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Abstract. The question as to why most complex organisms reproduce sexually remains a

very active research area in evolutionary biology. Theories dating back to Weismann have

suggested that the key may lie in the creation of increased variability in offspring, causing

enhanced response to selection. Under appropriate conditions, selection is known to result

in the generation of negative linkage disequilibrium, with the effect of recombination then

being to increase genetic variance by reducing these negative associations between alleles. It

has therefore been a matter of significant interest to understand precisely those conditions

resulting in negative linkage disequilibrium, and to recognise also the conditions in which

the corresponding increase in genetic variation will be advantageous. Here we prove rigorous

results for the multi-locus case, detailing the build up of negative linkage disequilibrium, and

describing the long term effect on population fitness for models with and without bounds on

fitness contributions from individual alleles. Under the assumption of large but finite bounds

on fitness contributions from alleles, the non-linear nature of the effect of recombination on

a population presents serious obstacles in finding the genetic composition of populations at

equilibrium, and in establishing convergence to those equilibria. We describe techniques for

analysing the long term behaviour of sexual and asexual populations for such models, and use

these techniques to establish conditions resulting in higher fitnesses for sexually reproducing

populations.

1. Introduction

Sexual propagation must certainly confer immense benefits on those populations undergoing

it, given that sex involves substantial costs such as the breaking down of favourable gene

combinations established by past selection. There are many hypotheses as to the form these

advantages take, and they fall naturally into two groups (Felselstein [1], Maynard-Smith [2],

Kondrashov [3]). On the one hand a function of sexual reproduction and meiotic recombination

may be in providing immediate and physiological benefits, such as allowing repair of double

strand DNA damage (Bernstein [4], Michod [5]). Such mechanisms alone, however, are unlikely

to account for the continued prevalence of sexual reproduction (Barton and Charlesworth [7],
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Kondrashov [3], Maynard-Smith [6]), and so, on the other hand, decades of research have

seen evolutionary biologists looking to develop explicit theoretical models which explain the

advantages of sex in terms of the interaction between variation and selection. Many of these

models (Barton [8], Otto and Barton [9], Hill and Robertson [10]) focus on ideas originally due

to Morgan [11], Fisher [12] and Muller [13] which stress the ability of recombination to place

beneficial mutations together on the same chromosome. In a similar vein one may consider

the accumulation of deleterious mutations (Muller [14], Felselstein [1]). Since the effect of

selection is dictated by levels of genetic variability in a population, one may also look more

directly to understand the effect of recombination on genetic variance. The key observation

here is that under appropriate conditions negative linkage disequilibria will build up, impeding

the response of the population to directional selection (Mather [15], Felselstein [16]).

The mechanisms by which negative linkage equilibrium may be created in the first place,

may be classified as either deterministic or stochastic. A key finding for deterministic models

(Barton [18]) is that recombination may be favoured when weak negative epistasis (mea-

sured relative to the multiplicative contribution of individual gene fitnesses) exists between

favourable alleles. There is strong evidence also that stochastic effects (Hill, Robertson, [10]

and Barton, Otto [19]) may be substantial in the realistic setting of finite populations. The ba-

sic mechanism in this case may be seen as follows. In the rare event that particularly beneficial

alleles at distinct loci combine in a single genome, selection acts quickly to achieve fixation for

the coupled beneficial alleles, meaning that the associated positive disequilibrium disappears

quickly. In the case of a strongly beneficial allele which initially appears on a genome with

weaker alleles at other loci, however, selection is slowed down (when recombination is weak

or non-existent), meaning that the negative disequilibrium persists for a much longer period

of time. Any variance in disequilibrium thus ultimately leads to negative disequilibrium on

average.

Here we shall consider a deterministic setting in which sex is seen to robustly outperform

asex across a broad spectrum of models, and in which the fitness contributions of genes

which can be attained via mutation may be bounded or unbounded. We shall make certain

simplifying assumptions. It will be convenient to carry out most of our analysis, for example,

relative to models in which individual genes contribute additively to the fitness of the genome,

and relative to this assumption of additive contributions from individual genes we shall assume

zero epistasis. It should be noted that seen relative to models in which genes contribute to

fitness multiplicatively, our model therefore assumes negative epistasis, and so may be expected

to display benefits to recombination (e.g. Barton [18]). We shall also assume that loci are

unlinked, so that they either correspond to loci on distinct chromosomes (one may consider

that we are choosing a ‘representative’ from each chromosome), or else lie at sufficient distances

when they share a chromosome. As well as facilitating the mathematical analysis, these

simplifications allow us to establish the most basic conditions under which certain mechanisms

of variance conversion (described in detail in later sections) will operate with substantial effect.

If a phenomenon is already observed in such a model, it is because no extra hypotheses are

necessary to make it true - that a cause is already present within the few features of the simple
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model. Moreover, analysing our proofs, we can extract key ideas that surely carry over to more

general models. An added benefit of working with these simplified models is also a dramatic

reduction in the computational complexity of running large simulations. Even before providing

mathematical proofs of our results, we are able to run simulations modelling populations with

many more loci and more alleles than would otherwise be possible. Simulations for these vast

fitness landscapes robustly show sexual populations achieving more rapid increases in mean

fitness. Figure 1 shows a small cross-section of the results of simulations for models with

finite or infinite haploid populations and where fitness contributions from individual genes

may be combined additively or multiplicatively (further examples are given in Figures 6-10

Appendix E). It is worth noting a fact first observed by Maynard-Smith [34] and illustrated

in (e) of Figure 1, that in the multiplicative model with zero epistasis and infinite populations

beginning in linkage equilibrium, the sexual and asexual populations remain identical. This

holds because selection then preserves linkage equilibrium.

We then concentrate our mathematical analysis on the infinite populations additive model,

since dealing with this case allows us to avoid some of the complexities inherent in the finite

population models while illustrating basic principles which carry through to the finite popu-

lation additive model. We are able to give a rigorous mathematical analysis of the manner

in which, during the process of asexual propagation, a negative linkage disequilibrium will

be created and maintained, meaning that an occurrence of recombination at any stage of the

process will cause an immediate increase in fitness variance and a corresponding increase in

the rate of growth in mean fitness. For contexts where there is a large but finite bound on

allele fitnesses, it is not surprising that the long term behaviour differs qualitatively from the

case where there is no a priori bound of the fitnesses of genes resulting from mutation. In

this case, a standard application of the Perron-Frobenius Theorem suffices to establish that

the asexual process converges to a fixed point of the corresponding dynamical system, but

a deeper analysis is required in order to establish the mean fitness of the population at this

fixed point and to relate this to the long term behaviour for sexual populations. We develop

techniques which suffice to carry out such an analysis, and establish higher resulting mean

fitnesses for sexual populations in these bounded models.

2. The model

We consider haploid populations with non-overlapping generations. In the absence of domi-

nance between alleles at a single locus, our analysis could easily be extended to consider diploid

populations. We describe here the additive infinite population variants of the model (other

variants are described in Appendix D). We do not assume alleles come from a pre-existent

pool, but consider a (form of random walk mutation) model in which alleles are created by

mutation as time passes, possibly without any bound on attainable fitness. For certain aspects

of the mathematical analysis it will be convenient to be able to assume that gene fitnesses

occur in a discrete range rather than taking any real value. We ensure this by assuming that

gene fitnesses take integer values. Appropriate scaling means this entails essentially no loss in
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generality – in order to simulate a model in which fitnesses take values to d decimal places,

we can simply multiply all fitness values by 10d, apply the model as described here, and then

finally divide by 10d in order to correct fitness values at any stage of the process. One could

consider a model in which fitnesses can take any real values, without substantial changes in

the behaviour of the model. Most other features of the model, which we now describe in more

detail, are essentially standard in the literature.

Each instance of the model is determined by three principal parameters: `, D and µ. First,

` ∈ N (> 1) specifies the number of loci. With each individual specified by ` genes, in the

absence of epistasis we need only be concerned with the fitness contributions corresponding to

those genes, and so each individual can be identified with a tuple x = (x1, ..., x`) ∈ Z`. The

fitness of x is F (x) =
∑`

i=1 xi. (For the multiplicative model, one would define F (x) =
∏`
i=1 xi

instead.) Second, the domain D ⊂ Z` determines which individuals are allowed to exist. We

will use three types of domains in this paper: The N-model uses as domain D = N`, where

N = {1, 2, 3, ....}; the Z-model uses D = {x ∈ Z` : F (x) > 0}; and the bounded-model uses

D = {1, ..., N}` for some upper bound N ∈ N on gene fitness contributions. In practice

there is almost no difference between the N- and Z-models, but there are situations when it is

simpler to consider one or the other. Third, µ : Z → R≥0, the mutation probability function,

determines how mutation affects gene fitness contributions: µ(k) is the probability that the

fitness contribution of a gene will increase by k. For the sake of simplicity we assume this

distribution to be identical for all loci. While there is no clear canonical choice for µ, the

behaviour of the model is robust to changes in this parameter so long as negative mutations

are more likely than positive ones, both being possible. This is because any such choice of µ

will approximate a Gaussian distribution over multiple generations. The simplest mutation

distributions one may consider are those taking non-zero values only on {−1, 0, 1}. Unless

stated otherwise, it should be assumed that from now on mutations are of this form and that

µ(0) > µ(−1) > µ(1) (giving a form of stepwise-mutation model [26]).

By a population we mean a probability distribution φ : Z` → R≥0, where φ(x) is the

proportion of individuals that have ‘genotype’ x ∈ Z`. For a population φ, we shall also use

X = (X1, ..., X`), where the Xi’s take values in Z, to denote a random variable that picks an

individual with gene fitness contributions X1,...,X` according to the distribution given by φ.

We let M(φ) denote the mean fitness of the population φ, namely E(F (X)). It should be

assumed throughout that all populations considered have finite means, variances, and that all

cumulants are finite (as is the case, for example, for distributions φ with finite support, i.e.

with finitely many x ∈ Z` such that φ(x) 6= 0).

For a sexual population, the next generation is obtained by application of three operations:

selection, mutation and recombination. We refer to the consecutive application of these op-

erations over multiple generations as the sex process. For the asex process, the operations

applied are selection and mutation, and the recombination phase is omitted. With a much

less significant effect, at the end of each generation we will also apply a truncation operation

that erases individuals falling outside the domain.
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Selection. The fitness of a young zygote is proportional to the number of young zygotes that

it will produce. If φ is the population prior to selection then the resulting population, Sel(φ),

is given by:

Sel(φ)(x) =
F (x)

M(φ)
φ(x), for x ∈ Z`.

The factor 1/M(φ) normalises the probability distribution.

Mutation. Let Ci be i.i.d. random variables taking values in Z with distribution µ. If we apply

mutation to a random variable X = (X1, ..., X`) we get (X1 + C1, ..., X` + C`). Equivalently,

if φ (= Sel(φ′) where φ′ was the population prior to selection) is the population prior to

mutation then, for x ∈ Z`:

Mut(φ)(x) =
∑

y∈D
φ(y) · µ(y − x),

where µ is the extension of µ to a function on Z` according to the assumption that mutations

act independently on distinct loci (i.e., µ(a1, ..., a`) =
∏`
i=1 µ(ai)).

Recombination. For the sake of simplicity we assume that the ` loci are unlinked, so

that they either correspond to loci on distinct chromosomes (one may consider that we are

choosing a ‘representative’ from each chromosome), or else lie at sufficient distances when

they share a chromosome. In general the effect of recombination is to leave the distributions

at individual loci unchanged, while bringing the population towards linkage equilibrium. We

make the simplifying assumption (for the infinite models) that the effect of a single application

of recombination is to bring the population immediately to linkage equilibrium, i.e. to make

the random variables Xi independent. If φi(x) : Z → R≥0 is the distribution at locus i, (i.e.

φi(x) =
∑

y∈D,yi=xφ(y) where φ = Mut(Sel(φ′)) if φ′ was the population at the start of the

present generation) then the resulting population is given by:

Rec(φ)(x) =
∏̀

i=1

φi(xi), for x = (x1, ..., x`) ∈ Z`.

Recombination as we consider it here is thus equivalent to multiple applications of recombina-

tion in its standard form. Since in reality the effect of recombination for unlinked loci is to half

the linkage disequilibrium (LD2 as formally defined in the next section) in each generation,

linkage disequilibrium is kept to very low levels – so our simplifying assumption is not too

large an approximation.

Mutation and recombination may create individuals that fall outside the domain D. At the

end of each generation, we therefore perform truncation to remove those outlying individuals.

Tru(φ)(x) is defined to be φ(x)/s if x ∈ D, and 0 otherwise, where s is the normalising

factor s =
∑

x∈D φ(x). We will see (Tables 1-3, Appendix E) that under light conditions the

proportion of the population moving outside the bounds of D in each generation is negligible,

and that truncation along the lower bounds will have an insignificant effect on the whole

process.

A final comment concerning notation before we analyse the model: it is standard practice in

the population genetics literature to normalise so that the initial genotype (“the wildtype”) has
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fitness 1 and then have other than wildtype alleles each associated with a selection coefficient

si. An individual would then have fitness 1 +
∑`

i=1 si in the additive model and
∏`
i=1(1 + si)

in the multiplicative model. Of course normalisation does not really have an effect on the

process, and one could use the same convention here. The reason that we do not is that

this would severely complicate dealing with the mutation operation. As the model is defined

here, the mutation distribution remains constant throughout the process. This means, for

example, that if at a later stage of the evolutionary process individuals have higher average

fitnesses, allele mutations are then likely to have proportionately less effect on the fitness of

the individual.

3. Analysing the model

The objective now is to give a mathematical analysis establishing higher mean fitness for

sexual populations (reduction to selection at the gene level can then be achieved in a standard

fashion, by consideration of the effect of selection on genes which code for sexual rather than

asexual reproduction). Proofs of all claims in this section appear in Appendix A, Appendix

B and Appendix C.

First let us review the direct effect of selection, mutation and recombination on mean

fitness. Here we shall simply state the facts, but proofs of all claims appear in Appendix A.

Each generation sees two forces acting on the mean fitness M = M(φ). On the one hand,

mutation causes a fixed decrease in M by an amount that depends only on µ – recall that

deleterious mutations are more likely than beneficial ones. Selection, on the other hand, can

be shown to increase mean fitness by VF /M – a form of Fisher’s fundamental theorem [12] –

where VF = VF (φ) = Var(F (X)) is the variance of the fitness of φ (for a proof see Appendix

A, Lemma 4). Recombination does not affect M directly. Thus, for fixed µ, the increase in

mean fitness at each generation is determined by the variance. The difference between the sex

and asex processes will be seen to stem from the effect of recombination on variance, which

then results in an increase to the change in mean fitness for the sex process during the selection

phase.

