COPYABLE STRUCTURES

ANTONIO MONTALBAN

ABSTRACT. We introduce the notions of copyable and diagonalizable classes of structures.
We then show how these notions are connected to two other notions that had already been
studied for some particular classes of structures, namely the listability property and the low

property.

The main result of this paper is the characterizations of the classes of structures with
the low property, that is, the classes whose low members all have computable copies. We
characterize these classes as the ones whose structural jumps are listable.

1. INTRODUCTION

This paper is part of the ongoing project of understanding the computability theoretic
properties of mathematical structures. We are particularly interested in the following two
questions: what are conditions that guarantee that a given structure can be represented
computably, and how difficult is it to computably enumerate all the computable structures
in a given class? We will study an instance of the former question by looking at the “low
property” (see Definition 1.3 below). We will study the latter question by looking at the
“listability property” (see Definition 1.1 below). The actual goal of this paper is, however, to
introduce two new notions, the one of copyability and the one of diagonalizability, which we
will use to better understand the former two.

The game. To each class of structures K we will associate a game G(K). In this game,
players C and D build one structure in K each. The goal of C is to get both structures to be
isomorphic (to copy), and the goal of D is to get the structures to be different (to diagonalize).
Depending on the structural properties of the class K, one or the other player will have a
winning strategy, and we will be able to use that strategy to obtain computability theoretic
properties of K. If C has a computable winning strategy, we say K is copyable, and if D
has a computable winning strategy, we say K is diagonalizable. (See Section 2 for the formal
definitions.) The idea of copying or diagonalizing a structure is behind many proofs already
in the literature, and, in many of these proofs, our game captures the essential combinatorial
aspects behind the proofs. The definition of this game is new, but all we are doing is putting
old ideas in a single concrete general framework so that we we can prove general results about
them. As an example, we analyze the class of linear orderings in detail in Section 7.

Listable classes. In Lemma 2.5 we show that if a class is copyable, it is listable.

O Saved: August 17, 2012 - Submitted
Compiled: August 17, 2012

2000 Mathematics Subject Classification. 03D80.

The author was partially supported by NSF grant DMS-0901169 and the Packard Fellowship. The author
would like to thank Asher Kach for letting him include the proof Lemmas 7.3 and 7.4 which were done in joint
work. The author would also like to thank Victor Ocasio, Jonathan Stephenson and Steven VanDendriessche
for proof reading this paper.

1

2 ANTONIO MONTALBAN

Definition 1.1. A class K is listable if there exists a Turing functional which, for every oracle
X, produces an X-computable sequence of structures listing all the X-computable structures
in K (allowing repetitions).

Again, even if this definition is new as is, it is not a new notion. Nurtazin [Nur74], almost
four decades ago, gave a sufficient condition for a class of structures to be listable which
includes the classes of linear orderings, Boolean algebras, equivalence structures, Abelian p-
groups, and algebraic fields of characteristic p. Nurtazin’s result says that if there exists a
(universal) computable structure in the class such that any other structure can be embedded
into it, and such that any subset of that structure generates a structure in the class, then the
class is listable (see [GN02, Theorem 5.1]). Goncharov and Knight [GN02, Section 5] consider
a similar notion as their “third approach” to defining the notion of a class having a computable
characterization.

Neither Nurtazin’s condition, nor copyability is a necessary condition for a class to be
listable. However, using a modified version of our game G(K) we obtain a characterization
of listable classes. In Section 3 we will define the game G*°(K), where C is allowed to build
infinitely many structures, and needs to get just one of them to be isomorphic to the one
played by D. Our first theorem characterizes listable classes as those where C has a winning
strategy in the game G*°(K), (which we call co-copyable classes).

Theorem 1.2. A class K of infinite structures is listable if and only if it is co-copyable.

One might ask why it is that we are introducing the notion of co-copyability if it is equivalent
to the notion of listability, which is much more natural and simpler to define. The reason is
that many times when we want to prove that a class is listable, or not listable, the argument
goes, essentially, by showing that the class is either co-copyable or co-diagonalizable.

The low property. The following is the relativized version of what it is usually called the
low property.

Definition 1.3. We say that K has the low property if, for every X, Y € 2% with X' = Y,
and every structure A € K, we have that

A has an X-computable copy <= A has a Y-computable copy.

