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Abstract. We say that a theory T is intermediate under effective reducibility if the isomor-
phism problems among its computable models is neither hyperarithmetic nor on top under
effective reducibility. We prove that if an infinitary sentence T is uniformly effectively dense,
a property we define in the paper, then no extension of it is intermediate, at least when
relativized to every oracle on a cone. As an application we show that no infinitary sentence
whose models are all linear orderings is intermediate under effective reducibility relative to
every oracle on a cone.

1. Introduction

We show a connection between Vaught’s conjecture and an intriguing open question about
computable structures. The question we are referring to asks whether every nice theory
T (given by a computably infinitary sentence) satisfies what we call the no-intermediate-

extension property, which essentially means that for every nice extension T̂ of T (i.e. T̂ = T ∧ϕ
where ϕ is a computable infinitary sentence), the isomorphism problem among the computable

models of T̂ is either “simple,” or as complicated as possible, but is never intermediate.
By “simple” here we mean hyperarithmetic, and by “as complicated as possible” we mean
universal among all Σ1

1-equivalences relations on ω under effective reducibility. See Definition
1.3. It is already known that if T has this property when relativized to all oracles, then
Vaught’s conjecture holds among the extensions of T (Becker [Bec]). The main result of this
paper is a partial reversal, showing that the no-intermediate-extension property follows from
a strengthening of Vaught’s conjecture, which we call the uniform-effective-density property.

As a bit of evidence that this strengthening is not too strong, we show that the theory of
linear orderings has the uniform-effective-density property. It thus follows that the isomor-
phism problem among the computable models of any given theory T̂ extending that of linear
orderings, is either hyperarithmetic or as complicated as possible, but never intermediate, at
least relative to every oracle on a cone (Theorem 1.4).

As a side result that follows from one of our lemmas, we show that if a nice class of
structures is on top under hyperarithmetic reducibility on a cone, then it is already on top
under computable reducibility, also on a cone (Theorem 1.6).

Let us now explain all these concepts in more detail and give some of the background behind
them.
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The no-intermediate-extension property. In [FF09], E. Fokina and S. Friedman started
to analyze an effective version of the H. Friedman and L. Stanley [FS89] reducibility among
classes of structures.

Definition 1.1. We say that a class of structures K is on top under effective reducibility if
for every Σ1

1 equivalence relation E on ω, there is a computable function f : ω → ω, mapping
numbers to indices for computable structures in K such that, for all i, e ∈ ω,

i E e ⇐⇒ Af(i)
∼= Af(e),

where An is the computable structure coded by the nth Turing machine.

K. Fokina, S. Friedman, V. Harizanov, J. Knight, C. McCoy and A. Montalbán [FFH+12]
proved that the classes of linear orderings, trees, fields, p-groups, torsion-free abelian groups,
etc. are all on top under effective reducibility. The only examples of classes of structures
that we know are not on top under effective reducibility are the ones where the isomorphism
problem among computable structures is hyperarithmetic, such as vector spaces, equivalence
structures, torsion-free abelian groups of finite rank, etc.

This behavior is quite different from that of the reducibility used by Friedman and Stanley
[FS89], where they consider all the countable models of a theory (coded by reals), not just the
computable ones, and used Borel functions as reducibilities. There, a class of structures K is
said to be on top under Borel reducibility if for every other class of structures S, axiomatiz-
able by an Lω1,ω-sentence, there is a Borel function mapping structures S to structures in K
preserving isomorphism. In that context, no isomorphism problem can be on top among all
analytic equivalence relations on the reals. Friedman and Stanley provided some examples of
classes that are on top under Borel reducibility, as for instance, linear orderings, trees, and
fields. However, for p-groups, which we said they were on top under effective reducibility,
Friedman and Stanley showed they are not on top under Borel reducibility, despite the fact
that the isomorphism problem is Σ1

1-complete as a subset of R2 (which is different from being
universal as an equivalence relation). For torsion-free abelian groups, which we also said they
were on top under effective reducibility, it is still open whether they are on top under Borel
reducibility, and all that is known is that their isomorphism problem is Σ1

1-complete as a set
of pairs of reals [Hjo02, DM08].

Definition 1.2. Let us call a class of structures, K, intermediate for effective reducibility if it is
not on top under effective reducibility, but also the isomorphism problem among its computable
structures (i.e., the set {(i, e) ∈ ω2 : Ai,Ae ∈ K,Ai ∼= Ae}) in not hyperarithmetic.

Let us remark that there are natural equivalence relations on ω that are intermediate, as
for example the relation of bi-embeddability among computable linear orderings. (It is not on
top because it has only one non-hyperarithmetic equivalence class, namely the class of Q. For
more on bi-embeddability of linear orderings see [Mon07]). However, we do not know of an
example where the equivalence relation is isomorphism on a nice class of structures.

In [FFH+12], they asked whether the following statement is false.

No class of structures axiomatizable by a computably infinitary sentence is
intermediate under effective reducibility.

It is often the case in computable-structure theory that the relativized notions behave
better than the unrelativized ones, as they avoid ad-hoc counter-examples. In this paper, we
concentrate on the relativized notions:

Definition 1.3. An infinitary sentence T is intermediate on a cone if there exists a C ∈ 2ω

(the base of the cone), such that relative to every oracle X ≥T C, the class of models of T is
intermediate for effective reducibility. By an extension of T we mean a sentence of the form
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T ∧ ϕ where ϕ is an infinitary sentence. We say that T has the no-intermediate-extension
property if no extension T̂ of T is intermediate on a cone.

Let us remark that, when we say that the class of models of T is intermediate for effective
reducibility relative to an oracle X, we relativize everything to X: the models we consider
are the X-computable ones, the reductions become X-computable, hyperarithmetic becomes
hyperarithmetic in X. Intuitively, it is like assuming X is computable itself. A second remark
worth making is that it does not matter if T is computable, because every infinitary sentence
is computable on a cone.

As an application of our results we will show the following theorem.

Theorem 1.4. (ZFC+PD) The theory of linear orderings has the no-intermediate-extension
property.

We would have preferred a theorem saying that if we take a nice extension of the theory
of linear orderings, say given by a computably infinitary sentence, then it is not intermediate
for effective reducibility (relative to 0). The theorem only gives us this on a cone. What does
follow from the theorem, however, is that even if there was such an intermediate extension,
there cannot be a relativizable proof that it is intermediate.

It was already known that linear orderings satisfy Vaught’s conjecture, as proved by Rubin
[Rub74] (see also Steel [Ste78]). In Section 4.2, using part of the construction we use for
Theorem 1.4, we give another proof of that fact. A connected result worth mentioning is
that the extensions of the theory of linear ordering satisfy the Glimm–Effros dichotomy (Gao
[Gao01]).

For arbitrary theories, and for one of the implications, we have the following theorem.

Theorem 1.5 ([Bec]). If T has the no-intermediate-extension property, then T satisfies

Vaught’s conjecture, in the sense that every extension T̂ of T has either countably many,
or continuum many countable models.

The result above was first proved by Becker [Bec], although he did not state it in this
terms. Knight and Montalbán arrived at the same conclusion roughly at the same time via
very different proofs. They use techniques from computable structure theory, while Becker
uses techniques from invariant descriptive set theory. Both proofs of Theorem 1.5 show that
if T is a minimal counter-example to Vaught’s conjecture, then there is an oracle relative to
which there is exactly one computable model of T with a non-hyperarithmetic index set. (See
[Mon13, Definition 3.1] for a definition of minimal counter-example to Vaught’s conjecture.)
To prove this, Knight and Montalbán show (using [Mon13, Lemma 3.3]) that there is an oracle
relative to which T has exactly one computable model of high Scott rank, and then modify
the oracle to get the index set for this structure to be not hyperarithmetic.

Hyperarithmetic reductions. The natural effectivization to computable models of the
Friedman–Stanley reducibility would be to consider hyperarithmetic reductions instead of
computable reductions. We say that a class K is on top under hyperarithmetic reducibility if
every Σ1

1 equivalence relation on ω hyperarithmetically reduces to the isomorphism problem
among computable models of K. Another unexpected empirical observation from the results
in [FFH+12] is that every theory which we could prove was on top under hyperarithmetic
reducibility was already on top under effective reducibility. We show here that this should
always be the case, at least among nice theories T where relativization should not be an issue.

Theorem 1.6. (ZFC+PD) If an infinitary sentence T is on top under hyperarithmetic re-
ducibility on a cone, then it is already on top under effective reducibility on a cone.
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We will prove this theorem at the end of Subsection 3.1, as a corollary of Lemma 3.5. The
use of Projective Determinacy (PD) is not essential here, and is just to be able to state the
theorem saying “on a cone of Turing degrees,” instead of “for co-finally many Turing degrees”–
these two phrases are equivalent using projective Turing determinacy when the property they
are applied to is projective.