The effect of mutation on the variance is a fixed increase at each generation, again entirely

determined by µ. The effect of selection on variance (Appendix A, Lemma 4) is given by:

VF (Sel(φ))− VF (φ) =
κ3

M
−
(
VF
M

)2

,

where κ3 is the third cumulant of F (X) – recall that (roughly speaking) the third cumulant

can be seen as a measure of asymmetry in the distribution, with negative values indicating a

longer left tail. Our first theorem, proved in Appendix A, shows that for the sex process, the

effect of recombination on variance is positive.

Theorem 1. If φ∗ = Sel(φ) was obtained by an application of selection to a population φ at

linkage equilibrium, then the effect of recombination on fitness variance is given by:

VF (Rec(φ∗))− VF (φ∗) =

∑
i 6=j ViVj
M2

,
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where Vi = Var(φi) and M = M(φ). This effect is therefore non-negative.

This theorem applies to the sex process because a previous application of recombination

would bring the population φ to linkage equilibrium. Linkage equilibrium is then preserved

by mutation (see Lemma 5, Appendix A and surrounding comments).

While Theorem 1 describes the positive effect of recombination during the sex process, our

second theorem (which requires considerably more work to prove) shows that recombination

has a positive effect on variance in a much more general situation, as for instance, during

a process which is asexual up until a given generation at which recombination occurs. This

theorem establishes that for a population initially at linkage equilibrium, any subsequent

applications of recombination during later generations always give an increase in variance and

so a corresponding increase in the rate of change of mean fitness.

Theorem 2. For the Z-model, starting with a population at linkage equilibrium, suppose we

iterate the operations of mutation, selection and recombination in any order (possibly applying

only mutation and selection over multiple generations, and of course applying truncations when

relevant). Then any non-trivial application of recombination has a positive effect on variance.

By a trivial application of recombination we mean one acting on a population which is already

at linkage equilibrium, and so which has no effect at all. This is the case, for instance, if one

applies recombination twice in a row: the second application is trivial. The theorem is stated

only for the Z-model because truncation creates technical difficulties when producing a proof

for the other models. With the effect of truncation being so small, however, the claim of the

theorem is, in fact, verified in all simulations we have run for any of the models.

To explain what is behind Theorem 2, we need to consider two key terms: the linkage

disequilibrium term LD2 and the flat variance. We define LD2(φ) to be the covariance term∑
i 6=j E(XiXj)−E(Xi)E(Xj), which is similar to the standard notion of linkage disequilibrium

coefficient, but has terms weighted according to fitness values rather than just considering

frequencies. The variance VF can be expressed:

VF (φ) = E
((∑̀

i=1

Xi

)2)−
(
E
(∑̀

i=1

Xi

))2

=
∑̀

i=1

(
E(X2

i )− E(Xi)
2
)

+
∑

i 6=j

(
E(XiXj)− E(Xi)E(Xj)

)
.

=
(∑̀

i=1

Vi

)
+
∑

i 6=j

(
E(XiXj)− E(Xi)E(Xj)

)
.

We therefore have:

LD2 = VF −
∑̀

i=1

Vi.

Since Rec(φ) is at linkage equilibrium, and recombination leaves each φi unchanged, we con-

clude that VF (Rec(φ)) =
∑

i Vi, where Vi = Var(φi). Thus LD2(φ) is precisely the decrease
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in variance produced by recombination:

LD2(φ) = VF (φ)− VF (Rec(φ)).

So LD2 is the decrease in the second central moment produced by recombination, and of

course one could define (more complicated) analogous terms for higher moments or cumu-

lants. Theorem 2 thus states that LD2(φ) is negative at all stages of the process, unless the

population is at linkage equilibrium, in which case LD2(φ) = 0.

A more geometric way of understanding LD2 is through the notion of flat variance. Let

M = (E(X1), E(X2), ..., E(X`)) ∈ R`; this vector represents the average individual in the

population. The term GV (φ) = E(‖X−M‖2) is then the sum of the variances contributed by

individual loci. Of course, recombination does not affect GV (φ) at all, but rather changes the

shape of the population by increasing the variance in the direction that is useful for selection,

namely VF (φ). Consider the diagonal line d = {(x1, ..., x`) ∈ R` : x1 = x2 = · · · = x`} and its

(` − 1)-dimensional orthogonal complement P = {(x1, ..., x`) ∈ R` : x1 + x2 + · · · + x` = 0},
and let πd and πP be the projection functions onto d and P respectively. Using that F (X) is

the inner product of X and (1, 1, ..., 1), one can show that:

VF (φ) = ` ·Var(‖πd(X)‖).

We define the flat variance of a population to be the variance of its projection onto P multiplied

by a correcting factor:

FV (φ) =
`

`− 1
· E(‖πP (X −M)‖2).

Informally, VF (φ) measures how tall a population is along the vector (1, 1, ...1), while FV (φ)

measures how fat it is. Unlike the other standard terms considered here, the flat variance

does not seem to have an exact counterpart in the existing literature, but can be useful in

providing a clear way in which to visualise and understand the effect of selection on variance.

For realistic values of `, the flat variance may be very close to GV (φ), but with the qualitative

difference that it is affected by selection in a manner which allows us to view this effect in

terms of conversion from one form of variance to another.

The effect of recombination on variance and flat variance then satisfies a simple formula,

which can be derived as follows. Using that πP (X) + πd(X) = X and that, by Pythagoras,

‖πP (X −M)‖2 + ‖πd(X −M)‖2 = ‖X −M‖2, we get:

GV =
∑̀

i=1

Vi = E(‖X −M‖2) =

E(‖πP (X −M)‖2) + E(‖πd(X −M)‖2) =
`− 1

`
FV +

1

`
VF .

Thus, since
∑`

i=1 Vi is unaffected by recombination, so is ((` − 1)FV + VF )/`. We can also

deduce that if φ∗ is at linkage equilibrium and V ∗F =
∑`

i=1 V
∗
i , then FV ∗ = V ∗F . It follows that

the effect of recombination on VF and FV is to make them equal while leaving ((`− 1)FV +
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VF )/` unchanged, thus making them both equal to ((`− 1)FV + VF )/`. We then have:

VF (Rec(φ))− VF (φ) =
`− 1

`
(FV − VF ) and FV (Rec(φ))− FV (φ) =

1

`
(VF − FV ),

and

LD2 = ((`− 1)/`)(VF − FV ).

Thus, LD2 being negative is equivalent to FV being greater than VF , or, more informally, the

population being fatter than it is tall along the diagonal d. The dynamics of this interaction

are explained in Figure 2, and the effects for unbounded and bounded domains are illustrated

in Figures 3 and 4 respectively. Proving Theorem 2 then amounts to using this framework

in order to understand the evolving shape of sexual and asexual populations over multiple

generations. While the technical details are fairly involved (and are described in Appendix

B), the basic intuition can be described quite simply. At a particular locus, selection is

stronger among individuals whose other genes have lower fitness values - the lower fitness

values at other loci increase the significance of differing fitnesses between alleles at the locus

in question. By analysing the effect of each of the basic operations of selection, mutation,

recombination and truncation, we are able to establish structural conditions on the shape of the

distribution defining a population, which ensure that in the absence of recombination and over

multiple generations, a negative linkage disequilibrium will be created and maintained. Under

appropriate conditions, selection increases the value FV (φ)−VF (φ), and the combined effects

of mutation and truncation are to preserve this imbalance, as well as structural conditions

required in order to ensure that subsequent applications of selection preserve negative LD2.

Theorems 1 and 2 show an important advantage that sex has over asex. In comparing sex

and asex populations evolving independently, however, these theorems do not suffice to entirely

specify how the variances of the two populations differ at any given generation. To make this

comparison we would need to understand the evolution of the third cumulant, which behaves

differently in each process. The evolution of the third cumulant depends on the fourth, which

depends on the fifth, and so on.

Rather than analysing further the evolution of populations over time, we now study what

happens to the sexual and asexual populations in the long term. We prove that, for the

bounded model, whatever the initial populations are, sex outperforms asex in the long run.

We state the following theorem in terms of a mixed population containing both sexual

and asexual individuals competing for resources. Thus the population distribution φ now

has domain D × {s, a}, the second coordinate indicating whether the individual is sexual or

asexual. Mutation acts exactly as before among each type of individual. Selection is also

the same, now using M(φ) =
∑

x∈D×{s,a} F (x)φ(x) to normalise. Recombination acts only

among the sexual individuals.
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Figure 4. This figure shows the level curves for 2-locus populations proceed-
ing according to the bounded model, with maximum allele fitness 400, mutation
rate 0.2, and with the probability any given mutation is beneficial being 10−4.
All alleles initially have fitness 50. The probability density level curves are
depicted at stages 500, 1500, 2500, 3500, 4500 and 5500. We can again observe
the increase in flat variance and decrease in VF (φ) for the asexual population,
and also that the sexual population does not necessarily have a higher value
GV (φ).

Theorem 3. Given µ and `, for all sufficiently large bounds N and for any initial population

in which the proportion of sexual individuals is non-zero, the proportion of sexual individuals

converges to 1 and the proportion of asexual ones converges to 0.

This is the longest and most complicated proof of the paper: the proof appears in Ap-

pendix C. Standard techniques involving the application of the Perron-Frobenius Theorem
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suffice to prove that the asex distribution (i.e. the distribution within the asexual part of

the population in isolation) converges to a limit, since mutation and selection can be treated

as linear operations with deferred normalisation incorporated appropriately into the analysis.

New techniques are required, however, in order to establish a good approximation to the mean

fitness at that limit. The key idea is to establish a translation between any given process and

one in which negative and positive mutations are equally likely. Limit distributions are easily

understood for processes of the latter kind, and so the established translation then allows

us to describe the mean fitness of asex limit distributions more generally. Unfortunately, the

nonlinear nature of recombination means that analysing the sex process is much more difficult.

We do not prove that the sex process converges to a limit, but still get a good estimate of the

geometrical average of the mean fitness over generations. Such ideas would not work for the

N- and Z-models as in those cases the mean fitness diverges to infinity in both the sex and the

asex processes. Figure 5 shows the manner in which sexual and asexual populations converge

to their respective fixed points over time (while we do not prove that convergence to a fixed

point always occurs for sexual populations, such convergence was observed in all simulations).

4. Discussion

In nature one must surely expect a variety of mechanisms to be of significance in determining

the most efficient methods of reproduction. As well as those factors already mentioned, sex

may provide advantages for species not subject to random mating by strengthening selection

[29], for example, or may provide a straightforward advantage in providing two parents to care

for young offspring [30]. Such arguments, however, do not suffice to explain the prevalence

of sex in species for which random mating is a good approximation or without parental care.

Our aim here has been to contribute to our understanding of a fundamental and underlying

mechanism conferring strong advantages to sex, whereby the effect of recombination is to break

down negative associations between loci. Of course a natural question, having considered

the infinite populations case, is the extent to which this analysis carries over to the finite

populations model. A crucial difference in moving to finite populations is that the process

is no longer deterministic. The equations governing the change in mean fitness and variance

due to selection and mutation for the infinite population model would now perfectly describe

the expected effect of mutation and selection for finite populations, and the finite populations

model could be seen simply as a stochastic approximation to the infinite case, were it not

for the loss in variance and higher cumulants due to sampling (since picking n individuals

from a distribution with variance v produces a population with expected variance v(n−1)/n).

For sufficiently large populations this effect will be small on a stage by stage basis, and so

our analysis for infinite populations can be seen as a good approximation over a number of

generations which is not too large. Ultimately, however, sampling will have the effect that

mean fitness for the population no longer increases without limit: once variance is sufficiently

large the expected loss in variance due to sampling balances the increase that one would

see for an infinite population with the same cumulants. Larger populations are thus able to
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Figure 5. Each of the six plots shows the trajectory of the centre of mass
for various sexual and asexual 2-locus populations over multiple generations,
for a number of different initial populations and for the bounded model. Each
point represents the centre of mass of a population at a single generation, and
the populations were then allowed to evolve for sufficiently many generations
that an equilibrium point was reached. In each case one can see convergence
to an equilibrium, which corresponds to a higher fitness value for the sexual
population. The bottom-left plot shows intermediate steps in the evolution
towards the middle plot in the bottom row. For that plot, we have 40 different
initial populations, half sexual (red), half asexual (blue). The bound, N , on
gene fitness is 50 for all plots except for the top-centre and bottom-right, where
N = 301. The probability of mutation is 0.5 except for the top-left plot, where
the probability of mutation is 0.9. The probability that a mutation is beneficial
is 0.001 in all cases. Starting from the top-left and moving clockwise, the
original populations are Gaussian distributions with standard deviations 5, 25,
6, 8, 6 and 6 respectively.

sustain much higher mean fitnesses than small ones. As mentioned previously, there are also

mechanisms which are only of relevance in the finite population setting, and which are believed

to be a significant factor in the creation of negative linkage equilibrium [19].
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While sexual reproduction has been seen here to confer strong advantages in the setting of

simplistic and entirely modular fitness landscapes, we have said nothing about how this pic-

ture changes in the presence of complex epistasis. Assuredly, the task of efficiently navigating

fitness landscapes (i.e. optimisation) is one that, beyond its relevance here, is of fundamental

significance across large areas of applied mathematics and computer science. However large

the role of epistasis in the biological context, it is certainly true that in most of these appli-

cations complicated forms of epistasis (in one guise or another) play a crucial role, and so the

interesting question becomes that as to whether sexual reproduction continues to offer these

substantial benefits in the face of more complex fitness landscapes. It may be the case that

as well as capitalising more efficiently on existing modularity, sex plays a fundamental role in

finding modularity[32]. One would expect a proper analysis to require classification of fitness

landscapes in terms of their amenability to different forms of population based search (see, for

example, the work of Prugel-Bennet[33]).
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5. Appendix A

5.1. The structure of the proofs. In Appendices A, B and C we provide a much deeper

analysis of all the claims made in the main article. We start, here in Appendix A, by proving

Theorem 1 and showing how the various operations affect different population properties such

as mean and variance. Appendix B is dedicated to the proof of Theorem 2. Although Theorem

1 and Theorem 2 are both concerned with establishing negative values for LD2, their proofs

are completely different and give us alternative ways of understanding the model. Theorem 3

is proved in Appendix C. The proof of this theorem is much longer than those of the previous

theorems, and, again, it is very different in style. Once we have proved our main theorems,

we move on to discuss variants of our model in Appendix D. The variants we consider are

the finite version and the multiplicative version. We do not have a full mathematical analysis

for those models, but present the results of simulations. The outcomes of simulations are

presented in Appendix E.