This property has been studied in various examples. Most famously, the class of linear
ordering has been shown not to have the low property by Jockusch and Soare [JS91], and the
class of Boolean algebras to have the low property by Downey and Jockusch [DJ94]. Moreover,
the class of Boolean algebras has the low, property as shown by Knight and Stob [KS00]. The
question of whether Boolean algebras have the low,, property has been open for almost twenty
years. (As expected, the low, property is defined exactly as in 1.3, but with the assumption
that X =, Y(”).) Also, the class of scattered linear orderings has the lows property as was
recently claimed by Frolov (unpublished), and the class of linear orderings with finitely many
descending sequences has the low,, property for all n € w as shown by Kach and the author
[KM11].

A reasonable expectation some researcher had was that when a class has the low property,
it has it for a reason (since the low property is such a natural computational property). What
that reason would look like has been unknown for a couple decades. The main result of this
paper is to give a somewhat satisfactory structural characterization of the classes of structures
with the low property in terms of the notions of structural jump and listability.

The essential combinatorial properties behind the analysis of the low properties in the
known examples can be captured by the game G*(K;)) (where K(j) is the class of structural
jumps of the structures in K as defined in 4.3). This fact is captured by our main theorem

COPYABLE STRUCTURES 3

below, which characterizes the classes K with the low property assuming some effectiveness
condition on K. This effectiveness condition, namely that K has a 1-back-and-forth structure,
is described in Section 4. This condition applies to the classes of linear orderings, Boolean
algebras, etc.

Theorem 1.4. Let K be a class of infinite structures with a computable 1-back-and-forth
structure.

(1) If K is aziomatizable by a II§-sentence and K1) is oo-diagonalizable, then K does not
have the low property.
(2) If K1) is oo-copyable, it has the low property.

Some of the technical tools necessary for the both parts were developed by Harris and the
author [HM12, HM] for the class of Boolean algebras.

In [Mon09, Theorem 3.5] the author showed that the low property is equivalent to saying
that, for every X € 2% and every A € K,

A has an X-computable copy <= A’ has an X’-computable copy,

where A’ is as defined in [Mon09, Mona]. It follows that K has the low,, property if and only
if, for each m < n, the class of mth jumps of the structures in K has the low property. (See
[Mona] for the definition of the mth jump of a structure.) This is why it is enough to restrict
our attention to the low property, and not the low,, property.

Adding guesses to the game. In Section 6 we introduce the game G*(K), where « is a
computable ordinal. These games are in between G(K) and G*°(K), and are usually the games
that are played in “practice.” The key lemma behind the proof by Harris and the author
[HM12, HM] that there is a lows Boolean algebra not 0(M-isomorphic to a computable one
says, essentially, that IB%A(5), the class of 5-jumps of Boolean algebras, is 2-diagonalizable.
Whether this class is 3-copyable, or even co-copyable is unknown.

In the last section we show that the class of linear orderings is 2-diagonalizable and 4-
copyable. The former result is due to Kach and the author (unpublished), but the main ideas
already appeared in Jockusch and Soare [JS91] and also in R. Miller [Mil01]. We do not know
whether linear orderings are 3-copyable or 3-diagonalizable.

2. THE GAME

Let K be a class of infinite L-structures, where L is a relational language. By an approxi-
mation to a structure C we mean a sequence {C[s] : s € w} of finite L [ks-structures for some
ks € w, (where L [k denotes the first £ symbols in £), such that for every s, ks < kgy1, C[s]
is included in C[s + 1] as an L [ks-structure, and

c=Jclsl.

(This is equivalent to consider finite approximations to the atomic diagram of C.)

The game G(K) has two players, C and D, each one trying to build an approximation to a
structure in K. The goal of C is to get both structures to be isomorphic, and the goal of D
is to get the structures to be different. Players play alternatively and who starts is irrelevant
for the game (for concreteness, let us say that C starts the game). On the sth move, C plays
a finite L | kg-structure C[s] and D plays a finite L [£s-structure D[s|, for some ks, ls € w.
(We allow the empty structure as a structure.) At stage s + 1, player C must make sure that
ks < ks+1 and that C[s] C C[s + 1] as L | ks-structures, as otherwise he immediately looses.
Analogously, player D must make sure that 5 < ¢4y, and D[s] C D[s+ 1] as L | £s-structures,
as otherwise he immediately loses. At the end of stages we let C = |J, C[s] and D = |J, D[s].

4 ANTONIO MONTALBAN

Player D | Dlo] C
Player C [C[0] < C[I]

D ¢ D] ¢ ... D=U
CRl C c

We then decide who wins as follows.

(1) If C € K, then D wins.