The density property. Further analyzing the proofs of Theorem 1.5, one can see that
the no-intermediate-extension property implies a property that we call the effective-density
property, and is apparently stronger than Vaught’s conjecture. Therefore, if there was going
to be a reversal of Theorem 1.5, then the best we can hope for is to prove that these two
properties are equivalent, which remains unknown. We instead get a reversal from a stronger
notion. Let us now define all these concepts.

Definition 1.7. We say that an Lω1,ω-sentence T is unbounded if it has countable models of
arbitrary high Scott rank below ω1.

It is known that an Lω1,ω-sentence T is bounded if and only if the isomorphism problem
among its countable models is Borel (see [Gao09, Theorem 12.2.4]). It can then be shown that
this is also equivalent to having the isomorphism problem among the computable models of
T be hyperarithmetic relative to every oracle on a cone. It thus follows that T has the no-
intermediate-extension property if and only if among the extensions T̂ of T , being unbounded
is equivalent to being on top under effective reducibility relative to every oracle on a cone.

Definition 1.8. We say that T is minimally unbounded if it is unbounded, but for every
Lω1,ω-sentence ϕ, one of T ∧ ϕ or T ∧ ¬ϕ is bounded.

It is known (see [Ste78, Theorem 1.5.11]) that if there is a counter-example to Vaught’s
conjecture, then there is one that is minimally unbounded. Such a counterexample is used to
build a theory intermediate on a cone in Theorem 1.5. Let us remark that, as far as we know,
minimally unbounded theories do not necessarily have ℵ1 many models, and it is unknown
whether the existence of a minimally unbounded theory implies the existence of one with ℵ1

models.
A theory which has no minimally unbounded extensions is called dense. It is unknown

whether every unbounded theory is dense.

The effective analogs. We will need effective versions of these notions. Recall that ωX1 is
the least ordinal without an X-computable presentation. When we are given an Lω1,ω-formula
ϕ, we assume we are given a presentation for it, say by a tree describing the structure of the
formula. We can then write ωϕ1 for the least ordinal not computable in the real representing ϕ.
Or equivalently, ωϕ1 = min{ωX1 : ϕ is an X-computably infinitary formula }. (This, of course,
depends on the presentation of ϕ.) For a countable structure A, we let ωA1 = min{ωX1 : X
computes a copy of A}, and let SR(A) be the Scott rank of A (see subsection 1.1.2 below).

Definition 1.9. We say that an Lω1,ω-sentence T is effectively unbounded if it has countable
models of arbitrary high Scott rank below ωT1 (i.e. for each α < ωT1 , T has a model of Scott
rank at least α). We say that a structure A has high Scott rank if ωA1 ≤ SR(A).

One can show that every satisfiable infinitary sentence T has a countable model A with
ωA1 = ωT1 ; this follows from Gandy’s basis theorem and the fact that being a model of T is a
Σ1

1(T ) property. We will show in Lemma 2.1 that T is effectively unbounded if and only if it
has such a model A of high Scott rank, that is, satisfying ωT1 = ωA1 ≤ SR(A).

It is unknown whether being effectively unbounded is different from being unbounded. This
is quite an interesting question. (See [Sac07] for partial results.)
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Definition 1.10. We say that T is effectively minimally unbounded if it is effectively un-
bounded, and for every Lω1,ω-sentence ϕ of quantifier rank less than ωT1 , one of T ∧ ϕ or
T ∧ ¬ϕ is bounded below ωT1 .

This is the property that is needed to build a theory that is intermediate for effective
reducibility relative to an oracle in Theorem 1.5. We will show in Theorem 2.3 that T is
effectively minimally unbounded if and only if every oracle X with ωX1 = ωT1 computes at
most one model of high Scott rank (relative to X), and some such X computes at least
one. Considering theories with this property is not really new. Some time ago, Goncharov
and Knight asked whether there existed computably infinitary sentences that have a unique
computable model of high Scott rank. For all the theories researchers have looked at, they
have either none, or infinitely many computable model of high Scott rank.

It is unknown whether being effectively minimally unbounded is different from being mini-
mally unbounded.

Definition 1.11. We say that T is effectively dense if it is unbounded and no extension T̂ of
T is effectively minimally unbounded.

Unraveling the definition, an unbounded theory T is effectively dense if every extension T̂

of T that is unbounded below ωT̂1 can be split into two theories, T̂ ∧ϕ and T̂ ∧¬ϕ of quantifier

rank less than ωT̂1 , both unbounded below ωT̂1 . Notice that the bound, ωT̂1 , on the rank of

the witness, ϕ, depends on the computational complexity of T̂ , and not on the quantifier
complexity of T̂ . The following definition considers the quantifier complexity of T̂ :

Definition 1.12. We say that T is uniformly effectively dense if it is unbounded, and, for
every α ∈ ω1 there is a β ∈ ω1 such that, for every extension T̂ ∈ Πin

α of T which is effectively

unbounded, there is a ψ ∈ Πin
β witnessing that T̂ is not effectively minimally unbounded, i.e.,

such that both T̂ ∧ ψ and T̂ ∧ ¬ψ are unbounded below ωT̂1 .
Here Πin

α refers to the set of infinitary Πα formulas. (See [AK00, Chapter 6] for background
on the hierarchy of infinitary formulas.)

It is unknown whether being uniformly effectively dense, being effectively dense and being
dense are actually different.

We are now ready to state our main theorem.

Theorem 1.13. (ZFC+PD) Let T be an Lω1,ω-sentence which is uniformly effectively dense.
Then T is on top under effective reducibility, relative to every oracle on a cone.

We get that having the no-intermediate-extension property is implied by being uniformly
effectively dense, and implies being effectively dense. If any two of these three notions are
equivalent is unknown.

Projective determinacy (PD) is used in the proofs of the theorems above a few times in the
form of Turing determinacy (due to Martin): If a projective degree-invariant set S ⊆ 2ω is co-
final in the Turing degrees (i.e. ∀Z∃X ≥T Z (X ∈ S)), then S contains a cone of Turing degrees
(i.e. ∃C∀X ≥T C (X ∈ S)). We did not calculate the exact amount of Turing determinacy
needed in the proofs, nor did we made an effort to optimize it, although, surely much less
than the full power of PD is necessary. In theorems like 1.4, it might not be necessary at all.

1.1. Background. For background on infinitary formulas and computably infinitary formu-
las, see [AK00, Chapter 6 and 7]. We will use Σin

α to denote the set of infinitary Σα-formulas,
Σc
α for the computable infinitary formulas, and ΣcXα for the X-computable infinitary formu-

las.
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1.1.1. Back-and-forth relations. For more background on the back-and-forth relation see [AK00,
Chapter 15]. Given structures A and B, tuples ā ∈ A<ω, b̄ ∈ B<ω and an ordinal ξ, we say
that (A, ā) is ξ-back-and-forth below (B, b̄), and write (A, ā) ≤ξ (B, b̄) if the Πin

ξ -type of ā

in A is contained in the Πin
ξ -type of b̄ of B. (We are allowing tuples of different sizes here

as in [AK00], provided |ā| ≤ |b̄|. We note that (A, ā) ≤ξ (B, b̄) ⇐⇒ (A, ā) ≤ξ (B, b̄ � |ā|).)
Equivalently, (A, ā) ≤ξ (B, b̄) if for every tuple d̄ ∈ B<ω and any γ < ξ, there exists c̄ ∈ A<ω
such that (A, āc̄) ≥γ (B, b̄d̄).

We now review the notion of α-friendliness (see [AK00, Section 15.2]), which is an “effec-
tiveness condition” on a class of structure. A computable sequence {Bn : n ∈ ω} of structures
is α-friendly if given two tuples in two structures ā ∈ B<ωn and b̄ ∈ B<ωm and given ξ < α,
we can effectively decide if (Bn, ā) ≤ξ (Bm, b̄) in a c.e. way, or, in other words, if the set of
quintuples {(n, ā,m, b̄, ξ) : n,m ∈ ω, ā ∈ B<ωn , b̄ ∈ B<ωm , ξ < α, such that (Bn, ā) ≤ξ (Bm, b̄)}
is c.e.