5.2. The evolution of the key values. In this subsection we review some well known facts

and describe in more detail how mutation, selection and recombination affect mean fitness,

variance, LD2 and flat variance, proving the claims made in Section 3. The objective is to

establish all of the results in the Table 1 below.

5.2.1. The evolution of mean fitness and variance. The impact of mutation on the mean,

variance and all cumulants is simply described (recall that mean fitness and variance are the
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Effect of: selection mutation recombination

∆M VF /M ` E(µ) 0
∆VF κ3/M − (VF /M)2 ` Var(µ) −LD2

∆LD2 −∑i 6=j ViVj/M
2 (∗) 0 −LD2

∆κ3 (VF /M)((κ4/VF )− 3(κ3/M) + 2(VF /M)2) ` κ3(µ) −LD3

Table 1. By ∆M is meant the change in M produced by the relevant opera-
tion. All values (M , VF , etc) inside the table are with respect to the population
before the relevant operation is applied: the box stating that ∆M for selection
is VF /M should be read M(Sel(φ)) −M(φ) = VF (φ)/M(φ). (∗) The stated
effect of selection on LD2 is only valid in the case that selection is acting on a
population at linkage equilibrium.

first and second cumulants of F (X)). If Y and C are independent random variables and κn

is the nth cumulant, then κn(Y + C) = κn(Y ) + κn(C). Thus the effect of mutation on the

mean fitness is to increase it by `E(µ) (which will be negative given our assumptions on µ).

Similarly, the effect on variance is to increase it by `Var(µ).

The effect of selection is given by the following lemma (while these claims are either well

known or easily established, we include a proof for the sake of completeness). Here M = M(φ),

VF = VF (φ), κ3 = κ3(φ), κ4 = κ4(φ) and M∗, V ∗F , κ∗3 are the corresponding values for

φ∗ = Sel(φ).

Lemma 4. The effect of selection on mean fitness, variance and κ3 is given by:

M∗ −M = VF /M,

V ∗F − VF = κ3/M − (VF /M)2,

κ∗3 − κ3 = (VF /M)((κ4/VF )− 3(κ3/M) + 2(VF /M)2).

Proof. We prove the first two identities. The third then follows with a little more algebraic

manipulation, by almost identical methods. In order to see the first identity, note that:

M∗ =
∑

x

F (x) Sel(φ)(x) =
1

M

∑

x

F (x)2φ(x).

Now, using that the second moment about the origin,
∑

x F (x)2φ(x), is equal to VF + M2

we get:

VF =
(∑

x

F (x)2φ(x)
)
−M2 = M∗M −M2.

This gives the identity VF /M = M∗ −M , as required. In order to derive the second identity,

we recall the formula for the third central moment:
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κ3 =
∑

x

(F (x)−M)3φ(x)

=
∑

x

(F (x)3 − 3F (x)2M + 3F (x)M2 −M3) φ(x)

=
(∑

x

F (x)3φ(x)
)
− 3M

((∑

x

F (x)2φ(x)
)
−M2

)
−M3

=
(∑

x

F (x)3φ(x)
)
− 3MVF −M3.

Then:

V ∗F =
(∑

x

F (x)2 φ∗(x)
)
− (M∗)2 =

1

M

(∑

x

F (x)3φ(x)
)
− (M∗)2.

Substituting VF /M +M for M∗, we get:

V ∗F − VF =
1

M

(∑

x

F (x)3φ(x)
)
−
(
M2 + 2VF + V 2

F /M
2
)
− VF = κ3/M − V 2

F /M
2,

as required. �

Let us now consider recombination. Recall that Xi is a random variable taking values

according to the distribution φi (specifying the distribution at the ith locus). At any point,

the mean is given by M(φ) =
∑

iE(φi). Since recombination has no effect on each φi, it also

has no impact on M(φ). As we showed previously, the change in variance due to recombination

is −LD2.

5.2.2. The evolution of LD2. The most direct way in which recombination affects mean fitness

is by changing the variance, which then affects the growth in mean fitness via selection. The

change in variance due to recombination is given by −LD2. Thus, to show that recombination

has a positive effect on variance, one must show that LD2 is negative. In this subsection we

analyse the effect on LD2 given by the different operations. As part of our analysis we get a

proof of Theorem 1.

Since LD2 = 0 when at linkage equilibrium, we have LD2(Rec(φ)) = 0.

Mutation has no effect at all on LD2 as shown by the following lemma.

Lemma 5. For any population φ, LD2(Mut(φ)) = LD2(φ).

Proof. Recall the definition of mutation in terms of the random variables Ci.

LD2(Mut(φ)) =
∑

i 6=j

(
E((Xi + Ci)(Xj + Cj))− E(Xi + Ci)E(Xj + Cj)

)

=
∑

i 6=j

(
E(XiXj) + E(XiCj) + E(CiXj) + E(CiCj)

−E(Xi)E(Xj)− E(Xi)E(Cj)− E(Ci)E(Xj)− E(Ci)E(Cj)
)
.
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Since Ci and Cj are independent, and are independent of Xi and Xj , most of these terms

cancel, leaving E(XiXj)− E(Xi)E(Xj) as required. �

So mutation has no effect at all on linkage equilibrium: This is because if the variables

Xi are independent, so are the variables Xi + Ci. Also, since FV = VF − (`/(` − 1))LD2,

we conclude that the effect of mutation on flat variance is the same as that on variance:

FV (Mut(φ))− FV (φ) = `Var(µ).

The effect of selection on LD2 is more complex and is given by Theorem 1 (restated below)

in the case that the operation is applied to a population at linkage equilibrium. The rest of the

subsection is dedicated to proving it. We define LD3 to be the decrease in the third cumulant

of F (X) produced by recombination. Thus,

LD3(φ) = κ3(F (X))−
∑̀

i=1

κ3(Xi).

As with the other values, we use κ3 to denote κ3(F (X)) and κ3,i to denote κ3(Xi).

Theorem 1. If φ∗ = Sel(φ) was obtained by an application of selection to a population φ at

linkage equilibrium, then the effect of recombination on variance is given by:

VF (Rec(φ∗))− VF (φ∗) =

∑
i 6=j ViVj
M2

,

where Vi = Var(φi) and M = M(φ).

Theorem 1 asserts, in other words, that LD2(Sel(φ)) = −(
∑

i 6=j ViVj)/M
2 if φ is at linkage

equilibrium. The key to the proof is to study the effect of selection on each locus separately,

as given by the following lemma. Let us describe our notation. Let φ∗ = Sel(φ). Recall that

we use a boldface greek character, φ, to denote the distribution of a population in Z`, and the

lightface version of that character, φi to denote the distribution at the ith locus. We denote the

mean fitness at locus i by Wi = E(φi). By the linearity of expectation we have M =
∑`

i=1Wi.

We use Ŵi to denote the mean fitness of the loci other than i, i.e., Ŵi = M −Wi. Use use Vi

to denote the variance in fitness at the ith locus: Vi = Var(φi). The notation is analogous for

φ∗: W ∗i = E(φ∗i ), V
∗
i = Var(φ∗i ), etc.

Lemma 6. If selection acts on a population at linkage equilibrium, the effect on the ith locus

is given by:

φ∗i (x) =
1

M

(
x+ Ŵi

)
φi(x).

Proof. First, let us observe that E(F (X) | Xi = x) = x+ Ŵi:

E(F (X) | Xi = x) =
∑̀

j=1

E(Xj |Xi = x) = x+
∑

j 6=i
E(Xj) = x+

∑

j 6=i
Wj .
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For x ∈ Z and y ∈ Z`−1 let x îy be the vector of length ` with x as the i-coordinate and with

all other coordinates given by y in corresponding order. Second, we calculate φ∗i (x):

φ∗i (x) =
∑

y∈Z`−1

φ∗(x îy) = (1/M)
∑

y∈Z`−1

F (x îy)φ(x îy)

= (1/M) φi(x) E(F (X) | Xi = x).

Putting these equations together, we get the result of the lemma. �

The next lemma shows the effect of selection on the fitness and variance at a single locus.

Lemma 7. If selection acts on a population at linkage equilibrium, the effect on fitness and

variance at locus i is given by:

W ∗i −Wi =
Vi
M
,

V ∗i − Vi =
κ3,i

M
−
(
Vi
M

)2

.

Proof. For the first equation:

W ∗i =
∑

x

xφ∗i (x)

= (1/M)
∑

x

x(x+ Ŵi)φi(x)

= (1/M)

(∑

x

x2φi(x) + Ŵi

∑

x

xφi(x)

)

= (1/M)
(

(Vi +W 2
i ) + ŴiWi

)

= (1/M) (Vi +MWi).

This establishes the first equation of the lemma.

For the second equation, let Ṽi be the second moment about the origin of φi, that is,

Ṽi =
∑

x x
2φi(x), and analogously for φ∗i . Let κ̃3,i be the third moment about the origin of φi,

that is, κ̃3,i =
∑

x x
3φi(x). Then

Ṽ ∗ =
∑

x

x2φ∗i (x)

= (1/M)
∑

x

x2
(
x+ Ŵi

)
φi(x)

= (1/M)

(∑

x

x3φi(x) + Ŵi

∑

x

x2φi(x)

)

= (1/M)
(
κ̃3,i + ŴiṼi

)
.
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Now, using the developments of the moments about the origin in terms of the central moments

we get:

Ṽ ∗i = V ∗i +W ∗i
2 = V ∗i +W 2

i + 2ViWi/M + (Vi/M)2,

κ̃3,i = κ3,i + 3ViWi +W 3
i ,

Ṽi = Vi +W 2
i .

The equation above then becomes

V ∗i +W 2
i + 2Vi

Wi

M
+

(
Vi
M

)2

=
κ3,i

M
+ 3Vi

Wi

M
+
W 3
i

M
+
Ŵi

M
(Vi +W 2

i ),

which we can re-arrange as

V ∗i +

(
2Vi

Wi

M
− 3Vi

Wi

M
− Vi

Ŵi

M

)
=
κ3,i

M
−
(
Vi
M

)2

+

(
W 3
i

M
+
Ŵi

M
W 2
i −W 2

i

)
.

To finish the proof of the lemma one only has to observe that
(

2Vi
Wi
M − 3Vi

Wi
M − Vi Ŵi

M

)
= −Vi

and that
(
W 3

i
M + Ŵi

M W 2
i −W 2

i

)
= 0. �

We now continue with the proof of Theorem 1. Using that LD2 = VF −
∑

i Vi, we get:

LD2(φ∗)− LD2(φ) = (V ∗F − VF )− (
∑

i

V ∗i − Vi)

=

(
κ3

M
−
(
VF
M

)2
)
−
∑

i

(
κ3,i

M
−
(
Vi
M

)2
)

=
LD3

M
+

(
∑

i V
2
i )− V 2

F

M2

= −
∑

i 6=j ViVj
M2

The last equality follows since LD3 = 0 for a population at linkage equilibrium.

6. Appendix B

6.1. The ordering on distributions. This subsection is dedicated to proving some basic

combinatorial lemmas which are required for the proof of Theorem 2. Our new key notion is

the ordering � among probability distributions on Z, which will be useful throughout the rest

of the paper. We made the assumption earlier that all cumulants of populations are finite.

It is similarly to be assumed that all cumulants of distributions discussed in this section are

finite.

Definition 8. Given two distributions ψ1 and ψ2 : Z→ R≥0, we define:

ψ2 � ψ1 ⇐⇒ (∀b1 < b2 ∈ Z) ψ1(b1)ψ2(b2) ≤ ψ1(b2)ψ2(b1).

We let ψ2 ≺ ψ1 if, in addition, there exist b1 < b2 ∈ Z with ψ1(b1)ψ2(b2) < ψ1(b2)ψ2(b1).
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To give some intuition for the meaning of �, let us remark that if ψ1 and ψ2 are non-zero

on an interval [A,B], and zero elsewhere, then:

ψ2 � ψ1 ⇐⇒ (∀b ∈ Z with A ≤ b < B)
ψ2(b+ 1)

ψ2(b)
≤ ψ1(b+ 1)

ψ1(b)
.

If ψ2 � ψ1, this gives a lot of information about the supports of ψ1 and ψ2 (i.e. those x for

which ψ1(x) 6= 0 or ψ2(x) 6= 0). If x is in the support of ψ1, then for any y > x in the support

of ψ2, y must also be in the support of ψ1. Similarly, if x is in the support of ψ2, then for any

y < x in the support of ψ1, y must also be in the support of ψ2. We can therefore find disjoint

(possibly empty) sets Π1,Π2 and Π3 such that the support of ψ2 is Π1 ∪ Π2, the support of

ψ1 is Π2 ∪Π3, and all the elements of Π1 are below all the elements of Π2 which are all below

all the elements of Π3.

The main three properties of the ordering � are that it is preserved by mutation, it is

preserved by selection, and it preserves the ordering of expected values. The proof of Theorem

2 will use all of these lemmas to show that LD2 becomes and remains negative during an asex

process initially at linkage equilibrium.

Lemma 9. The orderings ≺ and � are preserved by mutation. That is:

ψ2 � ψ1 ⇒ Mut(ψ2) � Mut(ψ1).

The same holds for ≺. Here Mut refers to the mutation operation for ` = 1.

Proof. We must show that for any values b2 > b1:

(1)
∑

d

ψ2(d)µ(b2 − d) ·
∑

c

ψ1(c)µ(b1 − c) ≤
∑

d

ψ1(d)µ(b2 − d) ·
∑

c

ψ2(c)µ(b1 − c).

The r.h.s. can be re-expressed:

∑

c

(
ψ1(c)ψ2(c)µ(b2 − c)µ(b1 − c)) +

∑

d>c

(
(ψ1(d)ψ2(c)µ(b2 − d)µ(b1 − c)

+ψ1(c)ψ2(d)µ(b2 − c)µ(b1 − d)
))
.

The l.h.s. is:
∑

c

(
ψ2(c)ψ1(c)µ(b2 − c)µ(b1 − c) +

∑

d>c

(
(ψ2(d)ψ1(c)µ(b2 − d)µ(b1 − c)

+ψ2(c)ψ1(d)µ(b2 − c)µ(b1 − d)
))
.