(2) If C € K, but D ¢ K, then C wins.

(3) If C,D € K are isomorphic then C wins.

(4) If C,D € K are not isomorphic then D wins.

(We note that, for C to be an L-structure in K, limg ks must be equal to the size of £. If £
is finite, without loss of generality, we might assume that ks is always equal to the size of L.)

An important remark is that the players are allowed to pass, in the sense that they can
play C[s + 1] = C[s] or D[s + 1] = D[s]. However, C is forced to build a structure in K at the
end, and all structures in K are infinite. Thus, independently of what D does, C is obligated
to extend his finite structures infinitely often, because if both players stop extending their
structures, the one who loses is C. In other words, D can wait until he sees enough of C to
extend his structure one more bit. This is a key feature of the game G(K), and, whether D can
make use of this advantage or not will depend on the structural properties of K. An equivalent
formulation of the game would be to forbid C to pass (i.e., he has to build proper extensions
at each step), while D is allowed to pass so long as he extends his structure infinitely often.

Definition 2.1. We say that K is copyable if C has a computable strategy in the game G(K).
We say that K is diagonalizable if D has a computable strategy in the game G(K).

Given an oracle X, we can define the notions of X-copyable and X -diagonalizable by re-
quiring the strategies above to be X-computable. Of course, if K is X-copyable for some X,
it cannot be Y-diagonalizable for any Y. Notice that if we have enough determinacy (for
instance, analytic determinacy when K is borel), there must exist an X € 2¢ such that K is
either X-copyable or X-diagonalizable. We expect that whenever K is natural enough, this
oracle X should be 0 and no appeal to determinacy should be necessary.

Ezample 2.2. The class of infinite linear orderings is diagonalizable. (We include a proof below
in Section 7 due to Kach and the author.) The ideas in this proof are not really new, as they
were already used by Jockusch and Soare [JS91] when they build a low linear ordering without
a computable copy, and by R. Miller [Mil01] when he built a non-computable linear ordering
computable from all non-computable A§ sets. The notion of diagonalizable essentially isolates
the key combinatorial argument needed to satisfy a single requirement in their proofs.

Example 2.3. The class of Boolean algebras, with a predicate for atom, and with infinitely
many atoms, is copyable. The ideas in this proof are also know as they were present in Downey
and Jockusch’s [DJ94] proof that every low Boolean algebras has a computable copy.

2.1. Listable classes. Recall from 1.1 the definition of a listable class of structures. We show
in this section that if a class is copyable, it is listable.

Example 2.4. The class of linear orderings is listable. This is because a linear ordering £ has
an X-computable copy if and only if it is isomorphic to an X-c.e. subset of the rationals. Since
X can uniformly lists all X-c.e. sets, it can lists all X-computable linear orderings. Notice that
this includes all finite linear orderings. The class of infinite linear orderings is also listable,
but showing it requires more effort. It will follow from Lemma 7.2.

Lemma 2.5. If K is copyable, it is listable.

COPYABLE STRUCTURES 5

Proof. Suppose we have a computable strategy for C in the game G(K). Fix an oracle X; we
will build a list {Ce : e € w} of all X-computable structures in K. For each e, we will define C,
to be the outcome of C’s strategy when playing against a player D who is playing according
to {e}, the eth Turing function with oracle X, as explained below.

Fix e € w. Using oracle X, we define a sequence of finite structures {D[s] : s € w} and an
auxiliary sequence of numbers {ns : s € w} as follows.

e At stage s = 0, let D[0] be the empty structure on the empty language. Let ng = 0.

o At stage s + 1, if {e}X(n,) converges and is equal to the index of a finite structure A
extending D[s], we define D[s + 1] = A, and let nsy 1 = ng + 1. If, either {e}X(ny)
diverges, or converges but not to the index of a finite structure extending D]s], we let
D[s+ 1] = D[s] and nsy1 = ns.

Let C. be the structure played by C, when his following his strategy against the sequence
{D]s] : s € w}. Since C wins, C, must be a structure in K. Since the strategy is computable
and the sequence {D[s] : s € w} is X-computable, C. is also X-computable. When {e}*
is actually enumerating the indices of an approximation to a structure in K, C, must be
isomorphic to it. So {C. : e € w} is a listing of all X-computable structures in K. O

The converse of this lemma is not true. But it is, if we consider the infinite version of our
game.

3. THE INFINITY GAME

This game is similar to the previous game except that C is allowed to build infinitely many
structures rather than just one, and he only needs to get one of them to be isomorphic to the
structure played by D. It is a much harder game for D, as he now must diagonalize against
infinitely many structures simultaneously.