1.1.2. Scott rank. The Scott rank of a structure A is a measure of its complexity defined as
follows. For each ā ∈ A<ω, let rA(ā) be the least α such that whenever ā ≤α b̄ for some

b̄ ∈ A|ā|, we have that ā and b̄ are automorphic. We then let SR(A), the Scott rank of A,
to be the least α greater than rA(ā) for all tuples ā ∈ A<ω. (SR(A) is denoted by R(A) in
[AK00, Section 6.7].) For every structure A, we have that SR(A) ≤ ωA1 + 1 (Nadel [Nad74]),
where ωA1 = min{ωX1 : X computes a copy of A}. Structures with ωA1 ≤ SR(A) are said to
have high Scott rank.

When a structure A has Scott rank α, each automorphism orbit can be defined by a Πin
<α

formula (see [AK00, Proposition 6.9]). The collection of these formulas for the different tuples
ā from A form what is called a Scott family for A. Given such formulas, one can then define
a Scott sentence for A, which is a sentence that is true about A and of no other countable
structure. Such formula can be taken to be Πin

α+1. Conversely, if a structure A has a Πin
α+1

Scott sentence, then it must have Scott rank ≤ α+1. The computable structures of high Scott
rank are exactly the ones which do not have computably infinitary Scott sentences. However,
it is still true (due to Nadel [Nad74], see also [Bar75, Theorem 7.3]) that if two computable
structures satisfy the same computably infinitary sentences, then they are isomorphic.

1.1.3. The Harrison linear ordering. The Harrison linear ordering is a computable linear
ordering, denoted byH, isomorphic to ωCK1 +ωCK1 ·Q which has no hyperarithmetic descending
sequences [Har68]. The well-founded initial segment, which, abusing notation we denote by
ωCK1 , cannot be Σ1

1. This allows us to use the following kind of argument, called an overspill
argument: If P ⊆ H is Σ1

1 and contains the whole initial segment ωCK1 , then it also contains
some α ∈ Hr ωCK1 . We call such elements α non-standard ordinals.

Since the back-and-forth relations are arithmetically definable from the previous ones, one
can always define them for α ∈ H beyond ωCK1 . More precisely, fix a computable structure A,
and let P be the set of all α ∈ H such that there exists a sequence {Rβ : β ≤ α} of relations
Rβ ⊆ A<ω × A<ω which satisfy the definition of the back-and-forth relations, that is, for all
β < α, (ā, b̄) ∈ Rβ ⇐⇒ ∀δ < β∀d̄∃c̄ ((b̄d̄, āc̄) ∈ Rδ). This set P ⊆ H is Σ1

1 and contains all of

ωCK1 , and hence contains also some α ∈ Hr ωCK1 . The same way, it also makes sense to talk
about the notion of α-friendly sequence of structures for α ∈ Hr ωCK1 .

We remark that all these notions can be relativized. We use HX to denote the Harrison
linear ordering relative to X.
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2. Models of high Scott rank

In this section, we quickly prove the results about structures of high Scott rank mentioned
in the introduction. In particular, we give characterization of effectively unbounded theories,
and effectively minimally unbounded theories, in terms of models of high Scott rank.

Lemma 2.1. An infinitary sentence T is effectively unbounded if and only if it has a model
A with ωT1 = ωA1 ≤ SR(A).

Proof. The right-to-left direction is immediate from the definition of effectively unbounded.
For the left-to-right consider, for each α < ωT1 , the sentence Sα such that A |= Sα if and only
if SR(A) ≥ α. It is well-known such sentences exist and can be taken to be T -computably
infinitary. Since T is effectively unbounded, for every α < ωT1 , T ∪ {Sα} has a model. By
Barwise compactness T ∪ {Sα : α < ωT1 } has a model. Any such model A would satisfy
ωT1 ≤ SR(A). Since being a model of T ∪ {Sα : α < ωT1 } is a Σ1

1(T ) property, by Gandy’s
basis theorem, there is such a model A with ωT1 = ωA1 . �

Furthermore, we can assume that also ωT1 = ωT,A1 , where ωT,A1 = min{ωX1 : X computes a
presentation of A and T is an X-computably infinitary sentence}.

The Scott sentence of a structure is the one that identifies a structure up to isomorphism,
among all countable structures. If all we want is to identify a structure up to its α-back-and-
forth type, a simpler sentence can be used. Suppose that A has a computable copy. Recall
that A ≤α B if and only if the Πin

α -theory of A is a subset of the one of B. However, the
assumption that the Πc

α-theory of A is a subset of the one of B is not enough to obtain A ≤α B.
The following lemma gives us a good approximation.

Lemma 2.2. Let A be a computable structure, and B be any structure.

(1) If Σc
3·α-Th(A) ⊆ Σc

3·α-Th(B), then A ≥α B.
(2) If Πc

3·α-Th(A) ⊆ Πc
3·α-Th(B), then A ≤α B.

Proof. The proof is by transfinite induction. Suppose first that Σc
3·α-Th(A) ⊆ Σc

3·α-Th(B),
and we want to show that A ≥α B. Take ā ∈ A<ω and δ < α. Let ψā(x̄) be the conjunction of
all the Πc

3δ-formulas true about ā in A. This set of formulas is Π0
3δ, and hence this conjunction

is equivalent to a Πc
3δ+1 formula (see [AK00, Proposition 7.12]), and the formula ∃x̄ψā(x̄) is,

in particular, Σc
3α. Since it is true in A it is true in B, and hence there is b̄ in B such that

B |= ψā(b̄). But then Πc
3δ-tpB(b̄) ⊇ Πc

3δ-tpA(ā), and hence by the inductive hypothesis that
(A, ā) ≤δ (B, b̄).

Suppose that Πc
3·α-Th(A) ⊆ Πc

3·α-Th(B), and we want to show that A ≤α B. Take b̄ ∈ B<ω
and δ < α. For each ā ∈ A<ω let ψā be now the Πc

3δ+1 formula equivalent to the conjunction
of all the Σc

3δ-formulas true about ā. Then A models ∀x̄
∨
ā∈A ψā(x̄). This is a Πc

3δ+3 sentence,

and hence it is true about B, too. So, there is some ā such that B |= ψā(b̄), and hence Σc
3·α-

Th(A, ā) ⊆ Σc
3·α-Th(B, b̄). By the inductive hypothesis we then get that (A, ā) ≥δ (B, b̄). �

Note that if α is a limit ordinal, then 3α = α.
We are now ready to prove the characterization of effectively minimally unbounded theories.

Theorem 2.3. An infinitary sentence T is effectively minimally unbounded if and only if
every oracle X with ωX1 = ωT1 computes at most one model of high Scott rank (relative to X),
and some such X computes at least one.

Proof. Suppose first that T is effectively minimally unbounded. Since it is effectively un-

bounded, there is at least one model A of T with ωT1 = ωT,A1 ≤ SR(A) and some X with
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ωT,X1 = ωT1 which computes a presentation for it. Suppose B was another such model com-
putable from X. Then, A and B satisfy the same X-computably infinitary sentence: This is
because, for every X-computably infinitary sentence ϕ, one of T ∧ ϕ and T ∧ ¬ϕ is bounded
below ωT1 , and hence the other one is true in both A and B. It follows that A and B are
isomorphic.

Suppose now that T is not effectively minimally unbounded. If T is not even effectively
unbounded, then, by the Lemma 2.1, no X with ωX1 = ωT1 computes a model of T of high
Scott rank. Suppose then that it is effectively unbounded and that there is a Πin

α -sentence
ϕ with α < ωT1 such that T ∧ ϕ and T ∧ ¬ϕ are both unbounded below ωT1 . If we had that

ωT∧ϕ1 = ωT1 , then we easily could directly (applying Barwise compactness and Gandy’s basis
theorem) find and X with ωX1 = ωT1 which computes a two model of T of high Scott rank, one

satisfying ϕ and one satisfying ¬ϕ. However, there is no reason to assume that ωT∧ϕ1 = ωT1 .
We will show that we can use find another formula ψ that also splits T in two effectively

unbounded theories, but with ωT∧ψ1 = ωT1 .

Let X be an oracle with ωX,T1 = ωT1 and which computes a model A of high Scott rank,
i.e., ωT1 = ωA1 ≤ SR(A). Then either ϕ or ¬ϕ is true in A; suppose it is ϕ. Let ψ be the

conjunction of the whole Πc,X
3α -theory of A. For any model B of ¬ϕ we have B 6≥α A, and

hence B |= ¬ψ by Lemma 2.2. Thus, since T ∧ ¬ϕ is unbounded below ωT1 , so is T ∧ ¬ψ.