For any given pair (d, c) such that d > c define:

α1 = ψ1(c)ψ2(d), α2 = ψ1(d)ψ2(c),

β1 = µ(b2 − c)µ(b1 − d), β2 = µ(b2 − d)µ(b1 − c).
Now for any values d > c we have α2 ≥ α1 because ψ2 � ψ1. We claim that we also have

β2 ≥ β1: this holds because in order to have β1 > 0 one requires b2 ≤ c + 1 and d ≤ b1 + 1,
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which can only be the case if b1 + 1 = c + 1 = b2 = d. In that case β1 = µ(1)µ(−1) and

β2 = µ(0)µ(0), and it follows that β2 > β1 from our assumption that µ(0) > µ(−1) > µ(1).

Thus:

α2β2 + α1β1 ≥ α1β2 + α2β1.

This establishes the inequality (1).

Now suppose that ψ2 ≺ ψ1, and let b1 < b2 be such that ψ1(b1)ψ2(b2) < ψ1(b2)ψ2(b1).

Consider again the expansions of the l.h.s. and r.h.s. of (1). Since we have already shown

that each term on the r.h.s. is greater than or equal to the corresponding term on the left,

we need only identify one term on the right which is strictly greater than the corresponding

term on the left. The reasoning above already suffices to give this strict inequality for the case

c = b1, d = b2, since then α2 > α1 and β2 = µ(0)2 > β1. �

The next lemma shows that � is also preserved by selection. In fact we shall prove a

stronger result. For ` = 1 and W ∈ R, we define a new form of selection, which, as we saw

in Lemma 6, allows us to understand the effect of selection on a single locus under certain

conditions. For φ a probability distribution on Z and x ∈ Z, we define

SelW (φ)(x) =

(
1

s

)
(x+W )φ(x),

where s is the normalising factor required to make SelW (φ) a probability distribution: s =∑
x∈Z(x + W )φ(x) = E(φ) + W . We call a probability distribution on Z non-trivial if its

support consists of more than one point.

Lemma 10. If W1 ≤ W2 and ψ2 � ψ1, then SelW2(ψ2) � SelW1(ψ1). Furthermore, if

W1 < W2, ψ2 � ψ1 and at least one of ψ1 and ψ2 is non-trivial, then SelW2(ψ2) ≺ SelW1(ψ1).

Proof. Let ψ∗1 = SelW1(ψ1), let ψ∗2 = SelW2(ψ2) and consider b1 < b2. On the one side we

have

ψ∗1(b1)ψ∗2(b2) =
1

s1s2
(b1 +W1)(b2 +W2)ψ1(b1)ψ2(b2),

which we need to show is less than or equal to

ψ∗1(b2)ψ∗2(b1) =
1

s1s2
(b2 +W1)(b1 +W2)ψ1(b2)ψ2(b1),

where s1 and s2 are the normalising factors for ψ1 and ψ2. We know that ψ1(b1)ψ2(b2) ≤
ψ1(b2)ψ2(b1), so it is enough to show that (b1 +W1)(b2 +W2) ≤ (b2 +W1)(b1 +W2). For this,

one just needs to observe that:

(b2 +W1)(b1 +W2)− (b1 +W1)(b2 +W2) = (b2 − b1)(W2 −W1) ≥ 0.

Note that this actually suffices to show (b1 +W1)(b2 +W2) < (b2 +W1)(b1 +W2) if W1 < W2.

Now suppose that we also have W1 < W2. The reasoning above actually suffices to show

for all pairs b1 < b2 that ψ∗1(b1)ψ∗2(b2) < ψ∗1(b2)ψ∗2(b1), so long as ψ1(b2)ψ2(b1) > 0. If at least

one of ψ1 and ψ2 is non-trivial then there exists a pair b1 < b2 with ψ1(b2)ψ2(b1) > 0, giving

SelW2(ψ2) ≺ SelW1(ψ1) as required. �



SEX VERSUS ASEX: THE ROLE OF VARIANCE CONVERSION 25

Lemma 11. If ψ2 � ψ1, then E(ψ2) ≤ E(ψ1). Furthermore, if ψ2 ≺ ψ1 then E(ψ2) < E(ψ1).

Proof. The proof is divided into various cases depending on the supports of ψ1 and ψ2. Let

Π1,Π2 and Π3 be as defined subsequent to Definition 8.

Case 1: The support of both ψ1 and ψ2 is a finite interval [A,B] (so Π1 = Π3 = ∅ and

Π2 = [A,B]). This is the simplest case, but gives the principal idea for the entire proof. We will

define probability density functions ϕi for i ∈ [A,B], with ψ2 = ϕA � ϕA+1 � · · · � ϕB = ψ1,

and E(ϕi) ≤ E(ϕi+1) for all i ∈ [A,B). Each ϕi will satisfy:

(∀b ∈ [A, i))
ϕi(b+ 1)

ϕi(b)
=
ψ1(b+ 1)

ψ1(b)
and (∀b ∈ [i, B))

ϕi(b+ 1)

ϕi(b)
=
ψ2(b+ 1)

ψ2(b)
.

Suppose we have already defined ϕi and we want to define ϕi+1. We need to change the value

of ϕi(i+1)
ϕi(i)

from ψ2(i+1)
ψ2(i) to ψ1(i+1)

ψ1(i) without changing any of the other fractions. For this, we

need to find values c, d such that defining ϕi+1(b) = c ϕi(b) for b ≤ i and ϕi+1(b) = d ϕi(b)

for b > i gives the required probability density function. To find such c and d all one needs to

do is to solve the following equation:

cS + d(1− S) = 1

d ψ1(i)ψ2(i+ 1) = c ψ1(i+ 1)ψ2(i),

where S =
∑i

j=A ϕi(j). Since ψ2(i+1)
ψ2(i) ≤

ψ1(i+1)
ψ1(i) , we have c ≤ 1 ≤ d, and if ψ2(i+1)

ψ2(i) < ψ1(i+1)
ψ1(i)

then c < 1 < d. Since we are increasing the values of ϕi(b) for b > i and decreasing them

for b ≤ i, it is not hard to see that E(ϕi) ≤ E(ϕi+1), and that if ψ2(i+1)
ψ2(i) < ψ1(i+1)

ψ1(i) , then

E(ϕi) < E(ϕi+1). This finishes the construction of the ϕis and the proof for the case where

the support of ψ1 and ψ2 is [A,B].

Case 2: The support of ψ1 and ψ2 is not an interval, but it still finite and equal for both

functions. The proof above works almost the same way, except that one has to skip the values

not in the support.

Case 3: The supports of ψ1 and ψ2 are equal, but while Π2 is bounded below it is not

bounded above. One runs the same proof, but now constructs an infinite sequence ψ2 = ϕA �
ϕA+1 � · · · . Ultimately ψ1 is the limit of this sequence, i.e. for all b, ψ1(b) = limiϕi(b). Since

we have assumed that ψ1 and ψ2 have finite means, it follows that E(ψ1) = limi→∞E(ϕi).

Case 4: The supports of ψ1 and ψ2 are equal, but while Π2 is bounded above it is not

bounded below. One runs the same proof, but now constructs an infinite sequence ψ2 = ϕB �
ϕB−1 � · · · , such that E(ϕi) ≤ E(ϕi−1) for all i ≤ B. Again we have ψ1 as the limit of this

sequence and E(ψ1) = limi→∞E(ϕi).

Case 5: The supports of ψ1 and ψ2 are equal, and Π2 neither bounded above nor bounded

below. One runs almost the same proof, but now in two stages. Choosing A ∈ Π2, we first

construct an infinite sequence ψ2 = ϕA � ϕA+1 � · · · which has the intermediate value ψ3 as

limit. One then constructs an infinite sequence ψ3 = ϕ′A � ϕ′A−1 � · · · with ψ1 as limit.

Case 6: At least one of Π1 or Π3 is non-empty. If Π2 is empty then it immediately follows

that E(ψ2) < E(ψ1), so suppose this does not hold. Let ψ∗1 be the probability density function
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formed from ψ1 by restricting the support to Π2 (and normalising as appropriate), and form

ψ∗2 similarly. If Π1 is non-empty then we have:

E(ψ2) < E(ψ∗2) ≤ E(ψ∗1) ≤ E(ψ1).

If Π3 is non-empty then we have:

E(ψ2) ≤ E(ψ∗2) ≤ E(ψ∗1) < E(ψ1).

�

6.2. The properties (†) and (††). This section is dedicated to proving Theorem 2, which

asserts that LD2 stays negative throughout the process, independent of what operations are

applied and in which order, except when recombination has just been applied in which case

LD2 = 0. This is for the Z-model, and assuming truncation is applied after each application

of mutation and recombination (or at least before any application of selection).

We previously described a distribution on Z as non-trivial if there exists more than more

point in the support. We shall refer to a population φ (on Z` for ` > 1) as non-trivial if at

least two of the marginal distributions φi are non-trivial (and providing this remains the case

when truncation is applied to φ).

The key idea behind the proof of Theorem 2 is to consider a property, (†), which suffices to

ensure that LD2 is non-positive. We will also consider a strengthening of (†), which we call

(††) and which ensures that LD2 is negative. To prove Theorem 2 we then use induction on

the generations and show that the property (†) is satisfied at each step of the process, and

that, in fact, the stronger property (††) is also satisfied from some early stage onwards (the

first stage after which Sel is applied to a non-trivial population).

Definition 12. Given a probability distribution ψ : Z2 → R≥0 and a ∈ Z, we shall say that

ψa is defined if ψ(a) =
∑

b ψ(a, b) 6= 0. In this case ψa is the distribution given by ψa(b) =

ψ(a, b)/ψ(a).

We say ψ satisfies (†) if for every a1 < a2 such that ψa1 and ψa2 are defined, ψa2 � ψa1.

We say that ψ satisfies (††) if, in addition, there exist a1 < a2 such that ψa1 and ψa2 are

defined and ψa2 ≺ ψa1 as witnessed by a pair b1 < b2 with a1 + b1 > 0.

To define (†) for a population with ` > 2, we need to consider each locus compared to the

rest of the loci altogether. For i 6= j ∈ {1, ..., `}, let Fi(X) = X1+· · ·+Xi−1+Xi+1+· · ·+X` =

F (X) − Xi. Given a population φ, let φ̂i be the distribution corresponding to the random

variable (Xi, Fi(X)). Equivalently:

φ̂i(a, b) =
∑

x∈Z`,
xi=a, F (x)=a+b

φ(x).

Definition 13. A population φ satisfies (†) if φ̂i does for every i = 1, ..., `. A population φ

satisfies (††) if there exists i such that φ̂i satisfies (††).
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The next step is to prove that (†) and (††) are preserved through the operations. Recall

that we are assuming the process starts at linkage equilibrium. Note that if φ is at linkage

equilibrium, then (†) holds – in that case we have equality between the left-hand side and the

right-hand side in the definition of the � relation.

Lemma 14. For ` ≥ 2, if φ satisfies (†), then Sel(φ) satisfies (†), and if φ is non-trivial

then Sel(φ) satisfies (††).

Proof. Let φ∗ = Sel(φ). Fix i ∈ {1, ..., `}. A similar argument to that of Lemma 6 shows that

φ̂∗i (a, b) = (1/M) (a+ b) φ̂i(a, b). Thus, (φ̂∗i )
a = Sela((φ̂i)

a). Suppose a1 < a2 are such that

(φ̂∗i )
a1 and (φ̂∗i )

a2 are both defined. It follows from Lemma 10 that, since (φ̂i)
a2 � (φ̂i)

a1 , we

have (φ̂∗i )
a2 � (φ̂∗i )

a1 . If φ is non-trivial it also follows from Lemma 10 that (φ̂∗i )
a2 ≺ (φ̂∗i )

a1 .

Thus φ̂∗i satisfies (†) and also satisfies (††) if φ is non-trivial, as required. �

Lemma 15. Both (†) and (††) are preserved by mutation.

Proof. First, let us note that mutation can be broken down into a number of consecutive steps,

by treating one locus at a time. Let Mutk be the application of mutation on the kth locus,

i.e., Mutk(X1, ..., Xk, ..., X`) = (X1, ..., Xk + Ck, ..., X`). We will show that both (†) and (††)
are preserved by each of the operations Mutk. Let φ∗ = Mutk(φ). Fix i. Assuming (†) or (††)
for φ̂i, we establish that the same condition holds for φ̂∗i .

Suppose first that k 6= i. Then for a ∈ Z, (φ̂∗i )
a = Mut((φ̂i)

a), because the mutation happens

in one of the loci included in the second coordinate, and has the same effect on Fi(X). Consider

a1 < a2 such that (φ̂i)
a1 and (φ̂i)

a2 are both defined. It then follows from Lemma 9 that since

(φ̂i)
a2 � (φ̂i)

a1 we have (φ̂∗i )
a2 � (φ̂∗i )

a1 , and hence that φ̂∗i satisfies (†). We get (††) similarly.

If k = i, then the proof is the same. One just needs to observe that ψ : Z2 → R≥0 satisfies

(†) (or (††)) if and only if ψ′(a, b) = ψ(b, a) does. �

So far both lemmas hold for any of the models. The following lemma only holds for the

Z-model.

Lemma 16. Both (†) and (††) are preserved by truncation for the Z-model.

Proof. Let φ∗ be the population which results from an application of truncation to φ. Let

s =
∑

x∈D φ(x), where D is as in the Z-model. Note that φ̂∗i (a, b) = 0 if a + b ≤ 0 and

φ̂∗i (a, b) = φ̂i(a, b)/s if a+ b > 0.

Fix i, a1 < a2 and b1 < b2. Then if φ̂∗i (a1, b1) 6= 0 we have a1 + b1 > 0, and hence both

a1 + b2 and a2 + b1 are positive. Therefore, if (φ̂i)
a1(b2)(φ̂i)

a2(b1) ≥ (φ̂i)
a2(b2)(φ̂i)

a1(b1)

then (φ̂∗i )
a1(b2)(φ̂∗i )

a2(b1) ≥ (φ̂∗i )
a2(b2)(φ̂∗i )

a1(b1). In the same way if (††) holds because

(φ̂i)
a1(b2)(φ̂i)

a2(b1) > (φ̂i)
a2(b2)(φ̂i)

a1(b1) holds and a1 + b1 > 0 (the latter condition be-

ing required by Definition 12), then this implies (φ̂∗i )
a1(b2)(φ̂∗i )

a2(b1) > (φ̂∗i )
a2(b2)(φ̂∗i )

a1(b1).