We now define the game G*°(K). Again, players C and D play alternatively and, again, it
is irrelevant who starts. On the sth move, D plays a finite £ | £s-structure D]s| for some /;,
and C plays s + 1 many finite £ [k; s-structures Cl[s — j] for j =0, ..., s. Structures must be
built in chains exactly as in the previous game (i.e., £s < lsy1, D[s] C D[s + 1], kj s < kjsq1

and Cj [s] C Cj [s + 1]), and whoever does not follow this rule loses. At the end of stages we
let C7 = J,C[s] and D = |J, D[s].

Player D | Do) < D[] < D] D =|J,D[s]
c’lo] < ¢ < C2] C ¢’ =1,C%s]

Player C cljo] < cif1i] ¢ cl =, Cs
clo] ¢ ¢? =, C's]

We then decide who wins the game G*>(K) as follows:

(1) If for some j, C? ¢ K, then D wins.

(2) If for all j, ¢/ € K, but D ¢ K, then C wins.

(3) If D,CY,CY, ... € K and, for some j, D = C’, then C wins.
4) If D,C%,CY, ... € K and, for all j, D 2 C?, then D wins.

(j

Definition 3.1. We say that K is co-copyable if C has a computable strategy in the game
G>*(K). We say that K is co-diagonalizable if D has a computable strategy in the game G*(K).

Theorem 3.2. A class K of infinite structures is listable if and only if it is co-copyable.

6 ANTONIO MONTALBAN

Proof. Suppose first that K is oo-copyable. Then, essentially by the same proof as that of
Lemma 2.5, we can build an X-computable sequence of structures {C? : e, j € w} all in K and
such that if {e}X is a structure in K, then for some j, C? is isomorphic to it.

Suppose now that K is listable; we need to define a strategy for C. Let X be the sequence
of indices of the finite structures played by D. We let the C-strategy play the X-computable
list of all X-computable structures in K as response. Since D is computable in X, it will be
isomorphic to one of the structures played by C. O

4. THE BACK-AND-FORTH STRUCTURE

The connections between copyability and the low property work under some effectiveness
conditions on the class K, namely that it has a computable 1-back-and-forth structure. We do
not know what happens when this effectiveness condition is not present. The a-back-and-forth
structures were developed in [Monl10, Monb] generalizing ideas from Harris and the author
[HM12] about Boolean algebras. In this paper we only need to look at the case a = 1. We
will review all the necessary background in this simplified scenario of o = 1.

Definition 4.1. We say that K has a computable 1-back-and-forth structure if there is a list
{o; : i € w} of all the (finitary) II;-L-types realized in K such that the following decision
procedures are computable:

e given i, and a II; formula, deciding whether the formula is in o;;

e given i, deciding what are the free variables in the type o;;

e given 7, j, and a subset of the free variables of o;, deciding if o; is the restriction of o;

to those variables;
e given 4, j, deciding if o; C 0; as sets of II; formulas.

We note that it is only possible to have a computable 1-back-and-forth structure if there
are only countably many II;-L-types realized in K, which is the case in some natural classes
of structures and not in others. Among the natural classes of structures which do realize only
countably many II1-L-types, they usually have a computable 1-back-and-forth structure (see
[Mon10, Section 4 on examples]).

For the rest of this section fix a class K with a computable 1-back-and-forth structure.

Notation 4.2. We use bf] to denote the set of all II1-types realized in K. That is
bf; = {Il;-tp4(@) : @ € A<, A € K},
where IT1-tpa(a) = {¢(Z) : ¥ () is a II;-L-formula, A = ¥(a)}. Given o € bf;, we let |o| be

the number of free variables in o, which we assume are T = 1, ..., |,. Given 0,7 € bf; with
lo| = |7|, we let 0 <; 7 if 0 C 7 as sets of II; formulas.

For each o € bf; on the variables T = (21, ...zk), let

e, (@) = \{v@) :9() el
So, we have that A |= ¢, (@) if and only if o C II;-tpa(a@) (or, equivalently, o <; II;-tp 4(@)).
It was shown in [Mon10] that these formulas form a complete set of II§-relations in the sense

that every X§-L-formula is equivalent (on all the structures in K) to a 2;,0’ formula in the
language £ U {¢, : o € bfj}, and this equivalent formula can be found uniformly. (Where

II{ and XS are the sets of computable infinitary 1I; and o formulas, and Zi’o/ is the set of
0’-computable infinitary ¥; formulas.)

