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Abstract. We show that there is only one natural Turing-degree invariant, analytic
equivalence relation with ℵ1 many equivalence classes: the equivalence X ≡ω1

Y ⇐⇒
ωX
1 = ωY

1 . More precisely, under PD + ¬CH, we show that every Turing-degree
invariant, analytic equivalence relation with ℵ1 many equivalence classes is equal to
≡ω1 on a Turing-cone.

1. Introduction

A function f : 2ω → 2ω is said to be Turing-degree invariant if X ≡T Y ⇒ f(X) ≡T
f(Y ) for all X, Y ∈ 2ω. There are not very many natural degree-invariant functions.
The easy examples are the identity function, the constant functions, the Turing jump,
and iterates of the Turing jump. Martin’s famous conjecture states precisely that: Un-
der AD, every degree-invariant f : 2ω → 2ω is Turing equivalent to either a constant
function, the identity function or a transfinite iterate of the Turing jump almost every-
where with respect to Martin’s measure. Martin’s measure is the one that assigns a set
C ⊆ 2ω measure 1 if it contains a Turing cone (i.e., a set of the form {X ∈ 2ω : X ≥T Y }
for some Y ), and measure 0 if it is disjoint from a Turing cone. (Martin’s Turing de-
terminacy theorem states that, under AD, every degree-invariant set either contains or
is disjoint from a cone.) Martin’s conjecture was proved for uniformly degree-invariant
functions and for order-preserving functions by Slaman and Steel [Ste82, SS88], but is
still a major open question for non-uniformly degree-invariant functions (see [MSS] for
a current survey).

In this paper, we consider equivalence relations instead of functions, and in particular,
equivalence relations with ℵ1 many classes. An equivalence relation ∼ on 2ω is said to
be degree-invariant if X ≡T Y ⇒ X ∼ Y for all X, Y ∈ 2ω. If ℵ1 < 2ℵ0 , there are
not very many natural degree-invariant equivalence relations with ℵ1 many classes. An
example is the equivalence relation

X ≡ω1 Y ⇐⇒ ωX1 = ωY1 ,

where ωX1 is the least non-X-computable ordinal. Our theorem states that this is the
only natural such equivalence relation.

Theorem 1. (ZF+Σ1
2-DET) If ∼ is a degree-invariant, analytic equivalence relation

on 2ω without perfectly many classes, then, on a cone, ∼ is equal to either the trivial
equivalence relation or to ≡ω1.
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By the trivial equivalence relation, we mean the relation where all reals are equiva-
lent. When we say that an equivalence relation E has perfectly many classes, we mean
that there exists a perfect subset of 2ω, all of whose elements are non-E-equivalent.
Burgess’s theorem [Bur79] says that an analytic equivalence relation without perfectly
many classes can have at most ℵ1 many classes. Note that if ℵ1 < 2ℵ0 , Burgess’s theorem
is an equivalence.

Since almost all proofs in computability theory relativize, if E is a “natural” equiva-
lence relation and one can prove that it is either equal to or different from ≡ω1 , then one
would expect that proof to relativize and hold in any cone. One would also expect that
proof not to depend on whether Σ1

2-DET holds or not. This is why we read Theorem
1 as saying that ∼ω1 is the only natural, degree-invariant, analytic equivalence relation
with uncountably many, but not perfectly many classes.

As a side note, let us remark that there are other natural, analytic, non-degree-
invariant equivalence relations with ℵ1 many classes. The known examples are isomor-
phisms of well-orderings (letting non-well-orders be equivalent to each other) [Spe55],
bi-embeddability of linear orderings [Mon07], bi-embeddability of torsion abelian groups
[GM08], and isomorphism on the models of a counterexample to Vaught’s conjecture (if
exists) [Mon13]. See [Mon] for more on these.

2. The proof

A key lemma that we will use a couple of times is the following:

Lemma 2 (Martin). (ZF+Σ1
2-DET) Let f : 2ω → ω1 be a function invariant under

Turing equivalence which has a Σ1
2 presentation, i.e., there is a Σ1

2 function g : 2ω → 2ω

such that, for every X, g(X) is a well-ordering of ω isomorphic to f(X). If f(X) < ωX1
for every X, then f is constant on a cone.

See [Mon13, Lemma 2.5] for a proof.

Proof of Theorem 1. Assume ∼ is not trivial on any cone, and let us prove that it must
be equal to ≡ω1 on some cone.