Thus both (†) and (††) are preserved, as required. �

The second part of the proof of Theorem 2 is to show the connection between the properties

(†), (††) and LD2. Recall that Co(X,Y ) is the covariance of the random variables X and Y ,
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i.e., Co(X,Y ) = E(XY )− E(X)E(Y ). Using our calculations from §?? we obtain that:

LD2(φ) =
∑̀

i=1

Co(φ̂i).

Lemma 17. If ϕ : Z2 → R≥0 satisfies (†), then Co(ϕ) ≤ 0. Furthermore, if ϕ satisfies (††)
then Co(ϕ) < 0.

Proof. Let X,Y be random variables such that (X,Y ) has probability distribution ϕ. The key

idea is to use that (†) implies that E(Y |X = a) is decreasing in a, which follows from Lemma

11.

Set v = E(X). Now we would like to put u = E(Y |X = v), but since we may have v /∈ Z
this presents a slight difficulty. If v /∈ Z, we let u be a number in between E(Y |X = bvc) and

E(Y |X = dve). Now let W = X − v and Z = Y − u. Since v and u are constants we have:

Co(X,Y ) = Co(W,Z) = E(WZ)− E(W )E(Z).

Let ψ(W,Z) specify the distribution on the pair (W,Z). Notice that since ϕ satisfies (†), so

does ψ. Let ψW and ψZ specify the corresponding marginal distributions, and let ψZ(Z|W )

specify the conditional distribution. We claim that E(WZ) is non-positive. This is because:
∑

a

∑

b

ψ(a, b) · ab =
∑

a

aψW (a)
∑

b

bψZ(b|a) =
∑

a

aψW (a)E(Z|W = a).

Now satisfaction of (†) and Lemma 11 imply that when a is positive E(Z|W = a) is non-

positive, and when a is negative E(Z|W = a) is non-negative. Also E(W )E(Z) = 0 because

E(W ) = 0.

If ϕ satisfies (††) then E(Z|W = a) is non-zero somewhere, and hence E(WZ) < 0, as

needed to get Co(X,Y ) < 0. �

Corollary 18. If φ satisfies (†), then LD2(φ) ≤ 0. Furthermore, if φ satisfies (††) then

LD2(φ) < 0.

To finish the proof of Theorem 2, all we need to observe is that since the population starts

at linkage equilibrium, it initially satisfies (†). By Lemmas 14, 15 and 16, the condition (†)
is then satisfied throughout the process. Furthermore, the condition (††) is satisfied after an

application of Sel to any non-trivial population (mutation will quickly produce non-trivial

populations), and then remains satisfied until any such point as Rec is applied. Since sat-

isfaction of (††) ensures negative LD2, any non-trivial application of Rec therefore increases

variance.

7. Appendix C: the bounded model

This section provides an analysis of the asymptotic behavior of the bounded model and

is dedicated to giving the full proof of Theorem 3. Recall that in the bounded models the

fitness values of the genes are restricted to {1, ..., N}, which we denote [1, N ], and the domain

of the process is D = [1, N ]`, which we sometimes denote N `. Also recall our assumption
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that our mutation distributions only take non-zero values on −1, 0 and 1; we let a = µ(−1),

b = µ(0) and c = µ(1). Even though that assumption seems to be inessential in simulations, it

is important for the type of formal analysis we do in this section. Recall also that we assume

that c < a < b.

Let us restate Theorem 3. In the statement of the theorem, we consider the case where both

types of individuals, sexual and asexual, live together. Mutation and selection act the same

way on both, but recombination acts only among the sexual individuals. One may consider a

context, for example, in which a small proportion of individuals begin reproducing sexually in

a population which has previously been entirely asexual. The theorem states that over time

the proportion of the population which is sexual will then tend to 1.

Theorem 3. For every a, b, c with c < a, for every ` > 1, and for all sufficiently large N

(i.e. there exists N0 such that ∀N ≥ N0), whatever the initial population is, so long as the

proportion of sexual individuals is non-zero, we have that the proportion of sexual individuals

converges to 1 and the proportion of asexual ones converges to 0.

Let us fix the values of a, b, c and ` throughout the rest of Section 7.

The proof of Theorem 3 proceeds by showing that the mean fitness of the sexual population

is eventually higher than that of the asexual population, over a time average. We will be

able to show that the asexual population in isolation converges to a limit distribution, and

we will provide an upper bound for the mean fitness of that limit. While we strongly suspect

that the sexual population in isolation also converges to a limit (as evidenced by simulations),

we have not been able to prove it. Nevertheless, we can still provide a lower bound for the

geometric mean of the mean fitness over generations, which is larger than the upper bound

for asex. We will show this is enough to establish that sex outperforms asex. To obtain these

upper and lower bounds, the key technique is to study the case when positive and negative

mutations have the same probabilities. This case is much easier to analyse, and we then find

a way of translating those results to the case we are interested in, where downward mutations

are more likely. An issue that we have to be constantly aware of is how truncation affects the

populations.

Let us start by showing that we can analyse the sexual and asexual populations separately,

as we were doing earlier in the paper. Let φt ∈ RD×{s,a} be the probability distribution for

the entire population at stage t (no confusion should result from any conflict in notation with

that given in Definition 12 – the latter notation may be considered only to apply to the proof

of Theorem 2). We can split φt into two functions φtsex and φtasex, each with domain D. Let

ϕtsex and ϕtasex be the proportions of individuals which are sexual and asexual respectively,

i.e., ϕtsex = |φtsex| and ϕtasex = |φtasex|, where |g| is the taxicab norm: For ψ ∈ RD,

|ψ| =
∑

x∈D
|ψ(x)|.

So far, we have always assumed that populations, ψ, are probability distributions, and hence

that |ψ| = 1. This is not the case with φtsex and φtasex, and we will not be making that
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assumption anymore. If a probability distribution is really required, all we have to do is

consider normalisation:

Proj(ψ) =
ψ

|ψ| .

From now on when we refer to the operations of truncation and selection, we will omit the nor-

malisation: Thus, when we apply truncation, giving Trunc(ψ), we just erase the individuals

outside the domain, and applying selection, giving Sel(ψ), simply involves multiplying ψ(x)

by F (x). We do not alter the definition of Mut as this operation already preserves the norm.

The definition of Rec is now altered in the obvious manner, so that it remains norm preserving

(requiring division by |ψ|`−1). Since the normalization operation, Proj(ψ), commutes with all

the other operations, it does not really matter when we apply it. The advantage of describing

the same process in this new fashion, is that now mutation, truncation and selection act inde-

pendently for the sexual and asexual populations, and it is only normalisation that involves

interaction between them. Of the operations selection, recombination, mutation and trunca-

tion, only truncation and selection affect the values ϕsex and ϕasex. Since recombination and

mutation commute, we can and will assume in what follows that the operations cycle through

in that order. In fact, we will assume that φt+1 is obtained from φt by applying: mutation,

truncation, selection and recombination in that order (recombination, of course, being applied

for sex only). For each t, let:

λtsex =
|Rec(Sel(Trunc(Mut(φtsex))))|

|φtsex|
and λtasex =

|Sel(Trunc(Mut(φtasex)))|
|φtasex|

.

For the quotients, we have:

ϕtsex
ϕtasex

=
ϕt−1
sex

ϕt−1
asex

λt−1
sex

λt−1
asex

=
ϕ0
sex

ϕ0
asex

∏t−1
i=0 λ

i
sex∏t−1

i=0 λ
i
asex

.

To establish Theorem 3, it will be enough to show that for all sufficiently large N :

lim
t

∏t−1
i=0 λ

i
sex∏t−1

i=0 λ
i
asex

= +∞.

We may therefore consider the populations separately, because all we need be concerned with

are the values
∏t−1
i=0 λ

i
sex and

∏t−1
i=0 λ

i
asex, which evolve independently. We will establish the

limit above, by showing that the geometric mean of λisex is eventually always greater than

that of λiasex by at least a fixed margin.

Let us fix the notation for dealing with geometric means. Given a finite sequence a1, ..., an

of numbers, we let GMt≤n({at}) = n
√∏n

i=1 ai. Given an infinite sequence {at}t∈N we let

GM
t

(at) = lim sup
n

n

√√√√
n∏

i=1

ai, GM
t

(at) = lim inf
n

n

√√√√
n∏

i=1

ai,

and if both limits are the same we call this common value GMt(at).

The rest of this subsection is dedicated to proving the following theorems:
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Theorem 19. For every N , the limit of λtasex exists and, for τ = b+ 2
√
ac:

lim
t→∞

λtasex < N`τ `.

Using facts observed from simulations, we are confident in claiming that in actual fact the

following holds: limN→∞ limt→∞ λtasex/N = `τ `. We will not need this extra fact, however,

and the result of the theorem will be enough for our purposes.

Theorem 20. Let τ = b+ 2
√
ac as above. For all sufficiently large N :

GM
t→∞

(λtsex)/ > N`τ `.

Using facts observed from simulations, we are confident in claiming that in actual fact we have

limN→∞ limt→∞ λtsex/N = `τ/(` − τ(` − 1)), which is greater than `τ ` for ` > 1 and τ < 1.

Once again, we will not need this extra fact, however, and the result of the theorem will be

enough for our purposes.

It then follows from the theorems above that GMt→∞(λtsex/λ
t
asex) > 1 for any large enough

N , and hence that limt(
∏t−1
i=0 λ

i
sex)/(

∏t−1
i=0 λ

i
asex) = +∞ as required.

7.0.1. Understanding λtsex and λtasex. In general, given a population ψ ∈ RN`
, we define

λ(ψ) =
|(Sel(Trunc(Mut(ψ))))|

|ψ| .

Then λtsex = λ(φtsex), and similarly for asex.

Given a population ψ ∈ RN`
, let ρ(ψ) be the proportion of individuals surviving mutation

followed by truncation, i.e.:

ρ(ψ) =
|Trunc(Mut(ψ))|

|ψ| .

Let us remark that ρ(ψ) ≤ 1. Given a population ψ ∈ RN`
, we use M(ψ) to denote its mean

fitness, even in the case that ψ is not normalised:

M(ψ) =

∑
x∈N` F (x)ψ(x)

|ψ| .

The increase in norm caused by an application of selection (ignoring normalization) is given

by the mean fitness:
|Sel(ψ)|
|ψ| =

∑
x∈D F (x)ψ(x)

|ψ| = M(ψ).

Let us remark that M(ψ) ≤ N` because F (x) ≤ N` for every x ∈ D.

Since mutation and recombination do not affect the norms, we have:

λ(ψ) = ρ(ψ)M(ψ′),

where ψ′ = Trunc(Mut(ψ)).

7.0.2. Changing the parameters. A key idea here is to use the case when positive and negative

mutations are equiprobable to get information about the case we are interested in, where

c < a. In this subsection we show how we can change the mutation parameters from a, b, c to
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a′, b′, c′ satisfying a′ = c′, in a manner which allows us to translate from one process to the

other in a controlled way.

We define a′, b′, c′ so that they satisfy the following equations:

a′ + b′ + c′ = 1,
b√
ac

=
b′√
a′c′

and a′ = c′.

The reason we require b/
√
ac = b′/

√
a′c′ will become clear later. These equations are enough

to determine the values of a′, b′ and c′ as follows. Since a′ = c′ = (1− b′)/2, for τ = b+ 2
√
ac

we get:

b√
ac

=
b′

1
2(1− b′)(2)

b(1− b′) = 2b′
√
ac(3)

b = b′(b+ 2
√
ac)(4)

√
ac√
a′c′

=
b

b′
= τ.(5)

So b′ = b/τ and a′ = c′ =
√
ac/τ .

To better visualize the translation from the abc-process to the a′b′c′-process, let us start by

considering the case ` = 1 first. Consider the diagonal square matrix C of size N ×N given

by:

C(x, x) = (a/c)x/2 .

Our goal now is to show that applying the abc-process to a population φ is equivalent to

applying the a′b′c′-process to C · φ up to a factor of τ . In other words, we will show that

τ · Sel(Muta′a′(C · φ)) = C · Sel(Mutac(φ)).

Let Mutac be the matrix corresponding to an application of mutation with probabilities

µ(−1) = a, µ(0) = b and µ(1) = c, followed by truncation (but without normalisation). That

is:

Mutac =




b a 0 0 ... 0 0

c b a 0 ... 0 0

0 c b a ... 0 0

0 0 c b
. . . 0

...
...

...
. . .

. . .
. . .

...

0 0 0
. . . b a

0 0 0 0 . . . c b




From now on, we will assume truncation is part of mutation, and mutation refers to multipli-

cation by Mutac.

Lemma 21. In the case ` = 1:

τ · Muta′a′ = C · Mutac · C−1

Proof. We carry out the matrix multiplications:
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C · Mutac · C−1 =




b
√
a/c

1√
a/c

−1
a
√
a/c

1√
a/c

−2
0 0 ...

c
√
a/c

2√
a/c

−1
b
√
a/c

2√
a/c

−2
a
√
a/c

2√
a/c

−3
0 ...

0 c
√
a/c

3√
a/c

−2
b
√
a/c

3√
a/c

−3
a
√
a/c

3√
a/c

−4
...

0 0 c
√
a/c

4√
a/c

−3
b
√
a/c

4√
a/c

−4
...

...
...

...
...

. . .




=




b a
√
a/c
−1

0 0 ...

c
√
a/c b a

√
a/c
−1

0 ...

0 c
√
a/c b a

√
a/c
−1

...

0 0 c
√
a/c b ...

...
...

...
...

. . .




=




b
√
ac 0 0 ...√

ac b
√
ac 0 ...

0
√
ac b

√
ac ...

0 0
√
ac b ...

...
...

...
...

. . .




=

√
ac

a′c′




b′
√
a′c′ 0 0 ...√

a′c′ b′
√
a′c′ 0 ...

0
√
a′c′ b′

√
a′c′ ...

0 0
√
a′c′ b′ ...

...
...

...
...

. . .




= τ · Muta′a′ .

The last equality uses that
√
a′c′ = a′ = c′ and that

√
ac
a′c′ = τ . �

Notice that, in the 1-locus case, selection without normalization is given by a diagonal

matrix Sel where Sel(i, i) = i. Since diagonal matrices commute, we have:

τ · Sel · Muta′a′ · C = C · Sel · Mutac.

The case when ` > 1 is not overly different, but the notation is now a little more cumber-

some. Consider the diagonal square matrix C of size N ` ×N ` given by

C((x1, ..., x`), (x1, ..., x`)) = (a−1/a1)(
∑
xi)/2

where a−1, a0, a1 are a, b, c respectively.

Let us use Mutac to denote the matrix corresponding to abc-mutation with ` genes. We

should actually denote this matrix by Mutac,`,N , but since there is no risk of confusion we

prefer to simplify the notation.