Since ωX,T∧ψ1 = ωT1 (because ψ is hyperarithmetic in X), there is a model B |= T ∧ ¬ϕ such

that ωT1 = ωX,B1 ≤ SR(B). Let Y ≥T X compute a copy of B and satisfy ωY1 = ωT1 . This
Y contradicts the right-hand-side of the theorem as it computes two different models of high
Scott rank. �

3. The proof of the main theorem

In this section, we prove Theorem 1.13. That is, assuming T is uniformly effectively dense,
we will show that there is a cone such that, relative to every oracle on that cone, T is on top
for effective reducibility. This proof is divided into several steps. First, in Subsection 3.1 we
study a particular way of representing Σ1

1 equivalence relations on ω using transfinite binary
sequences. In Subsection 3.2 we consider trees of structures, where the structures are indexed
by transfinite binary sequences, and we show how to use them to define reductions from Σ1

1-
equivalence relations to structures. In Subsection 3.3, we deal with a different aspect of the
proof which has to do with finding computable representation for functions from ordinals to
ordinals. In Subsection 3.4, we go back to the trees of structures, and we show how to build
them when we have a uniformly effectively dense theory. We finally put all the ingredients
together in Subsection 3.5.

3.1. A representation of Σ1
1-equivalence structures. To prove that T is on top under

effective reduction we need to define an embedding from an arbitrary Σ1
1 equivalence relation

on ω into the computable models of T . We start by finding a particular representation of an
arbitrary Σ1

1 equivalence relation that will be useful to build this embedding.
The first lemma allows us to approximate Σ1

1 equivalence relations by hyperarithmetic ones.

Lemma 3.1. For every Σ1
1-equivalence relation ∼ of ω, there is a sequence {∼α: α < ωCK1 }

of equivalence relations such that, for all n,m ∈ ω,

• n ∼ m ⇐⇒ (∀α ∈ ωCK1 ) n ∼α m.
• For β ≤ α, n ∼α m⇒ n ∼β m.
• Each ∼β is Σ0

β+1 uniformly in β.
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Proof. The Borel version of this result of for analytic equivalence relations on the reals is due
to Burgess [Bur79, Corollary 1], but he only required each ∼β to be Borel and not necessarily
Σ0
β+1 uniformly in β. A proof of this exact lemma, but for equivalence relations on reals, can

be found in [Mona, Lemma 2.1]. If one codes each natural number by a real (say the one that
has a 1 at position n, and 0’s elsewhere), then the lemma from [Mona] applies here too. �

Definition 3.2. Let 2◦α to be the set of all α-long binary sequences σ ∈ 2α with only finitely
many 1’s.

Notice that 2◦α is countable and computably presentable whenever α is itself computable,
as opposed to 2α which has size continuum for infinite α.

Definition 3.3. For a computable ordinal α, we say that a sequence {σn : n ∈ ω} ⊆ 2◦α is
uniformly Σ0

ξ 7→ξ+1 if deciding if σ(ξ)n = 1 is Σ0
ξ+1 uniformly in ξ and n, or, in other words, if

there is a c.e. operator W , such that σn(ξ) = 1 ⇐⇒ n ∈ W∇ξ , where ∇ξ is a complete ∆0
ξ

real (see [Monb]).

The definition above does not require α to be an ordinal, but just that the iterations of the
jump, ∇ξ, exist for ξ < α. So, if we assume that ∇ξ exists for each ξ in the Harrison linear
ordering, H, then we can still talk about uniformly Σ0

ξ 7→ξ+1 sequences in 2◦H.

Lemma 3.4. For each Σ1
1-equivalence relation ∼ on ω, there exists a uniformly Σ0

ξ 7→ξ+1 se-

quence {σn : n ∈ ω} ⊆ 2◦H, such that

(∀n,m ∈ ω) n ∼ m ⇐⇒ σn �ω
CK
1 = σm �ωCK1 .

Proof. We will define σn(ξ) by transfinite recursion on ξ. The general idea is as follows.
Suppose we have already defined σn � ξ for all n. So, we have an equivalence relation Eξ on ω
given by n Eξ m if σn � ξ = σm � ξ. At stage ξ we preserve the inclusion ∼ξ⊆ Eξ, and we only
take one step towards making Eξ closer to ∼ξ as follows. Each Eξ-equivalence class consists
of many (possibly just one) ∼ξ-equivalence classes. If it is only one, we are in good shape
and we do not do anything. Within each Eξ-equivalence class which contains at least two ∼ξ
equivalence classes, we will define σn(ξ) to be 0 or 1 so that we split the Eξ-equivalence class
into two Eξ+1-equivalence classes, by separating the first ∼ξ-equivalence class from the rest.
We will actually consider at ∼ξ−1 instead of ∼ξ to keep the complexity low.

More concretely:

Let σn(ξ) = 1 if for the least m < n with σm � ξ = σn � ξ, there is some β < ξ
such that n 6∼β m, and let σn(ξ) = 0 otherwise.

By counting quantifiers, it is not hard to see that σn is uniformly Σ0
ξ 7→ξ+1.

Take n0, n1 ∈ ω, and suppose that σn0 �ω
CK
1 6= σn1 �ω

CK
1 . Let ξ be the first value where

σn0(ξ) 6= σn1(ξ). Suppose σn0(ξ) = 0 and σn1(ξ) = 1. Let m be the least with σm � ξ =
σn0 � ξ = σn1 � ξ. From the definition of σn0(ξ) and σn1(ξ), we get that for some β < ξ,
n1 6∼β m ∼β n0, and hence n0 6∼ n1.

Suppose now that m < n, σm �ωCK1 = σn �ωCK1 , and, towards a contradiction, that m 6∼ n.
Suppose that m is the least for which there exists such an n. Thus, if there was some n0 < m
with σn0 �ω

CK
1 = σm �ωCK1 , we would have n0 ∼ m and n0 ∼ n. So we can assume that m

is the least such that σm �ωCK1 = σn �ωCK1 . For some β < ωCK1 high enough, we have that
n 6∼β m, and m is still the least with σm �β = σn �β. Let ξ = β + 1. Then, by definition of

σn(ξ), we would get σn(ξ) = 1 and σm(ξ) = 0 contradicting that σm �ωCK1 = σn �ωCK1 . �

Knight and Montalbán [KM10] have already shown that Σ1
1 equivalence relations could be

represented by uniformly Σ0
ξ 7→ξ+1 sequences in 2H, possibly with infinitely many 1’s. The fact

that using sequences with finitely many 1’s is enough, is important for the rest of the paper.
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Aa a corollary of this lemma, we can now prove Theorem 1.6. We first prove the follow-
ing result that avoids the use of Turing determinacy, and implies Theorem 1.6 using Turing
determinacy.

Lemma 3.5. If the set of oracles, relative to which T is on top under hyperarithmetic re-
ducibility, is co-final in the Turing degrees, then so is the set of oracles relative to which T is
on top under effective reducibility.

Proof. Let C be any real. We want to show that there is some X ≥T C relative to which K
is on top under effective reducibility. By hypothesis we might assume C is such that T is on
top under hyperarithmetic reducibility relative to C.

Consider the following equivalence relation on ω. First take a non-standard ordinal α∗ ∈
HCrωC1 . For each e ∈ ω, let σe be the sequence in 2◦α

∗
for which e is a ΣC

ξ 7→ξ+1-code. In other

words, let σe(ξ) = 1 ⇐⇒ ξ ∈W∇ξe , where ∇ξ(C) is a complete ∆0
ξ(C) real and We is the eth

c.e. operator. Given e0, e1 ∈ ω, let e0 ∼C e1 if σe0 �ω
CK
1 = σe1 �ω

CK
1 . Notice that this is a Σ1

1-
equivalence relation. This is the equivalence relation Knight and Montalbán had considered
in [KM10], and proved that it is on top under effective reducibility (relative to C), which
now follows from Lemma 3.4. Just because it is Σ1

1, there is a C-hyperarithmetic reduction h
from ω to C-computable indices of structures in K, such that e0 ∼C e1 ⇐⇒ ACh(e0)

∼= ACh(e1)

(where ACn is the structure coded by the n-th Turing machine with oracle C). For some

β < ωC1 , h is ∆β
0 (C). Let X be ∇β(C). We will define an X-computable function f such

that i0 ∼X i1 ⇐⇒ AXf(i0)
∼= AXf(i1), which would then imply that K is on top under effective

reducibility relative to X. Let i be a ΣX
ξ 7→ξ+1-code for a sequence σ ∈ 2◦α

∗
. Let σ̂ consist of a

string of β many 0’s followed by σ (that is σ̂(γ) = 0 if γ < β and σ̂(β + γ) = σ(γ)). Find an
index e for σ̂ as a ΣC

ξ 7→ξ+1 sequence and let g(i) = e. We have defined a function g : ω → ω

such that i0 ∼X i1 ⇐⇒ g(i0) ∼C g(i1). Let f(i) be an X-index for ACh(g(i)) viewed as an

X-computable structure. Thus, we have that AXf(i) = ACh(g(i)). We then have that

i0 ∼X i1 ⇐⇒ g(i0) ∼C g(i1) ⇐⇒ ACh(g(i0))
∼= ACh(g(i1)) ⇐⇒ AXf(i0)

∼= AXf(i1),

as wanted. �

Proof of Theorem 1.6. Apply projective Turing determinacy to the set of oracles X, relative
to which, T is on top under effective reducibility. �

3.2. Trees of structures. Now that we can represent Σ1
1-equivalence relations in terms of

uniformly Σ0
ξ 7→ξ+1 sequences in 2◦H, we need to associate these sequences with structures.

