xk (ϕj,1 & ...,& ϕj,n), where each ϕj,i is
a literal (either an atomic formula or a negation of one). Note that F |= ψj if and only if
there is an L-structure of k elements which satisfies ψj and embeds into F . All we have
to do now is check all the L-structures of size k. �

We can now apply the embeddability results of Section 3 to get decidability results.

Corollary 7.3 (Kleene and Post [KP54]). The ∃-theory of 〈D(6T0′),6T ,∨〉 is decidable.

Proof: Think of ∨ as a 3-ary relation and let L be the language with 6T and ∨. From
[KP54] it follows that a finite L-structure embeds into D(6T0′) if and only if it is a partial
upper semilattice. �

Corollary 7.4 (Montalbán [Mon03]). The ∃-theory of D = 〈D,6T ,∨,′ 〉 is decidable.
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The results in Section 6 imply the following decidability results.

Theorem 7.5. (Lerman [Ler85]) The ∃-theory of 〈D,6T ,0,0
′,L1,L2, ..., I, ...,H2,H1〉 is

decidable.
(Montalbán [Mon06]) The ∃ theory of 〈D,6T ,0, GL1, GL2, ..., GI, ..., GH2, GH1〉 is de-
cidable.

7.2. Two quantifier theories and extensions of embeddings. When we look at
∀∃-theories, more than embeddability results, we need extension of embedding results.

Lemma 7.6. Let L be a finite relational language, and let F be an L-structure. Then,
the following are equivalent

(1) The ∀∃-theory of F in the language L is decidable;
(2) There is an algorithm such that given finite L-structures P ,Q1, ...,Ql, with P ⊆ Qi

for each i, it decides whether every embedding of P into F extends to an embedding
of Qi for some i 6 l.

We leave the proof to the reader.
To get such an algorithm to solve the finite-extensions-of-embeddings problem in 〈D,6T 〉,

the two main ingredients are: Kleene and Post [KP54] finite version of Lemma 5.1; and
Lerman’s theorem [Ler71] that every finite usl P embeds into D as an initial segment.
This was used independently by Shore [Sho78] and Lerman [Ler83, VII.4] to get that
the ∀∃-theory of 〈D,6T 〉 is decidable. But Kleene and Post’s [KP54] finite-extensions-
of-embeddings result is not sufficient to get the ∀∃-theory of 〈D,6T ,∨〉. Jockusch and
Slaman [JS83] used a different forcing technique to prove that if P and Q are countable
usl’s w/0 and P is downward closed in Q, then every usl-embedding of P into D extends
to an embedding of Q into D. The finite version of this result, together with Lerman
[Ler71] initial segment theorem, gives us the algorithm needed in 7.6.2

Theorem 7.7 (Jockusch and Slaman [JS83]). The ∀∃-theory of 〈D,6T ,∨〉 is decidable.

The situation below 0′ is more complicated. Lerman and Shore [LS88] showed that the
∀∃-theory of 〈D(6T0′),6T 〉 is decidable. However, the following question is still open.

Question 7.8. Is the ∀∃-theory of 〈D(6T0′),6T ,∨〉 decidable?

Montalbán (2003, unpublished) made the following observation, which shows that,
to solve the question above, it will be necessary to have more than an extensions-of-
embeddings result like the one used for 〈D,6T ,∨〉 where only one Q is considered. For
every x1 and x2 with 0 <T x1 <T x2 <T 0′, either there exists y such that 0 <T y <T x1,
or there exists y such that x1 <T y <T 0′ and y∨x2 ≡T 0′, but neither disjunct holds for
every such x1,x2. (If x1 is a minimal degree, 0′ is high relative to it, and the existence of
y follows from Posner and Robinson’s join theorem [PR81]. To get x1 and x2 for which
a y of the second type does not exists consider and c.e. operator which constructs a
c.e. degree without the join property and then use Jockusch and Shore’s pseudo-jump
inversion theorem [JS83].)

As in a side, we should mention that it is also unknown whether the ∀∃-theory of
〈R 6T ,∨〉 is decidable, where R is the set of degrees of c.e. sets.

In larger languages, we do get to the boundary of decidability at the two quantifier
level. For the theory of 〈D,6T ,∨,′ 〉, Montalbán’s result on its decidability is as far we
can get.
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Theorem 7.9 (Slaman and Shore [SS06]). The ∀∃-theory of 〈D,6T ,∨,′ 〉 is undecidable.

We also get undecidability if we add greatest lower bounds instead of jump.

Theorem 7.10 (Miller, Nies and Shore [MNS04]). The ∀∃-theory of 〈D,6T ,∨,∧〉 is
undecidable, where ∧ is any total extension of the infimum relation.

The following seems to be a difficult open question.

Question 7.11. Is the ∀∃-theory of 〈D,6T ,
′ 〉 decidable?

A positive answer would give a decidability procedure for ∃-theory of 〈D,6T ,
′ ,0〉.

7.3. Other results. Three quantifiers is the end of the story in term of decidability
results. Schmerl (see [Ler83, VII.4.6]; the proof there needs a small correction) extended
Lachlan’s Theorem 7.1, and showed that the ∀∃∀-theory of 〈D,6T 〉 is undecidable.

A quite interesting result about the theory of 〈D,6T 〉 is that it is Turing (actually one-
to-one) equivalent to true second order arithmetic (Simpson [Sim77]). Shore [Sho81], then
proved that the theory of 〈D(6T0′),6T 〉 is Turing (actually one-to-one) equivalent to true
first order arithmetic. Moreover, also in [Sho81], he proved this result for 〈D(6Ta),6T 〉
where a is arithmetic and above 0′, computable enumerable, or high. Greenberg and
Montalbán [GM03] extended this result to a n-CEA, 1-generic and below 0′, 2-generic
and arithmetic, or arithmetically generic.
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