By a result of Burgess [Bur79, Corollary 1], there is a nested, decreasing sequence of
Borel equivalence relations, ∼α for α ∈ ω1, whose intersection is ∼, or in other words,
such that X ∼ Y ⇐⇒ (∀α < ω1) X ∼α Y . Furthermore, if ∼ is lightface Σ1

1, we can
also require that, for all X, Y ∈ 2ω,

X ∼ Y ⇐⇒ X ∼ωX⊕Y
1

Y

(see [Mon, Lemma 2.1 and Remark 2.2]). Note that by relativizing to an oracle if
necessary, we can assume ∼ is lightface Σ1

1. Moreover, from the proof of [Mon, Lemma
2.1], we also get that ∼α is Σ0

α+1 uniformly in α and that the sequence of ∼α’s is
continuous, i.e., that ∼α=

⋂
β<α ∼β for all limit ordinals α < ω1.

By a result of Silver [Sil80], since each∼α is Borel and does not contain perfectly many
classes, ∼α can only have countably many classes. Thus each ∼α partitions the reals
into countably many degree-invariant Borel parts. By Martin’s Turing determinacy, one
of those parts contains a cone. On the other hand, every cone is partitioned by some
equivalence relation ∼α, since we are assuming ∼ is not trivial on any cone. Therefore,
for every X ∈ 2ω, there is an ordinal α < ω1 such that Y 6∼α X for some Y ≥T X. Let
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f(X) ∈ ω1 be the least such α. By our observation above, f cannot be constant on any
cone, because for each ∼α, there is a cone of reals all ∼α-equivalent to each other, and
hence f(X) > α on that cone.

We claim that f(X) ≥ ωX1 on a cone. Suppose it is not, and hence that the set

S1 = {X ∈ 2ω : (∀Y ≥ X) Y ∼ωX
1
X}

contains no cone. S1 is a degree-invariant Π1
2 set of reals, and hence by Martin’s Turing

determinacy, it must be disjoint from a cone. Restricted to this cone, the function f
has a Σ1

2 presentation (define f(X) to be the Π1,X
1 initial segment of HX , the Harrison

linear ordering [Har68] relative to X, of all β satisfying (∀Y ≥T X) Y ∼β X). Notice
that the function f not only is degree invariant, but also preserves order in the sense
that X ≤T Z implies f(X) ≤ f(Z). By Martin’s Lemma 2, f must be constant on a
cone, which we have already stated is a contradiction. Thus S1 contains a cone C1.

We now claim that, for every X, Y ∈ C1,

(1) Y ≥T X & ωY1 = ωX1 ⇒ Y ∼ X.

The reason is that for such X and Y , ωX⊕Y1 = ωY1 = ωX1 , and hence Y ∼ωX
1
X implies

Y ∼ωX⊕Y
1

X, which implies X ∼ Y .

By a result of Harrington [Har78, Lemma 2.10] (see also [Mon13, Lemma 3.6]), for
every X, Y with ωX1 = ωY1 , there is a G such that

ωX1 = ωX⊕G1 = ωG1 = ωG⊕Y1 = ωY1 .

If X, Y ∈ C1, we can assume G ∈ C1 too by relativizing to the base of C1. Using (1), we
then get that

(2) X ∼ (X ⊕G) ∼ G ∼ (G⊕ Y ) ∼ Y.

We have shown that

(3) ωX1 = ωY1 ⇒ X ∼ Y for every X, Y ∈ C1.

The second part of the proof is to show the reversal on some cone.
Let AC1 = {ωX1 : X ∈ C1} ⊆ ω1, which, by a result of Sacks [Sac76, Corollary 3.16],

is the set of all ordinals that are admissible relative to the base of the cone C1. By (3),
we can view ∼ as an equivalence relation on AC1 . We say that α ∈ AC1 is ∼-new if, for
β < α with β ∈ AC1 , we have β 6∼ α, or in other words, if α is the least element of its
∼-equivalence class. Consider

S2 = {X ∈ C1 : ωX1 is ∼-new} = {X ∈ C1 : (∀Y ∈ C1) Y ∼ X → ωY1 ≥ ωX1 }.

Note that S2 is Π1
2. Thus, by Martin’s Turing determinacy, it either contains or is

disjoint from a cone C2. We claim that it cannot be disjoint from C2: If it was, consider
the map g : C2 → ω1 such that g(X) is the least α ∈ AC1 such that α ∼ ωX1 . (Note that
g has a Σ1

2 representation: Let g(X) be the initial segment of HX of all β such that
there exists Y ∈ AC1 with Y ∼ X and β < ωY1 .) Using Martin’s lemma 2 again, g must
be constant on a cone, but then ∼ would be trivial on that cone. Thus S2 must contain
a cone C2. For X, Y ∈ C2, we then have that X ∼ Y ⇐⇒ ωX1 = ωY1 . �
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