Definition 3.6. For an ordinal η, an η-tree of structures is a sequence of structures {Aσ : σ ∈
2◦η} such that, for every σ, τ ∈ 2◦η and ξ < η, we have that

σ � ξ = τ � ξ ⇒ Aσ ≡ξ+1 Aτ .

We will show that when a class of structures has arbitrary long non-trivial trees of structures,
the class is on top under effective reducibility. Of course, to get non-trivial trees of structures
we have to ask that all structures Aσ are non-isomorphic. But we have to be careful with this,
as we do not want to use Π1

1-properties in the definition.
The following is a generalization of Ash–Knight’s theorem on pairs of structures to trees

of structures. It says that if we have an η-friendly η-tree of structures, and we are given an
index for a Σ0

ξ 7→ξ+1 sequence σ ∈ 2◦η, we can uniformly computably build a copy of Aσ. Thus,

even if guessing the bits of σ is complicated, namely Σ0
ξ 7→ξ+1, then we can still produce a

computable copy of Aσ.
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Theorem 3.7 ([Monb]). Let {Aσ : σ ∈ 2◦η} be a computable η-friendly η-tree of structures.
Let {σn : n ∈ ω} ⊆ 2◦η be uniformly Σ0

ξ 7→ξ+1. Then, there exists a computable sequence of

computable structures {Cn : n ∈ ω} such that for all n, Cn ∼= Aσn.

Proof. The result in [Monb] is slightly finer than this. In there, it is assumed that σ � ξ =
τ � ξ & σ(ξ) ≤ τ(ξ) ⇒ Aσ ≥ξ+1 Aτ , the conclusion being the same. That assumption still
holds with our definition of η-tree. �

Again in Definition 3.6, the fact that η is an ordinal is not essential so long as we can
talk about the ξ-back-and-forth relations for every ξ < η. On any computable family of
structures, one can always define these relations on an initial segment of H which is longer
than ωCK1 . Let us notice that if α∗ is a computable pseudo-well-ordering, α∗ ∈ HrωCK1 , and
we have a computable α∗-tree of structures {Aσ : σ ∈ 2◦α

∗}, then whenever σ �ωCK1 = τ �ωCK1 ,
Aσ ∼= Aτ . This is because we would have thatAσ ≡ωCK1

Aτ , which implies they are isomorphic.

Definition 3.8. For α∗ ∈ H r ωCK1 , we say that an α∗-tree of structures {Aσ : σ ∈ 2◦α
∗} is

proper if for ever σ, τ ∈ 2◦α
∗
,

σ �ωCK1 = τ �ωCK1 ⇐⇒ Aσ ∼= Aτ .

The following theorem shows how trees of structures are used to get reductions from Σ1
1-

equivalence relations.

Theorem 3.9. Suppose that there exists a computable, proper, α∗-friendly α∗-tree of models
of T for some α∗ ∈ Hr ωCK1 . Then T is on top under effective reducibility.

Proof. Let ∼ be a Σ1
1 equivalence relation on ω. We need to build a sequence {Cn : n ∈ ω} of

computable models of T such that n ∼ m ⇐⇒ Cn ∼= Cm.
Let {σn : n ∈ ω} ⊆ 2◦α

∗
be a uniformly Σ0

ξ 7→ξ+1 sequence such that (∀n,m ∈ ω) n ∼ m ⇐⇒
σn �ωCK1 = σm �ωCK1 as given by Lemma 3.4. We will now apply an overspill argument to the
theorem above. For each β ∈ α∗, and n ∈ ω, let σn,β ∈ 2◦α

∗
be defined by copying σn up to β

and extending to α∗ with 0’s (i.e. σn,β(γ) = σn(γ) if γ < β and σn,β(γ) = 0 if γ ≥ β).
Let P be the set of all β ∈ α∗ such that there exists a computable sequence {Cn : n ∈ ω}

such that Cn ∼= Aσn,β for all n ∈ ω and for all ξ < β. The set P is Σ1
1. The set P contains

all ordinals β < ωCK1 by Theorem 3.7 applied to the β-tree obtained by truncating the α∗

tree. Thus, there is a non-standard ordinal β∗ ∈ P \ωCK1 together with a witnessing sequence
{Cn : n ∈ ω} satisfying that Cn ∼= Aσn,β∗ for every n. Now, for each n, Aσn ∼= Aσn,β∗ because

σn �ωCK1 = σn,β∗ �ωCK1 . Thus, Cn ∼= Aσn as needed. �

3.3. Functions from ordinals to ordinals. The next objective is be to build such α∗-trees.
But before that we need a lemma about the representation of functions from ordinals to
ordinals.

Definition 3.10. We say that f : ω1 → ω1 witnesses that T is uniformly effectively dense
if for every α ∈ ω1 and every ϕ ∈ Πin

α such that T ∧ ϕ is effectively unbounded, there is a

ψ ∈ Πin
f(α) such that both T ∧ ϕ ∧ ψ and T ∧ ϕ ∧ ¬ψ are unbounded below ωT∧ϕ1 .

Notice that if T is uniformly effectively dense, then there is a projective representation for
such an f . By that we mean a projective subset F : WO × WO (where WO is the set of
well-orderings of ω) such that for every A ∈ WO, f(|A|) = β if and only if there exists some
B ∈WO with |B| = β and (A,B) ∈ F (where |A| is the ordinal in ω1 of the same order type
as A). However, for our argument we will need f to be much simpler than projective. Under
enough determinacy assumptions, one can always find a much simpler presentation for f .
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Definition 3.11. We say that f : ω1 → ω1 looks computable according to X ∈ 2ω if f maps
ordinals below ωX1 to ordinals below ωX1 , and on some X-computable linear ordering α∗, which
has an initial segment isomorphic to ωCK1 (i.e. a Harrison linear ordering), X can compute a
function fX : α∗ → α∗ which coincides with f on ωX1 .

Theorem 3.12. (ZF+PD) For every function f : ω1 → ω1 with a projective presentation there
is a cone such that f looks computable according to every X on that cone.

Proof. First, we claim that there is an oracle Y such that every Y -admissible ordinal is closed
under f . This follows from PD and the fact that the set of ordinals α ∈ ω1 such that α is
closed under f forms a club, which is projective when viewed as a subset of WO: Consider
the set of all X such that ωX1 is closed under f . By projective Turing determinacy there is a
cone, say with base Y , that is either contained in or disjoint form this set. Sacks proved that
the Y -admissible ordinals are exactly the ones of the form ωX1 for some X ≥T Y . Thus, either
every Y -admissible ordinal is closed under f or none is. But, since the Y -admissible ordinals
contain a club, and so do the ordinals closed under f , there is at least one Y -admissible ordinal
closed under f . But then they all are. Let us relativize the rest of the proof to such Y , and
assume that every admissible ordinal is closed under f .

Let S be the set of all X according to which f looks computable. This set is projective, and
by projective Turing determinacy, all we need to do is to show that is co-final in the Turing
degrees, i.e., that ∀Z∃X ≥T Z (X ∈ S). We relativize the rest of the proof to such Z, so all
we have to do is show that there is some X ∈ S.