Lemma 22. For ` ≥ 1:

τ ` · Muta′a′ = C · Mutac · C−1

Proof. Consider ψ ∈ RN`
. Then, for x = (x1, ..., x`),

C−1 ·ψ(x) = ψ(x)
√
a−1/a1

−∑
xi

and

Mutac·C−1·ψ(x) =
1∑

i1=−1

1∑

i2=−1

...
1∑

i`=−1


∏̀

j=1

aij


ψ(x1−ii, x2−i2, ..., x`−i`)

√
a−1/a1

−∑
xj−ij

.
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In the equation above, assume that if (x1 − ii, x2 − i2, ..., x` − i`) 6∈ D, then ψ(x1 − ii, x2 −
i2, ..., x` − i`) = 0. Replacing each a0 by a′0τ , each a−1 by a′−1τ

√
a−1/a1 and each a1 by

a′1τ
√
a1/a−1 we get

=
1∑

i1=−1

1∑

i2=−1

...
1∑

i`=−1


∏̀

j=1

a′ijτ
√
a1/a−1

ij


ψ(x1− ii, x2− i2, ..., x`− i`)

√
a−1/a1

−∑
j xj+

∑
j ij

= τ `
√
a−1/a1

−∑
j xj

1∑

i1=−1

1∑

i2=−1

...
1∑

i`=−1


∏̀

j=1

a′ij


ψ(x1 − ii, x2 − i2, ..., x` − i`)

= τ ` · C−1 · Muta′a′ ·ψ(x). �

7.0.3. The fixed point for Asex. In this subsection we prove Theorem 19 which states that the

limit of λtasex is less than or equal to N`τ `. The proof has two steps. First we show that if the

asex process reaches a fixed point ψ, then λ(ψ) ≤ N`τ `. Second, we show that, independent

of the starting point, the asex population always converges to a fixed point.

As we mentioned before, mutation (which we now consider to incorporate truncation) acts

on a population (considered as a vector) by multiplying this vector by the matrix Mutac. We

use SelMutac to denote the matrix Sel · Mutac. In the case ` = 1 we have

SelMutac =




b a 0 0 ...

2c 2b 2a 0 ...

0 3c 3b 3a ...

0 0 4c 4b ...
...

...
...

...
...



.

The following lemma shows how useful is the translation developed in the previous subsection.

Lemma 23. Suppose that ψac,`,N is a fixed point for the asex process. Then λ(ψac,`,N ) <

N`τ `.

Proof. Letψ = ψac,`,N . Thatψ is a fixed point for the asex process meansψ = Proj(SelMutac·
ψ), or equivalently that ψ is an eigenvector for SelMutac with eigenvalue λ(ψ), i.e., SelMutac ·
ψ = λ(ψ)ψ. From Lemma 22 we have that τ ` · SelMuta′a′ · C = C · SelMutac. It follows that

ϑ = C ·ψ is an eigenvector of SelMuta′a′ with eigenvalue τ−`λ(ψ). Thus

τ `λ(ϑ) = λ(ψ),

where λ(ϑ) is calculated using the mutation µ′(−1) = a′, µ′(0) = b′, µ′(1) = a′. (We should

use the notation λa′a′(ϑ) and λac(ψ) to specify the mutation used, but it will be clear from

context which definition we are using.) Since λ(ϑ) = ρ(ϑ)M(Muta′a′ · ϑ) < N`, we have

λ(ψ) < N`τ ` as required. �

Theorem 19 now follows from the following lemma.
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Lemma 24. For every a, b, c, `,N , there is a unique ψac,`,N ∈ RN
`

such that for any non-

negative, non-zero φ ∈ RN`
:

limt→∞(ProjSelMutac)
t · φ = ψac,`,N .

Proof. We apply the Perron-Frobenius theorem, which states that a non-negative, irreducible

and primitive matrix has a positive (real) eigenvalue λ whose absolute value is larger that

that of any other eigenvalue, and that λ has a unique (up to scaling) associated eigenvector

all whose coordinates are positive. The matrix SelMutac is non-negative, in the sense that

all its entries are non-negative. It is also irreducible and primitive because all the entries of

(SelMutac)
N are positive. So we can apply the Perron-Frobenius theorem and get a positive

eigenvector ψ = ψac,`,N ∈ RN
`

which is a probability distribution with a positive eigenvalue

λ that is the largest in absolute value. As a corollary of the Perron-Frobenius theorem we

also get that limt→∞ (SelMutac)
t/λt is the projection to the eigenspace given by ψ, and that

this projection is non-zero for any non-zero non-negative initial population. This implies that

ψ is a universal attractor of the system defined by iterating SelMutac and normalisation.(For

a similar application of the Perron-Frobenius Theorem in the previous literature, but which

does not make use of the techniques established here to provide estimates for the mean of the

resulting fixed point, see [27, 28].) �

Before we move on to consider the asymptotic behaviour for the sex process, we need to

form a stronger version of Theorem 19 for the 1-locus case (where the sex and asex processes

are identical). While we shall not establish for general ` that limN→∞ limt→∞ λtasex/N = `τ `,

we shall now do so for the case ` = 1 (since we shall later be able to apply this result in

analysing the sex process).

Lemma 25. Let ψac,N be the probability distribution which is the fixed point of the 1-locus

process, and let ϑa′a′,N = Proj(C · ψac,N ). Then:

(1) limN→∞λ(ϑa′a′,N )/N = 1.

(2) limN→∞ρ(ϑa′a′,N ) = 1.

(3) limN→∞M(Muta′a′ · ϑa′a′,N )/N = 1.

Proof. Since we consider a, b and c to be fixed, let ψN = ψac,N and ϑN = ϑa′a′,N . We shall

establish (1) and (2), and then (3) follows immediately from the definition of λ(ϑN ). The key

to understanding ϑN is to calculate the following quotients. For k < N , define:

ηN (k) =
ϑN (k + 1)

ϑN (k)
.

Let λN = λ(ϑN ). Since ϑN is a fixed point we have that ϑN (1) = (b′ϑN (1) + a′ϑN (2))/λN

and ϑN (N) = (c′ϑN (N − 1) + b′ϑN (N))N/λN . It follows that:

ηN (1) =
λN − b′
a′

and ηN (N − 1) =
c′

λN/N − b′
.
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For x /∈ {1, N} we have ϑN (x) = (c′ϑN (x − 1) + b′ϑN (x) + a′ϑN (x + 1))x/λN . Using that

ϑN (x+ 1) = ηN (x)ϑN (x), we get:

c′ηN (x− 1)−1 + a′ηN (x) = λN/x− b′.

Now suppose that (1) does not hold. In this case there exists an infinite set Π ⊆ N, such

that limN∈Π λN/N = κ < 1 (note that λN ≤ N). For each x ∈ N, define:

R(x) = lim
N∈Π

ηN (N − x)−1.

From the formulas for η(N −x) above (and using that a′ = c′), we deduce that R satisfies the

following inductive definition:

R(1) =
κ− b′
a′

and R(k + 1) =
κ− b′
a′
−R(k)−1.

All values of R are non-negative, because so are the corresponding values of ηN (k). Notice

that R(2) < R(1), and that R(k) < R(k − 1) implies R(k + 1) < R(k), from which we may

conclude that R is decreasing. R must then have a limit, α say. This limit must satisfy

α + α−1 = (κ − b′)/a′. Since for every α ∈ R+, α + α−1 ≥ 2, 2 ≤ (κ − b′)/a′. From the fact

that b′ = 1− 2a′, it follows that κ ≥ 1, which gives the required contradiction.

In order to establish (2), we show first of all that limN→∞ϑN (1) = 0. This now follows

easily, however, from the fact that limN→∞λN =∞ and ηN (1) = (λN − b′)/a′.
The final step is to show that limN→∞ϑN (N) = 0. Once again, consider the sequence R(x)

as defined above. We have:

R(1) =
1− b′
a′

= 2 and R(x+ 1) = 2−R(x)−1.

We conclude that R(x) > 1 for all x. From this it follows that for each x and all sufficiently

large N , ηN (N − x) < 1. This suffices to ensure that limN→∞ϑN (N) = 0, as required. �

Lemma 26. Let ψac,N be the probability distribution which is the fixed point of the 1-locus

process. Then:

(1) limN→∞λ(ψac,N )/N = τ .

(2) limN→∞ρ(ψac,N ) = 1.

(3) limN→∞M(Mutac · ψac,N )/N = τ .

Proof. Again, let ψN = ψac,N and let ϑN = ϑa′a′,N be as defined in the statement of Lemma

25. Given Lemma 25, and the fact that τλ(ϑN ) = λ(ψN ) (as established in the proof of Lemma

23), it suffices to establish (2). That limN→∞ψN (N) = 0, follows from the corresponding fact

for ϑN , however, since ψN ≺ ϑN . It remains then, to show that limN→∞ψN (1) = 0. We use

a similar method to the proof of Lemma 25. This time for k < N , define:

ηN (k) =
ψN (k + 1)

ψN (k)
.

Now let λN = λ(ψN ). We have that:

ηN (1) =
λN − b
a

.
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The result then follows from the fact that limN→∞λN =∞. �

7.0.4. The asymptotic behavior for sex. The rest of Section 7 is dedicated to proving Theorem

20, which gives a lower bound for the geometric mean of λtsex. For all sufficiently large N :

GM
t→∞

(λtsex) > N`τ `.

The proof requires a sequence of lemmas, some of which we will state now and prove in later

subsections. Before describing the general architecture of the argument, let us consider how

to analyse the `-locus sex process by looking at the different loci individually. The reason

we can do this is that, since the sex population stays at linkage equilibrium, its probability

distribution is determined by the product of the distributions of the individual loci.

Let ψ ∈ RN`
be a population where all the loci are independent, as for instance after an

application of recombination. Assume ψ has been normalised. Let ψi ∈ RN be the probability

distribution for the ith locus. We would like to analyse the abc-sex-process on ψ by analysing

its process on ψi. It is not hard to see that if a population is at linkage equilibrium then the

effect of mutation and truncation on the whole population is equivalent to considering the

effect of mutation on each single locus independently as we did in the proof of Lemma 15. Let

ψ′i = Mutac,1 · ψi, where Mutac,1 is the 1-locus mutation, and ρi = ρ(ψi) = |ψ′i|/|ψi|. If we let

ψ′ = Mutac · ψ, then we have that ψ′(x) =
∏`
i=1 ψ

′(xi) and ρ(ψ) =
∏`
i=1 ρ(ψi). Finally, we

let Wi = M(ψ′i) and Ŵi =
∑

j 6=iWj ; let us recall that M(ψ′) =
∑`

i=1Wi = Wi + Ŵi. From

Lemma 6 we have that the effect of selection on a single locus is given by ψ∗i = SelŴi
· ψ′i,

where SelK is the diagonal matrix with SelK(j, j) = (j +K)/M . Since this matrix actually

depends also on M , from now on, to simplify the notation we let

SelK(j, j) = j +K

and leave the normalisation for later if necessary. The increase in norm produced by SelK

applied to ψ ∈ RN is then M(ψ) +K. Hence for ψ′i = Mutac,1 · ψi we have:

λ(ψi) :=
|SelŴi

· Mutac,1 · ψi|
|ψi|

= ρ(ψi)(M(ψ′i) + Ŵi).

The next step is to describe how we are going to use the translation to the a′ = c′ case for

sex populations. Consider the following setting. Let {Kt}t∈N be a sequence of real numbers in

[0, (`− 1)N ] (which will later represent the sequence Ŵ t
i for some fixed i). Let ψ0 ∈ RN (later

this will represent the initial sexual population at some locus), and let ϑ0 = C · ψ0. Assume

that ψ0 is not the zero vector. For every t ∈ N, define:

ψt+1 = SelKt · Mutac,1 · ψt and ϑt+1 = SelKt · Muta′a′,1 · ϑt.

From Lemma 21 we have τ t · ϑt = C · ψt for every t. Define:

λtψ =
|ψt+1|
|ψt| = ρ(ψt) · (M((ψt)′) +Kt) and λtϑ =

|ϑt+1|
|ϑt| = ρ(ϑt) · (M((ϑt)′) +Kt),
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where (ψt)′ = Mutac,1 · ψt and (ϑt)′ = Muta′a′,1 · ϑt.
If ψt was a fixed point, then using that τ t · ϑt = C · ψt we could conclude that ϑt is also a

fixed point (all given the appropriate normalisations), and that λtψ = τλtϑ as in the proof of

Lemma 23. Even without assuming that the process converges to a limit distribution, we still

get that these values have the same geometric means:

Lemma 27. GMt→∞(λtψ/λ
t
ϑ) = τ.

Proof. For every k, we have that:

τk|ϑk|
|ϑ0| =

|C · ψk|
|C · ψ0| =

|ψk|
|ψ0|
|C · Proj(ψk)|
|C · Proj(ψ0)| .

The set {φ ∈ (R≥0)N : |φ| = 1} is compact and hence the image of the continuous map

ψ 7→ |C · Proj(ψ)| is a closed interval of the form [α, αβ] for 0 < α and 1 ≤ β (we get that

α > 0 because |C · Proj(ψ))| is always positive). We then have:

GM
t<k

(λtψ) = k

√
|ψk|
|ψ0| ≤

k

√
β
τk|ϑk|
|ϑ0| = τ k

√
β GM

t<k
(λtϑ).

Symmetrically GMt<k(λ
t
ψ) ≥ τ k

√
β−1 GMt<k(λ

t
ϑ). The lemma then follows from the fact that

both k
√
β−1 and k

√
β converge to 1 as k →∞. �

The next step is to give an approximate calculation for λtϑ, which holds irrespective of the

choice for ψ0. The next lemma shows that λtϑ is eventually always close to N+Kt. The reason

this holds is that ρ(ϑt) is eventually always close to 1, and M((ϑt)′) is eventually always close

to N because positive mutations are as likely as negative ones.

Lemma 28. For any choice of non-negative ψ0 ∈ RN and {Kt}t∈N, let {λtϑ}t∈N be defined as

above. There is a sequence {εN}N∈N converging to 0 such that, for every N , every sequence

{Kt}t∈N and every non-negative ψ0, the following holds for all sufficiently large t:

1− εN <
λtϑ

N +Kt
< 1.

The proof of this lemma is a little technical, so we delay it until Subsection 7.0.5. The

following is a small lemma concerning geometric means, which will allow us to compare the

geometric means of λtϑ and Kt.

Lemma 29. Let {at}t<k be a sequence of positive real numbers and let b be a positive number.