Consider Lω1 [f ], where f is viewed as s relation symbol, and Lα+1[f ] is defined to be the
set of definable subsets of (Lα[f ];∈, f ∩α×α) (see, for instance, [Kan03, Section 1.3]). Let α
be such that Lα[f ] is admissible and every ordinal is countable inside Lα[f ]. (For instance let

α = ω
L[f ]
1 .) Now, using Barwise compactness for the admissible set Lα[f ] [Bar75, Theorem

III.5.6] we get an ill-founded model M = (M ;∈M, fM) of KP whose ordinals have well-
founded part equal to α, with fM �α coinciding with f �α, and satisfying that every ordinal
can be coded by a real. (To show this one has to consider the infinitary theory in the language
L = {∈, f, c} saying all this, plus axioms saying that the constant symbol c is an ordinal and
that any ordinal below α exists and is below c. Then observe that whole the set of axioms
is Σ1(Lα[f ]), and that, choosing by c appropriately, Lα[f ] is a model of any subset of these
axioms which is a set in Lα[f ]. Thus, by Barwise compactness [Bar75, Theorem III.5.6], this
theory has a model and its ordinals have well-founded part at least α. Then, using [Bar75,
Theorem III.7.5], we get such a model with well-founded part exactly α.) Let α∗ be a non-
standard ordinal inM, i.e., α∗ ∈ ONMrα, and let X be a real inM coding α∗ and fM �α∗.
Notice that ωX1 = α. (To see this, we have that ωX1 ≥ α because it codes every initial segment
of α, and ωX1 ≤ α because every X-computable well-ordering is isomorphic to an ordinal in
M and hence below α.) This shows that f looks computable according to X. �

3.4. Building a tree of structures. Suppose T is uniformly effectively dense witnessed by
f . To be able to apply Theorem 3.9 we would like to build, for each X on a cone, a computable,
proper, α∗-friendly α∗-tree of models of T for some non-standard α∗ ∈ HX r ωX1 . For this
we would like to use an overspill argument, but the first problem we encounter is that being
“proper” is a Π1

1 property. For that reason, we consider the notion of g-proper, which is ∆1
1.

Definition 3.13. Given g : ω1 → ω1 and η ∈ ω1, we say that an η-tree {Aσ : σ ∈ 2◦η} is
g-proper if for every ξ < η, if σ � ξ 6= τ � ξ, then Aσ 6≡g(ξ) Aτ .

We remark that, on one hand, being a g-proper tree is a ∆1
1 property (relative to g). On the

other hand, if we have α∗-tree of models of T for some computable non-standard α∗ ∈ HrωCK1 ,



CLASSES OF STRUCTURES WITH NO INTERMEDIATE ISOMORPHISM PROBLEMS 13

which satisfies the definition of “g-proper tree” for ξ < ωCK1 , then we know the tree is actually
proper.

The function g we are going to use is defined by iterating f . That is, for β ∈ ω1,

g(β) = sup
γ<β

f(g(γ) + 1) + ω.

Without loss of generality, we will assume that for all β, β ≤ f(β). The same is then true
for g. We remark that the definition of g is far from being optimal.

Before considering non-standard trees, we want to show that, for every X on a cone and
every α < ωX1 , X computes an g-proper, α-friendly α-tree. The first step is to show that
g-proper α-trees exists.

Lemma 3.14. Assume T is uniformly effectively dense witnessed by f : ω1 → ω1, and let g
be defined by iterating f as above. For every α ∈ ω1, there is a g-proper α-tree.

Proof. Let X be such that α < ωX1 , and such that g looks computable according to X (which
exists by Theorem 3.12). For each σ ∈ 2◦α we will define a structure Aσ such that ωX1 =

ωAσ1 ≤ SR(Aσ). We define the structures Aσ by induction on the number of 1’s in σ. For

σ the α-string of all 0s, let Aσ be any structure with ωX1 = ωAσ1 ≤ SR(Aσ) which we know
exists using that T is unbounded and Lemma 2.1.

Suppose now that we have σ ∈ 2◦α and we need to define Aσ. Let ξ < α be the largest
with σ(ξ) = 1, and let σ− be defined be making that ‘1’ into a ‘0’, that is, σ−(γ) = σ(γ)
if γ 6= ξ and σ−(ξ) = 0. By induction, we can assume that we have already defined Aσ− of
high Scott rank, and that we have a presentation computable in some Y with ωY1 = ωX1 . We
will define Aσ so that Aσ ≡g(ξ) Aσ− , and Aσ 6≡g(ξ+1)Aσ− . Let θ0 be the conjunction of the

Πc,Y
g(ξ) and Σc,Y

g(ξ) theories of Aσ− , and θ1 be the conjunction of the Πc,Y
3f(g(ξ)+1) and Σc,Y

3f(g(ξ)+1)

theories of Aσ− . Lemma 2.2 then implies that for any B |= θ0 ∧ ¬θ1 we have B ≡g(ξ) Aσ− ,
and B 6≡g(ξ+1)Aσ− (we are using here that g(ξ) is a limit ordinal and hence that 3g(ξ) = g(ξ),
and we are using that 3f(g(ξ) + 1) < g(ξ + 1)). We claim that θ0 ∧ ¬θ1 is unbounded below
ωX1 . Once we prove the claim, we can then use Lemma 2.1 to get a model Aσ of θ0 ∧ ¬θ1 of

high Scott rank with ωAσ1 = ωX1 . To prove the claim, start by noticing that θ0 is Πin
g(ξ)+1 and

is unbounded below ωX1 as witnessed by Aσ− . Hence, there is a Πin
f(g(ξ)+1) formula ψ such

that both θ0 ∧ ψ and θ0 ∧ ¬ψ are unbounded below ωX1 . For any model B |= θ0 ∧ ¬ψ we
have Aσ− 6≡f(g(ξ)+1) B, and hence, by Lemma 2.2, B 6|= θ1. It follows that since θ0 ∧ ¬ψ is

unbounded below ωX1 , so is θ0 ∧ ¬θ1 proving the claim. Finally, using Lemma 2.1 again, let

Aσ be a model of θ ∧ ¬θ1 of high Scott rank with ωAσ1 = ωX1 ≤ SR(Aσ).
To see that we have built a g-proper α-tree consider τ, ρ ∈ 2◦α, and let ξ be the least

with τ(ξ) 6= ρ(ξ). Suppose τ(ξ) = 0 and ρ(ξ) = 1. Let σ be ρ � ξ + 1 followed by 0’s, and
σ− be τ � ξ + 1 followed by 0’s. From the construction we get that Aτ ≡g(ξ+1) Aσ− 6≡g(ξ+1)

Aσ ≡g(ξ+1) Aρ as needed. �

We are now ready to use an overspill argument.

Lemma 3.15. (ZFC+PD) Suppose that there is a g : ω1 → ω1 such that for every α there
is a g-proper α-tree of models of T . Then, relative to every oracle X on a cone, there is an
X-computable, proper, α∗-friendly α∗-tree of models of T for some α∗ ∈ HX r ωX1 .

Proof. By Theorem 3.12 there is a cone of oracles according to which g looks computable.
Using projective Turing determinacy (which follows from PD), all we need to do is show
that the set of X satisfying the thesis of the lemma is co-final in the Turing degrees. So,
given Z we need to find X ≥T Z with this property. Assume that according to Z, g looks
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computable. By the hypothesis of the lemma, there is an Y which computes a g-proper α-tree
of models of T for each α < ωZ1 , which might not be α-friendly. But it just takes 2α-jumps
over the model to compute all the (< α)-back-and-forth relations. Then, if X computes every
set hyperarithmetic in Y , it computes a g-proper α-friendly α-tree of models of T for each
α < ωZ1 . The set of X which, for each α < ωZ1 , compute a g-proper α-friendly α-tree is
Σ1

1(Z), as the quantifier ∀α < ωZ1 can be replaced by a second-order ∃-quantifier. Thus, by
Gandy’s basis theorem, there is such an X with ωX1 = ωZ1 . Now, the set of β ∈ HX such
that X computes a g-proper, β-friendly β-tree is Σ1

1(X), and contains ωX1 . By an overspill
argument, every such X computes an g-proper, α∗-friendly α∗-tree for some α∗ ∈ HX 6∈ ωX1 ,
as needed. �

3.5. Tying the loose ends. We can now put all the pieces together and prove Theorem 1.13,
that every uniformly effectively dense theory is on top under effective reducibility relative to
every oracle on a cone.

Proof of Theorem 1.13. Let T be uniformly effectively dense witnessed by f . By Lemma 3.14,
we have that for every α ∈ ω1, a g-proper α-tree of models of T exists, where g is defined by
iterating f . Then, by Lemma 3.15, we have that relative to every oracle X on a cone, there is
an X-computable proper, α∗-friendly α∗-tree of models of T for some α∗ ∈ HX rωX1 . Finally,
we apply Theorem 3.9 to get that T is on top under effective reducibility relative to every
such X. �

4. Case Study: Linear orderings

In this section, we prove that the theory of linear orderings has the no-intermediate-
extension property. This implies that it satisfies Vaught’s conjecture by Theorem 1.5. The
first step in this proof is to show that if we have a computable linear ordering L of high Scott
rank, then we can write it as

∑
q∈Q Bq where each Bq has high Scott rank. The following step

is to replace each linear ordering Bq by another B̂q that is α-equivalent, to get a linear ordering

L̂ that is α-equivalent to L and has certain desired properties. What we are using here is the
following property.

Lemma 4.1. If for all i ∈ C (where C is a linear orderings) we have linear orderings Ai ≡α Bi,
then

∑
i∈C Ai ≡α

∑
i∈C Bi.

Proof. Add to the linear orderings
∑

i∈C Ai and
∑

i∈C Bi unary relations Ui, one for each i ∈ C,
identifying the segment that corresponds to either Ai or Bi. It is straightforward to show that
these two structures in this new language are α-equivalent (by transfinite induction on α using
the back-and-forth definition of ≡α). But then, forgetting about these new relations, we get
that the linear orderings are α-equivalent. �

To get the decomposition of L as mentioned above, the main idea is to consider the following
convex equivalence relation on a linear ordering.

Definition 4.2. Given a linear ordering and an ordinal α, we define a binary relation ∼α on
L given by: for a < b ∈ L let

a ∼α b ⇐⇒ SR((a, b)L) < α,

where (a, b)L is the open segment (a, b) inside L.

The idea of considering this equivalence relation is similar to ideas of Kach and Montalbán
when they were thinking Vaught’s conjecture for Boolean algebras. That question is still open.
It is also open whether an analog of Lemma 4.7 holds for Boolean algebras.
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4.1. Basic results on Scott ranks of linear orderings. To prove the basic results about
∼α, we need a few lemmas that will help us compute the Scott ranks of various linear orderings.
Most of the bounds in these lemmas are probably not sharp, but are enough for our purposes.

We will repeatedly use the fact that (A, a1, ..., ak) ≤ξ (B, b1, ..., bk), where A = A0 + {a1}+
A1 +{a2}+ · · ·+{ak}+Ak and B0 +{b1}+B1 +{b2}+ · · ·+{bk}+Bk, if and only if Ai ≤ξ Bi
for each i ≤ k (see [AK00, Lemma 15.7]). It follows that the Πin

α -type of a tuple (a1, ..., ak) in
A, is determined by the Πin

α -theories of the Ai for i = 0, ..., k.

Lemma 4.3. For two linear orderings A, B,

max{SR(A), SR(B)} ≤ SR(A+ 1 + B) ≤ max{SR(A), SR(B)}+ 3.

Proof. Let as call c the element in place of the ‘1’ in A+ 1 +B. First, to show that SR(A) ≤
SR(A + 1 + B) we observe for ā, b̄ ∈ A<ω and α ∈ ω1, we have that (A; ā) ≤α (A; b̄) if and
only if (A + 1 + B; ā, c) ≤α (A + 1 + B; b̄, c). For each α < SR(A) we know that there are
tuples ā, b̄ ∈ A<ω such that ā ≤α b̄ but ā 6≡α+1 b̄ within A (as otherwise A would have Scott
rank ≤ α [AK00]). But then the same is true for āc and b̄c within A + 1 + B, showing that
α < SR(A+ 1 + B).

The same way we can show that SR(B) ≤ SR(A+ 1 + B).
For the other direction, let α = max{SR(A), SR(B)}. Then, each of A and B have a Πin

α+1

Scott sentence, and hence A + 1 + B has a Σin
α+2 Scott sentence saying that there exists an

element such that the linear ordering to the left satisfies the Scott sentence for A, and the one
to the right the sentence for B. It then follows that SR(A+ 1 + B) ≤ α+ 2. �

Corollary 4.4. If α is a limit ordinal, then ∼α is an equivalence relation on any linear
ordering L.

Proof. Symmetry and reflexivity are obvious from the definition. Transitivity follows from the
lemma above. �

Lemma 4.5. For two linear orderings A, B,

SR(A+ B) ≤ max{SR(A), SR(B)} · 2 + 3.

Proof. Let α = max{SR(A), SR(B)}.
First, suppose that there are some x ∈ A and y ∈ B such that A<x ∼= A + B<y. Via this

isomorphism we get a z ∈ A such that (z, x)A ∼= (x, y)A+B, which by the Lemma 4.3 we know
has Scott rank ≤ α. But then A+ B ∼= A<x + 1 + (z, x)A + 1 + B>y, all of which have Scott
rank ≤ α, and by Lemma 4.3, SR(A+ B) ≤ α+ 2.

Suppose now that for no x ∈ A and y ∈ B is A<x ∼= A + B<y. We can then define the
A-cut within A+ B as the set of all z ∈ A+ B such that (A+ B)<z is isomorphic to A<x for
some x ∈ A. This is a Σin

α+1 formula using that each A<x has a Πin
α+1 Scott sentence. Now, to

define an orbit in A+B all we have to do is find its definition within either A or B, and then
relativize this definition to the Scott sentence of either A or B, getting a α · 2 + 2 definition.
It follows that SR(A+ B) ≤ α · 2 + 3. �

The next lemma will become handy.

Lemma 4.6 (Lindenbaum [Ros82]). If X ,Y are linear orderings such that X is isomorphic
to an initial segment of Y and Y is isomorphic to an end segment of X , then X ∼= Y.

Lemma 4.7. If SR(L<x) < α for all x ∈ L, then SR(L) ≤ α+ 4.

Proof. The proof is divided in two cases.
Case 1: Suppose that for co-finally many x ∈ L, the set {y ∈ L : L<y ∼= L<x} is bounded

above in L. Take z ∈ L. We will find a b ∈ L such that the following formula defines the
automorphism orbit of z within L:
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Φb(w): There exists v > w such that L<v ∼= L<b, and for every u ≥ v with L<u ∼= L<b,
we have that L<u |= ϕz,b(w),

where ϕz,b is the Πin
α formula that defines the orbit of z within L<b. The formula Φb(w) is

Σin
α+2 because checking “L<v ∼= L<b” is Πin

α (as a formula with one free variable v) using that
L<b has a Πin

α Scott sentence. We now need to prove two things:

(1) There is a b such that for every u ≥ b with L<u ∼= L<b we have that ϕz,u = ϕz,b.
(2) For such b, the formula Φb(w) defines the orbit of z.

For (1) we chose x > z and b > z such that {y ∈ L : L<y ∼= L<x} is bounded by b ∈ L.
Take u ≥ b with L<u ∼= L<b. The supremum of the set {y ∈ L : L<y ∼= L<x} determines
a cut in both L<u and L<b which is invariant under automorphisms. The right part of the
cut within both L<u and L<b must then be isomorphic, and hence there is an isomorphism
between L<u and L<b leaving the left part of the cut fixed. This isomorphism leaves z fixed,
and hence ϕz,u = ϕz,b. To show (2) we observe in Φb(w) we can now replace L<u |= ϕz,b(w)
by L<u |= ϕz,u(w). It is clear now that Φb(z) holds, just because L<u |= ϕz,u(z) holds for
any u and z, and hence any w automorphic to z satisfies Φb(w) too. For the other direction,
suppose now L |= Φb(w) with witness v. Since L<v |= ϕz,v(w), there is an automorphisms of
L<v mapping z to w. This automorphism can now be extended to an automorphism of the
whole of L mapping z to w.

Case 2. Suppose we are not in any of the previous case. Furthermore, suppose that for any
a, L≥a does not satisfy the condition of case 1, as otherwise we would have SR(L>a) ≤ α+ 2
and by Lemma 4.3 that SR(L) ≤ α+ 4.

Take z ∈ L; again, we will find a b0 ∈ L such that the formula Φb0(w) defines the automor-
phism orbit of z in L. Again, the main step is to find b0 as in condition (1) above. The same
proof we used for (2) above would then show that Φb0(w) indeed defines the automorphism
orbit of z.

Let a0 > z be such that {y ∈ L : L<y ∼= L<a0} is unbounded, which exists because we
are not in case 1. Let b0 be such that L<b0 ∼= L<a0 and {y ∈ L : [a0, y)L ∼= [a0, b0)L} is
unbounded; such b0 exists because otherwise, L≥a0 would satisfy the condition of case 1. Take
a > b0 with L<a ∼= L<b0 . To show that ϕz,a = ϕz,b0 we will show that there is an isomorphism
between L<a and L<b0 that leaves z fixed. Call L<a0 = A, [a0, b0)L = B and [a0, a)L = C.

//|z a0 | |b0 |a L

A
_?

B _?

C
_?