Then b+ GMt<k(a
t) ≤ GMt<k(b+ at).

Proof. This is a corollary of Jensen’s inequality which states that ϕ(k−1
∑k

i=1 γi) ≤ k−1
∑k

i=1 ϕ(γi)

for ϕ : R → R convex. One has to apply it to the values γi = log(ai) and the function

ϕ(x) = log(b+ ex) which is convex because ϕ′′(x) = bex/(b+ ex)2 > 0. �
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For a given choice of ψ0, we can use what we have so far to get a lower bound for GM(ρ(ψt)).

For all sufficiently large k:

GM
t<k

ρ(ψt) = GM
t<k

λtψ
M((ψt)′) +Kt

(6)

≥ GM
t<k

τλtϑ
M((ψt)′) +Kt

(1− εN )(7)

≥ τ

(
GM
t<k

N +Kt

M((ψt)′) +Kt

)
(1− εN )2.(8)

The value inside the large parentheses is greater than 1 for large N and sufficiently large

t because there exists a sequence {εN}N∈N with limit 0 such that, for large t, M((ψt)′) <

τN + εN < N , as proved in the next lemma. The lemma also shows that, for large N and for

sufficiently large t, the value of ψt at the upper boundary N is very close to 0.

Lemma 30. For any choice of ψ0 ∈ RN − {0} and {Kt}t∈N, let {ψt}t∈N be defined as above,

and let (ψt)′ = Mutac,1 · ψt. There exists a sequence {εN}N∈N converging to 0 such that, for

every N , every sequence {Kt}t∈N and every ψ0, the following holds for all sufficiently large t:

M((ψt)′) < τN + εN and ψt(N)/|ψt| < εN .

Proof. Let φ0 ∈ RN be the probability distribution with φ0(N) = 1. For each t define

φt+1 = Sel0Mutac,1 · φt. By induction on t and using Lemmas 9 and 10 we conclude that

ψt � φt and (ψt)′ � (φt)′ for all t. Using Lemma 11 we then get that M((ψt)′) ≤ M((φt)′).

Applying Lemma 26, we conclude that there exists a sequence {εN}N∈N with limit 0 such that

M((φt)′) (and so also M((ψt)′)) remains below τN + εN for all sufficiently large t. The second

claim of the lemma also follows from Lemma 26 and the fact that ψt � φt. �

For the last stretch of the proof we need to be more concrete about the sexual population

we are analysing. Let ψ0 ∈ RN`
be the initial sexual population, and {ψt}t∈N be the sequence

obtained by iterating ac-mutation, selection and recombination. For each locus i and genera-

tion t, let ψti be the distribution at locus i at stage t, but ignoring normalisation. We use the

same notation we have been using so far:

• (ψti)
′ = Mutac,1 · ψti ;

• (ψt)′ = Mutac ·ψt;
• W t

i = M((ψti)
′);

• M t = M((ψt)′) =
∑`

i=1W
t
i ;

• Ŵ t
i = M t

i −W t
i ;

• ψt+1
i = SelŴ t

i
· Mutac,1 · ψti ;

• ρ(ψti) = |(ψti)′|/|ψti |,
• ρ(ψt) = |(ψt)′|/|ψt| = ∏`

i=1 ρ(ψti).

The objective now is to show that the geometric mean of λ(ψt) = ρ(ψt)M t = (
∏`
i=1 ρ(ψti))M

t

is above N`τ `. We will apply the results we have obtained thus far for Kt = Ŵ t
i . In order

to be able to do this, however, we need to be able to compare Ŵ t
i and M t. If all loci were
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identical, we would have Ŵ t
i = M t(` − 1)/`. When the loci are not identical, the following

lemma gives us an approximation to N+Ŵ t
i , and tells us that it is close – at least in geometric

mean – to N +M t(`− 1)/`, just as it would be if the loci were identical.

Lemma 31. There is a sequence {εN : N ∈ N} converging to 0 such that for every N and

every initial population ψ0 ∈ RN`
as above, the following holds for all sufficiently large k:

1− εN < GM
t<k

(
N + Ŵ t

i

N +M t((`− 1)/`)

)
< 1 + εN .

We will prove this lemma in Subsection 7.0.6. Lemmas 28, 30 and 31 all assert the existence

of certain sequences {εN}N∈N with limit 0. We now let {εN}N∈N be a sequence with limit 0,

which majorises each of the sequences provided by these lemmas.

We are now ready to finish the proof of Theorem 20. Let k be large. We start by cleaning

up equation (8) using what we now know from Lemmas 29 and 31. Fix i ≤ `.

GM
t<k

ρti ≥ τ

(
GM
t≤k

N + Ŵ t
i

W t
i + Ŵ t

i

)
(1− εN )2

≥ τ

(
GM
t≤k

N +M t(`− 1)/`

M t

)
(1− εN )3

= τ

(
GM
t≤k

(
`− 1

`
+

N

M t

))
(1− εN )3

≥ τ

(
`− 1

`
+ GM

t≤k

(
N

M t

))
(1− εN )3

= τ (1 + ξk/`) (1− εN )3,

where ξk = GMt≤k(`N/M t) − 1. Notice that GMt≤k(`N/M t) > 1. Furthermore, by Lemma

30, M t < `(τN + εN ) for sufficiently large t. Adjusting the sequence εN as necessary (but

maintaining the fact that it has limit 0), we then have that for sufficiently large k, ξk ≥
((1− τ)/τ)− εN .

Finally,

GM
t<k

(λtsex) = GM
t<k

(M t)
∏̀

i=1

GM
t<k

(ρti)(9)

≥ N`

1 + ξk

(
τ (1 + ξk/`) (1− εN )3

)`
(10)

=
(
N`τ `

)((1 + ξk/`)
`

1 + ξk

)
(1− εN )3`,(11)

for all large enough k. The last observation to make is that there exists ε > 0, independent of

N and k, such that the factor
(

(1 + ξk/`)
`

1 + ξk

)
(1− εN )3`

is greater than 1 + ε for large N and sufficiently large k. To see this, note that the function

x 7→ (1 + x/`)`/(1 + x) is always greater than 1 for x > 0 and tends to +∞ as x → +∞.
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(It is actually increasing for x > 0.) Let N∗ be large enough that εN < (1 − τ)/τ for all

N > N∗. Among all the x’s with x ≥ ((1− τ)/τ)− εN∗ , there is a minimum possible value for

(1 + x/`)`/(1 + x), call it ζ, which is greater than 1. Let ε be such that ζ = 1 + 2ε. Then for

N ≥ N∗ for which εN is sufficiently small, we have
(

(1+ξk/`)
`

1+ξk

)
(1− εN )3` > 1 + ε for all large

enough k.

It remains to prove Lemmas 28 and 31.

7.0.5. The proof of Lemma 28. Roughly speaking, we need to show that λtϑ gets close to

N + Kt as t becomes large. Recall that λtϑ = ρ(ϑt)(M((ϑt)′) + Kt), and that ρ(ϑt) = 1 −
aϑt(1)/|ϑt| − cϑt(N)/|ϑt|. The proof will have three parts which are: showing that M((ϑt)′)

gets close to N , showing that ϑt(1)/|ϑt| gets close to 0, and showing that ϑt(N)/|ϑt| gets

close to 0. We remark that it is not surprising that M(ϑt) gets close to N : since positive and

negative mutations are equiprobable, mutation without truncation does not bring the mean

fitness down, while selection only ever increases mean fitness. Therefore the mean fitness can

be expected to rise, this rise being halted only by effect of truncation at the upper boundary.

The first idea for the proof is to consider an alternative population which evolves according

to a different sequence {Kt}t∈N; one that is constant, and that is either always larger or else

always smaller than the original one. The fact that the sequence is constant allows us to apply

the Perron-Frobenius theorem and establish a limit population, which we can later analyse.

Choosing a sequence Kt with larger (smaller) values will guarantee that the new sequence

is ≺-below (-above) the original. This allows us to compare the mean fitnesses of the two

populations, as well as their values at the boundaries 1 and N .

Let us begin with the analysis of the limit populations. Fix a value of K, for which we will

later substitute either 0 or (`− 1)N . Define

φ0 = ϑ0 and φt+1 = SelKMuta′a′,1 · φt.

Since φt is defined by iterating a linear system which is non-negative, primitive and irreducible,

we can apply the Perron-Frobenius theorem, exactly as we did in Lemma 24, to deduce that

the populations φt must converge to a limit population φN which is independent of the starting

population (and depends only on N , K and a′). In order to analyse φN , we proceed much as in

the proof of Lemma 25. Once again, the key idea is to consider quotients between consecutive

values in the distribution. For k < N , define:

ηN (k) =
φN (k + 1)

φN (k)
.

Let λN = λ(φN ) = ρ(φN )(M((φN )′) + K). Since φN (1) = (b′φN (1) + a′φN (2))(1 + K)/λN

and φN (N) = (c′φN (N − 1) + b′φN (N))(N +K)/λN we have:

ηN (1) =
λN/(1 +K)− b′

a′
and ηN (N − 1) =

c′

λN/(N +K)− b′ .
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For x /∈ {1, N} we have φN (x) = (c′φN (x − 1) + b′φN (x) + a′φN (x + 1))(x + K)/λN . Since

φN (x+ 1) = ηN (x)φN (x) this gives:

c′ηN (x− 1)−1 + a′ηN (x) = λN/(x+K)− b′.

Let us now move into the proof that the mean fitness grows close to N . Consider K =

(`− 1)N , and define φN as above for that K. Since Kt ≤ (`− 1)N (where Kt is the sequence

given in the statement of the lemma), it follows by induction using Lemmas 9 and 10 that

for every t, φt ≺ ϑt. This means that φt(1)/|φt| ≥ ϑt(1)/|ϑt|, and (by Lemma 11) that

M(φt) ≤M(ϑt). In order to establish that limN λN/(`N) = 1, suppose otherwise. Then there

must exist an infinite set Π, such that limN∈ΠλN/(`N) = κ < 1 (note that λN ≤ `N). For

each x ∈ N, define:

R(x) = lim
N∈Π

ηN (N − x)−1.

From the formulas for η(N − x) above (and using that a′ = c′), it follows that each R(x) is

defined and satisfies the following inductive definition:

R(1) =
κ− b′
a′

and R(k + 1) =
κ− b′
a′
−R(k)−1.

All the values of R are non-negative, because so are the corresponding values of ηN (k). Note

that R(2) < R(1), and that R(k) < R(k − 1) implies R(k + 1) < R(k), from which we

conclude that R is decreasing. R must then have a limit, α say. This limit must satisfy

α + α−1 = (κ − b′)/a′. Since for every α ∈ R+, α + α−1 ≥ 2, we have that 2 ≤ (κ − b′)/a′.
Since b′ = 1− 2a′, it follows that κ ≥ 1, which gives the required contradiction.

So far we have concluded that limN→∞λN/N = `. Since λN = ρ(φN )(M(φ′N ) + (`− 1)N)

and ρ(φN ) ≤ 1, it follows that limN→∞M(φ′N )/N = 1. For now, let εN = 1 −M(φ′N )/N .

Since (φt)′ � (ϑt)′, we also know that lim inftM((ϑt)′)/N ≥ 1− εN .

The second step is to show that ϑt(1)/|ϑt| is small for large t. Since φt � ϑt, we know that

φt(1)/|φt| ≥ ϑt(1)/|ϑt|, so it is enough to show that once normalised φN (1) is small for large

N . This time we define:

R(k) = lim
N→∞

ηN (1).

We have that:

R(1) =
`/(`− 1)− b′

a′
and R(k + 1) =

`/(`− 1)− b′
a′

−R(k)−1.

Since (`/(`− 1)− b′)/a′ > (1− b′)/a′ = 2 it follows inductively that R(k) > 1 for all k. This

means that for every k, there exists N large enough such that ηN ′(x) > 1 for all N ′ ≥ N and

all x ≤ k. Redefine εN to be the maximum between the value εN specified in the above and

1/k for the largest k such that ηN (x) > 1 for all x ≤ k. It follows that for that for all N ,

φN (1) ≤ εN and that the sequence εN converges to 0.

The third step is to consider ϑt(N). This time we set K = 0 and consider the new cor-

responding sequence φt, with the new limit φN . We now have that ϑt � φt, and hence that
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ϑt(N)/|ϑt| ≤ φt(N)/|φt|. This time, for each x we define:

R(x) = lim
N∈Π

ηN (N − x)−1.

By the same argument as above we get that limN→∞λN/(N + K) = 1, and in this case this

means that limN→∞λN/N = 1. R now satisfies:

R(1) =
1− b′
a′

= 2 and R(x+ 1) = 2−R(x)−1.

Again we have that R(k) > 1 for all k, which means that for sufficiently large N , ηN (N−x) < 1

for all x ≤ k. We can therefore redefine εN so that this sequence still converges to 0 and:

lim inf
t

ρ(ϑt)(M((ϑt)′) +Kt)

N +Kt
≥ 1− εN ,

as needed for Lemma 28.

7.0.6. The proof of Lemma 31. In this section we prove the last lemma required to complete the

proof of Theorem 20. Roughly speaking, Lemma 31 asserts that the various Wi’s (for varying

i) eventually stay relatively close to each other, even if they are initially quite different. In

simulations we have observed that in fact all of the Wi’s converge to the same value M/` (see

for instance Figure 5), but this seems to be hard to prove. Instead, we prove that N + Ŵ t
i

becomes close to N +M t(`− 1)/` in geometric mean, which is enough for our purposes.

Let us begin by looking at a 2-locus ac-sex process where selection acts with an additive

value Kt at stage t. More formally, let {Kt : t ∈ ω} be a sequence of numbers in [0, (`− 2)N ],

let υ0
0, υ

0
1 ∈ RN be the initial distributions corresponding to each of those two loci, and define:

υt+1
0 = SelM((υt1)′)+KtMutac,1 · υt0 and υt+1

1 = SelM((υt0)′)+KtMutac,1 · υt1.

Notice how the the M -value used in defining selection at a given locus is the mean correspond-

ing to the other locus (as it should be for the 2-locus sex process).

Lemma 32. There is a sequence {δt : t ∈ ω} such that each δt > 1, with GMt→∞ δt < 1 + εN

and such that for all t:
1

δt
≤ N +M((υt1)′) +Kt

N +M((υt0)′) +Kt
≤ δt.

Proof. Let φ0
0, φ

0
1 ∈ RN be new initial populations, such that φ0

0 is the probability distribution

with φ0
0(1) = 1 and φ0

1 is the probability distribution with φ0
1(N) = 1. Let the φt0 and φt1

processes evolve as follows:

φt+1
0 = SelM((φt1)′)+KtMutac,1 · φt0 and φt+1

1 = SelM((φt0)′)+KtMutac,1 · φt1.