We will now prove that B ∼= C, and thus that here is an isomorphism between A + B and
A+ C fixing A, and hence fixing z. Clearly B is an initial segment of C (because b0 < a), but
also note that C is isomorphic to an initial segment of B because {y ∈ L : [a0, y)L ∼= B} is
unbounded, and hence there is such a y > a. Via the isomorphism from L<b0 to L<a0 , the
image of a0 is some b1 such that [a0, b0)L ∼= [b1, a0)L ∼= B. Via the isomorphism from L<a to
L<a0 , the image of a0 is some a1 such that [a0, a)L ∼= [a1, a0)L ∼= C. Then, either a1 ≤ b1 or
b1 ≤ a1, so, either B is a finial segment of C or C is a final segment of B. In either case, by
Lemma 4.6 we get that B and C, as isomorphic, which is what we needed to get (1). �

Lemma 4.8. For a computable linear ordering L of high Scott rank, L/∼ωCK1
is dense.

Proof. Suppose, towards a contradiction, that a0 and a1 are in adjacent equivalence classes in
L/∼ωCK1

. That means that for every x ∈ (a0, a1)L, either SR((a0, x)L) < ωCK1 or SR((x, a1)L) <

ωCK1 . By Σ1
1 bounding, there is an α < ωCK1 such that for every x ∈ (a0, a1)L either

SR((a0, x)L) < α or SR((x, a1)L) < α. Write (a0, a1)L as A + B where A consists of the
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x’s with SR((a0, x)L) < α and B of the other ones. By the previous lemma, we have that
SR(A) ≤ α + 4, and, applying the previous lemma to B∗, that SR(B) ≤ α + 5 too. By
Lemma 4.5, we then have that SR((a0, a1)L) ≤ α · 2 + 11 < ωCK1 , and thus that a0 ∼ωCK1

a1,

contradicting the assumption that they are in different equivalence classes.
To see that we must have more than one equivalence class, consider 1 + L + 1. Since

SR(L) ≥ ωCK1 , the 1s at the extremes are not ∼ωCK1
-equivalent. So 1 +L+ 1/∼ωCK1

has more

than one element and is dense by the previous paragraph. So L/∼ωCK1
must also have more

than one equivalence class. �

4.2. Vaught’s conjecture for Linear orderings. In this section, we give a new proof of
Rubin’s theorem that the theory of Linear orderings satisfies Vaught’s conjecture (in the sense
that all extensions do) [Rub74, Ste78].

Consider a infinitary sentence T in the language {≤}, which extends the theory of linear
orderings. We may assume T is given by a computably infinitary sentence, as we can always
relativize the rest of the proof later. If there is a bound on the Scott ranks of the models of
T , we then have that the isomorphism problem among the reals coding models of T is Borel
(see [Gao09, Theorem 12.2.4]). Then, we can apply Silver’s theorem [Sil80], which says that
every Borel equivalence relation has either countably or continuum many equivalence classes,
to get that T has either countably or continuum many models.

Thus, let us assume that T is unbounded, and hence it has a model L with ωCK1 = ωL1 ≤
SR(L) (by Lemma 2.1). Let us also assume that T has less than continuum many models.
Relativizing again, let us assume that L has a computable copy.

Let α be a limit ordinal be such that T is Πc
α. Take any countable linear ordering A. We

will show that there is a linear ordering L̂ ≡α L such that L̂/∼ωCK1

∼= A, showing that there

are continuum many models of T . (Notice that if L̂ ≡α L, then L̂ |= T .)
By Lemma 4.8, L/∼ωCK1

is dense. By using an isomorphism between Q and Q · Z · A, we

can write
L =

∑
q∈A

(
∑
n∈Z
Bq,n),

where each Bq,n is such that Bq,n/∼ωCK1
is still dense and hence SR(Bq,n) ≥ ωCK1 . Let

α < α0 < a1 < α2 < .... be a sequence of limit ordinals with limit ωCK1 . For each q ∈ A
and n ∈ Z, let B̂q,n be such that B̂q,n ≡α|n| Bq,n and α|n| ≤ SR(B̂q,n) ≤ α|n| + 1. To build

such a linear ordering B̂q,n one needs to construct a model of the Πc
<α|n|

-theory of Bq,n, but

omitting all the non-principal Πc
<α|n|

-types that are realized in any model of T (for the type

omitting theorem see [Bar75, Theorem III.3.8]). That there are only countably many such
types follows from the fact that otherwise there would be continuum many, and hence there
would be continuum many models of T , which we are assuming there are not.

Let L̂ =
∑

q∈A(
∑

n∈Z B̂q,n). By Lemma 4.1 we then have that L ≡α L̂. It is not hard to

see that if we are given b ∈ B̂q,n and c ∈ B̂p.m, then b ∼ωCK1
c if and only if p = q. So, for each

q ∈ A we have that (
∑

n∈Z B̂q,n) is a single ∼ωCK1
equivalence class and L/∼ωCK1

∼= A.

4.3. Linear orderings are uniformly effectively dense. We now give a proof of Theorem
1.4 that the theory of linear orderings has the no-intermediate-extension property. To prove
it we use Theorem 1.13 and the following theorem.

Theorem 4.9. The theory of linear orderings is uniformly effectively dense.

Proof. Consider again a Πin
α sentence T in the language {≤}, which extends the theory of linear

orderings, and which is effectively unbounded. We will prove that there is a Πin
α... sentence ψ
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such that both T ∧ ψ and T ∧ ¬ψ are unbounded below ωCK1 . We may assume T is given by
a computably infinitary sentence, and, as above, assume T has a computable model L of high
Scott rank, as we can relativize the proof later. Also, using that L/∼ωCK1

is dense as above,

we find a decomposition

L = (1 +A0 + 1 +A1 + 1 +A2 + 1 + · · · ) + (· · ·+ B2 + B1 + B0),

were Ai and Bi have Scott rank at least ωCK1 for all i. Let us assume α is a limit ordinal; if
not consider α+ ω instead. We will define a Πin

α+ω·2 sentence extending T , false about L and

that is unbounded below ωCK1 . We consider three cases.
Case 1: Suppose that for some i, Ai is not α-equivalent to any linear ordering of Scott

rank α. We will now build Â ≡α Ai which satisfies some type which is not realized in L.
By Lemma 2.2, we have that if a structure Âi |= Πc

<α-theory(A), then Âi ≡α Ai. We will

define Âi using the type-omitting theorem (see for instance [Bar75, Theorem III.3.8]) as a
model of Πc

<α-theory(A) which omits the following countable list of non-principal types: For

each Πc
<α-type Φ(x0, ..., xk) we will define a Πc

<α-type Φ̂(x1, ..., xk−1) obtained by essentially
forgetting about what happens to the left of x0 and to the right of xk. In other words, given a
Πc
<α-type Φ(x0, ..., xk) realized in L by a0 < a1 < · · · < ak, we let Φ̂(x1, ..., xk−1) be the Πin

<α-
type of a1, ..., ak−1 within the linear ordering (a0, ak)L. The list of types to omit consists of all

the non-principal Πc
<α-types Φ̂(x1, ..., xk−1) that come from a Πc

<α-type Φ(x0, x1, ..., xk−1, xk)

realized in L. Let L̂ be defined by replacing Ai by Âi, and leaving the rest of L untouched.
Since the rest of L has Scott rank at least ωCK1 , so does L̂. By our assumption, Âi does
not have Scott rank α, and hence there is some tuple a1 < · · · ak−1 ∈ Ai satisfying some

non-principal Πc
<α type Γ̂. Let Γ be the Πc

<α-type within L̂ of a0, a1, ..., ak (where a0 and ak
are the 1’s surrounding Ai). This type is not realized in L because it would have been omitted

in Âi otherwise. The Σin
α+1 formula saying that there is a tuple in L satisfying Γ is true in L̂

but not in L. Since T and this formula are true in L̂, it is unbounded below ωCK1 .
Case 2. Suppose now that, for some i, Ai is not α-equivalent to any linear ordering of Scott

rank α+ ω. The proof is the same as above. The separating formula is now Σin
α+ω+1.

Case 3. None of the previous cases hold. Let L̂ be built by replacing each Ai by an
α-equivalent linear ordering of Scott rank α. Let L̃ be built by replacing each Ai by an α-
equivalent linear ordering of Scott rank α + ω. Both have Scott rank at least ωCK1 because∑

i∈ω∗ Bi does. The Σin
<α+ω·2 formula that says that there is some x such that SR(L<x) = α+ω

is true in L̃ and not in L̂, both being models of T . So, both, T , together with this formula
and together with its negation, are both unbounded below ωCK1 . �
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