Consider the translations of φ0 and φ1 to the a′a′-process: i.e., let ϑt0 = τ−tC · φt0 and

ϑt1 = τ−tC · φt1. From Lemmas 27 and 28 we get that:

1− εN <
GM(ρ(φt1)(M((φt1)′) +M((φt0)′) +Kt)

τ GM(N +M((φt0)′) +Kt)
< 1 + εN ,
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and

1− εN <
GM(ρ(φt0)(M((φt0)′) +M((φt1)′) +Kt)

τ GM(N +M((φt1)′) +Kt)
< 1 + εN .

Taking the quotient of these equations we conclude that we can redefine the sequence εN so

that it still converges to 0, and so that:

(1− εN ) < GM

(
ρ(φt1)

ρ(φt0)

)
GM

(
N +M((φt1)′) +Kt

N +M((φt0)′) +Kt

)
< (1 + εN ).

From Lemmas 9 and 10, it follows inductively that φt0 � υt0 � φt1 and φt0 � υt1 � φt1 for

every t. We will now use the fact that φt0 � φt1 to establish that the numerators above

are essentially greater than the denominators. We know from Lemma 11 that (φt0)′ � (φt1)′

implies M((φt1)′) ≥ M((φt0)′). Also, φt0 � φt1 implies that φt1(1)/|φt1| ≤ φt0(1)/|φt0|. We know

that φt1(N)/|φt1| < εN from Lemma 30 (with εN as specified there). We therefore have that:

ρ(φt1) = 1− aφt1(1)/|φt1| − cφt1(N)/|φtN | ≥ 1− aφt0(1)/|φt0| − cφt0(N)/|φtN | − cεN = ρ(φt0)− cεN .

Since ρ(φt0) > 1− a− c = b > c, it follows that ρ(φt0)− cεN ≥ ρ(φt0)(1− εN ). We can therefore

redefine the εN so that the sequence still converges to 0 and:

1 ≤ GM

(
N +M((φt1)′) +Kt

N +M((φt0)′) +Kt

)
< (1 + εN ).

Let δt be the term inside the large parentheses, i.e., δt =
N+M((φt1)′)+Kt

N+M((φt0)′)+Kt ≥ 1 and GM(δt) <

1 + εN . Since M((φt0)′) ≤ M((υt0)′) ≤ M((φt1)′) and M((φt0)′) ≤ M((υt1)′) ≤ M((φt1)′), we

have:
1

δt
≤ N +M((υt1)′) +Kt

N +M((υt0)′) +Kt
≤ δt. �

Now let us return to the proof of Lemma 31. For each i < j, let δti,j be the δt whose existence

is ensured by Lemma 32 for the case Kt = Ŵ t
i,j = M t −W t

i −W t
j . Let δt =

∏
i<j≤` δ

t
i,j . We

have that GM(δt) < (1 + εN )`(`−1) and that for every t and i 6= j:

N + Ŵ t
i

N + Ŵ t
j

< δt.

Since
∑`

i=1(N +Ŵ t
i ) = `N +(`−1)M t, it follows that for some j, N +Ŵ t

j > N +M t(`−1)/`.

Therefore, for every i, N + Ŵ t
i > (N + M t(` − 1)/`)/δt. A similar argument shows that

N + Ŵ t
i < (N +M t(`− 1)/`)δt, which completes the proof of Lemma 31.

8. Appendix D: Variants of the model

In this subsection we briefly consider variants of the model for which populations may be

finite or infinite and fitnesses contributions may be additive or multiplicative. For the most

part, our analysis here will rely on the results of simulations, although we shall also be able to

draw some concrete conclusions concerning fundamental similarities and differences between

the models. First, let us describe these variants.
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8.0.1. The finite model. For the finite model we consider an extra parameter P ∈ N, which

determines the size of the population. This size is then fixed through the generations, so that

a population always consists of P vectors, x1, ....,xP , in Z`. Let us consider the sex process

first. In order to apply selection one chooses 2P individuals, by sampling independently from

the population with replacement: if M is the mean fitness of the population and F (x) is the

fitness of individual x, then the probability that individual x is chosen for the nth sample

(1 ≤ n ≤ 2P ) is F (x)/M . One may consider the parent generation as forming a pool of

gametes. The probability that a gamete chosen uniformly at random from this pool comes

from a given individual x, is proportional to the fitness of x. During the selection phase we

are choosing P many pairs of individuals from which gametes are taken (recombination later

being applied to each of these pairs). To apply the mutation operation, we take in turn each

individual from the P -many pairs chosen during selection, and for each locus we change its

fitness value by −1, 0 or 1 with probabilities µ(−1), µ(0) and µ(1) respectively. To apply

recombination, we take each of the P pairs resulting from mutation in turn. Suppose that the

nth pair is x1
n = (x1

n,1, ..., x
1
n,`) and x2

n = (x2
n,1, ..., x

2
n,`). Then we form x∗n which is the nth

member of the next generation by taking each locus i in turn and defining either x∗n,i = x1
n,i

or x∗n,i = x2
n,i, each with equal probability. The assumption of maximum recombination

rates might be justified by considering that one is choosing a representative gene from each

chromosome, meaning that the monitored genes lie on distinct chromosomes. For the asex

process, one proceeds similarly, except that P many individuals rather than pairs are chosen

during the selection phase, and the recombination phase is omitted.

The finite model is clearly the most important to understand, and the analysis we have

provided for the infinite model provides a good approximation for large populations and over

a number of generations which is not too large. As mentioned previously, the equations

governing the change in mean fitness and variance due to selection and mutation for the

infinite population model would now perfectly describe the expected effect of mutation and

selection for finite populations, and the finite populations model could be seen simply as a

stochastic approximation to the infinite case, were it not for the loss in variance and higher

cumulants due to sampling. While the effect of sampling may not be too significant for large

populations on a stage by stage basis, long term it will have the effect that the mean fitness

no longer tends to infinity over stages. Without providing a rigorous proof, one may reason

that this is perhaps unsurprising as follows. Mutation will still have a fixed expected effect

on the mean and variance at each stage. For a population φ with M = M(φ), VF = VF (φ)

and κ3 = κ3(φ), however, while the expected effect of selection on the mean is just as for the

infinite population model, the expected effect of selection on variance is now:
(
κ3

M
−
(
VF
M

)2
)
P − 1

P
− VF

P
.

Now the ratios between cumulants will not tend to increase without limit (in the infinite

populations model simulations show these ratios converging to fixed values over time, and

such behaviour is also approximated for the finite model). Thus, if variance was to increase
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without limit, selection would soon produce decreases in variance outweighing any increases

given by mutation. A similar analysis can be made including the effect of recombination,

establishing that for sufficiently large variances, the effect of sampling will outweigh any other

increases in variance.

8.0.2. The multiplicative model. This model is defined exactly like the additive one with the

sole difference that the fitness of an individual is calculated multiplicatively, i.e., F (X) =∏`
i=1Xi. For the infinite case, the sex and asex processes now behave identically, given

populations initially at linkage equilibrium. This was initially observed by Maynard-Smith

[34].

Lemma 33. Multiplicative selection preserves linkage equilibrium.

Proof. Suppose that φ is a population at linkage equilibrium. Let X1, ..., X` be random

variables distributed according to φ, and let X∗1 , ..., X
∗
` be distributed according to φ∗ =

Sel(φ). We show that selection maintains independence between the first two loci, as the

general result is very similar. We must show that whenever P(X∗1 = m1) 6= 0 and P(X∗1 =

m2) 6= 0:

P(X∗2 = n| X∗1 = m1) = P(X∗2 = n| X∗1 = m2).

This is equivalent to:

P(X∗1 = m1 ∧X∗2 = n)

P(X∗1 = m1)
=

P(X∗1 = m2 ∧X∗2 = n)

P(X∗1 = m2)
.

Now, since selection acts according to multiplicative fitnesses:

P(X∗1 = m1)

P(X∗1 = m2)
=
m1

m2

P(X1 = m1)

P(X1 = m2)
.

Also:

P(X∗1 = m1 ∧X∗2 = n)

P(X∗1 = m2 ∧X∗2 = n)
=
nm1

nm2

P(X1 = m1 ∧X2 = n)

P(X1 = m2 ∧X2 = n)
,

so the result follows from linkage equilibrium for φ. �

Thus, if a population begins at linkage equilibrium, this linkage equilibrium will be preserved

throughout all the stages (for the N- and bounded-models). Each application of recombination

now has no effect on the population.

For the finite multiplicative model, however, sampling will produce linkage disequilibrium

and sex now robustly outperforms asex (as seen in the outcomes of simulations presented in

§9). For an insightful analysis of mechanisms which may allow negative LD2 to build up in

this context see [19].

8.1. The simulations. For a small number of loci ` one can implement the algorithms de-

scribed directly. If one wishes to deal with a larger number of loci for the infinite population

sex process then one can achieve more efficient simulations (for the N and bounded models,
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and which will give only tiny margins of error due to truncation issues for the Z model), by

making use of Lemma 6, which allows one to track the entire population by monitoring each

locus separately. Similarly, one can achieve more efficient simulations for the asex infinite pop-

ulation process (for the Z-model, and with only tiny margins of error for the other domains)

by monitoring only the distribution on the total fitness of individuals. For finite populations,

such mechanisms for improving efficiency are not generally necessary (or indeed possible). In

considering the unbounded infinite populations models, of course one can only deal with a

bounded domain in practice. One is therefore limited in the number of generations which can

be simulated. To make the computations more precise for the infinite bounded model, we

represented real numbers by their logarithms, as the values of the probability distribution at

the upper and lower bounds are extremely small.

9. Appendix E: Extended Data

Figures 6 and 7 display the outcome of simulations for the additive finite populations model.

Figures 8 and 9 display the outcome of simulations for the additive infinite populations model.

Figure 10 displays the outcome of simulations for the finite populations multiplicative model.

Where required for our proofs, we have shown that the proportion of a population at the

boundaries will generally be small after sufficiently many generations have passed. The three

tables show the proportion of the population at the boundaries for the additive infinite pop-

ulations N-model and also for the bounded model. All variants of the model are described in

Appendix D.

initial gene fitness =1 10 20

0.2 3.5× 10−57 / 1.0× 10−31 1.1× 10−57 / 3.2× 10−32 3× 10−58 / 5.6× 10−33

0.1 1.6× 10−70 / 1.0× 10−39 3.7× 10−71 / 1.5× 10−40 8.2× 10−72 / 6.6× 10−42

0.05 2.9× 10−82 / 6.6× 10−45 5.7× 10−83 / 3.6× 10−46 1.1× 10−83 / 2.4× 10−48

0.025 2.7× 10−92 / 1.2× 10−47 4.6× 10−93 / 1.7× 10−49 1.0× 10−93 / 9.4× 10−53

0.0125 9.8× 10−101 / 1.5× 10−48 1.5× 10−101 / 4.2× 10−51 4.1× 10−102 / 8.0× 10−56

Table 2. The table concerns the infinite additive N-model, and shows the
proportion of a 2-locus population which has fitness contribution 1 at either
locus for sex/asex, after 1000 generations, for varying initial gene fitness con-
tributions, and for varying mutation rates. In all cases the probability that a
given mutation is beneficial is 10−1.
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N = 200 300 400

0.2 3.4× 10−57 / 3.8× 10−49 1.5× 10−85 / 2.1× 10−73 6.6× 10−114 / 1.2× 10−97

0.1 3.5× 10−100 / 5.0× 10−95 3.8× 10−150 / 2.1× 10−142 3.9× 10−200 / 8.9× 10−190

0.05 1.4× 10−150 / 1.1× 10−147 7.5× 10−226 / 1.8× 10−221 3.9× 10−301 / 2.8× 10−295

Table 3. The table concerns the infinite additive bounded model, and shows
the proportion of a 2-locus population which has fitness contribution 1 at either
locus for sex/asex, after 25000 generations, for varying N (maximum allele
fitness), and for varying mutation rates. In all cases the probability that a
given mutation is beneficial is 10−3 and all alleles initially have fitness 50.

Figure 6. Simulations for the finite additive model. In these simulations the
‘standard’ input parameters were: population size 10000; mutation rate 0.1;
probability mutation is positive 0.1; 10 loci, initial gene fitness contribution
5. In each graph one parameter is varied, while the other parameters take
the standard values. 100 simulations were run for each parameter set, and
the mean fitnesses as well as the standard deviations for these mean fitnesses
are depicted, after a number of generations which is sufficient for the mean
fitness to stabilise. This number of generations was taken to be 4000, except
for the case of varying mutation rate where 20000 generations were run for each
simulation.
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N = 200 300 400

0.2 6.5× 10−29 / 1.2× 10−30 3.4× 10−42 / 9.3× 10−45 2.6× 10−55 / 1.1× 10−58

0.1 9.2× 10−16 / 2.5× 10−16 7.1× 10−23 / 1.1× 10−23 7.5× 10−30 / 6.3× 10−31

0.05 1.5× 10−8 / 1.0× 10−8 2.3× 10−12 / 1.3× 10−12 4.5× 10−16 / 2.2× 10−16

Table 4. The table concerns the infinite additive bounded model, and shows
the proportion of a 2-locus population which has fitness contribution N (maxi-
mum allele fitness contribution) at either locus for sex/asex, after 25000 genera-
tions, for varying N and for varying mutation rates. In all cases the probability
that a given mutation is beneficial is 10−3 and all alleles initially have fitness
50.
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Figure 7. These graphs display variance and LD2 for the same simulations
which have their mean fitnesses displayed in Figure 6.
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Figure 8. Simulations for the infinite additive model appear to show VF /M
reaching a limit value over time. The figure shows approximate values for these
limits, for sex (red) and asex (blue). In all these simulations the probability that
a given mutation is beneficial was fixed at 0.1, and gene fitness contributions
were initially 5 (although the latter parameter has no effect on the limit values
found).
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Figure 10. Simulations for the finite multiplicative model. In these simula-
tions the ‘standard’ input parameters were: population size 10000; mutation
rate 0.1; probability mutation is positive 0.1; 10 loci, initial gene fitness con-
tribution 1. In each graph one parameter is varied, while the other parameters
take the standard values. 100 simulations were run for each parameter set,
and the logarithms (base 10) of the mean fitnesses are depicted after 500 gen-
erations (without any suggestion that the mean fitness has stabilised by this
point).