Definition 4.3. We define an extended language
L1 =LU{p,:0ccbf}.

COPYABLE STRUCTURES 7

Given A € K, we call the £1-structure
Aqy = (A @7, 0 € bfy),

where ¢ = {@: A = ¢,(@)}, the structural jump of A. We use Ky to denote the class of
structural jumps of structures in K:

K(l) = {./4(1) : A e K}

If A is a linear ordering one can show that A(;) is, in a certain sense, equivalent to
(A, Adj(x,y)), where Adj(x,y) is the adjacency relation. These structures are equivalent
in the sense that they can compute one another (even without changing the domain). The
same is true for (A, atom(x)) when A is a Boolean algebra and atom(x) is the atom relation.
So, the results that we state about .A(;) below are also true for these equivalent structures.

For the proof that copyable classes have the low property, we need to introduce some new
notation to deal with approximation to £i-structures. The notion of 1-approximation given
below was introduced by Harris and the author for the class of Boolean algebras in [HM].

Definition 4.4. A finite labeled structure is a pair C = (C, 1) where C is a finite L-structure
and t€: C<¥ — bf] such that, if @,b € C,

e the atomic diagram of @ is as given by the atomic formulas in € (@), and

e {¢(a) is the restriction of t¢(@,b) to the first [@|-many variables.

Notice that in a finite labeled structure (Cy, t€), if (@) = o, ¢ is II; and ¢ ¢ o, then it does
not need to be the case that Cy [~ ¢ (a). The idea is that we are viewing Cy as a substructure
of a structure C where @ has II;-type t¢(a).

Notice also that the map €€ only needs to be defined on the tuples whose elements are all
different, so € is really a finite object. We remark that, since all II;-types are computable
and we have a list of them, the elements of bf; should be thought of as finite objects, namely
the indices ¢ for the II;-types o;.

Definition 4.5. Given Cy = (Co, to) and an infinite structure C € K, with Cy C C, we say that
Co is correct within C if for all @ € C5¥, to(a) = II1-tpc(a).
Given finite labeled structures Cp = (Co, to) and C; = (C1, 1), we say that
Co <o C1
if Cg € Cy. We say that
Co<1C
if Co C €y and for all @ € C5¥, to(@) <1 t1(a).
Given a subset £ C Cy with E C C; too, we say that
éo EE él
if for all @ € E<¥, t(a) = t1(a).

The following lemma gives what is known as the “back-and-forth” definition of the relation
<.

Lemma 4.6. Suppose that Co = (Co, to) is correct within C. Let (C1,t1) be a finite labeled
structure such that (Co,tp) <1 (C1,t1). Then there exists an embedding of C1 into C fizing Co.

Proof. Let ¢ be the tuple of C that lists the elements of Cy. Let 7 = II1-tpe(¢) = to(¢). Since
(Co,t0) <1 (C1,t1), 7 <1 t1(¢). The II; formula saying that there is no extension of ¢ with the
same atomic diagram as C; is not part of t;(¢), and hence not part of ty(¢) = II1-tpc(¢) either.
Therefore, there is an extension of ¢ in C with the same atomic diagram as Cj. U

8 ANTONIO MONTALBAN

We notice that for C € K, (1) might not be able to compute the function that maps a tuple
a to o = Ij-tpe(a) € bf;. It can, however, approximate this function from below as in the
following definition.

]?eﬁnition 4.7. Given C € K, a I-approzimation to C is a sequence of finite labeled structures
C[s] = (C[s], t[s]) such that C = [J,C[s] and for every s

e C[s] <1 C[s+1],

e for every a € C[s]<%, JsoVs > so, t[s|(a) = II1-tpc(a).
(We will write t(a)[s] rather than t[s](a).)

Lemma 4.8. Let C be a structure in K.

(1) Uniformly from a I1-approzimation to C, we can compute an approzimation to C(y.
(2) Uniformly from an approzimation to C(1), we can compute a I-approzimation to C.

Proof. Suppose first that we have a l-approximation to C and we need to decide whether
C | ¢, (@) for each tuple @ and each o € bf;. On the one hand, deciding if C |= ¢, (a) is II{
in C, just by definition of ¢,. On the other hand, C = ¢, (@) if, and only if, there exists s
such that t(@)[s] >1 0. So, deciding C |= ¢, (a) is AY in the 1-approximation to C.

For the second part, suppose we have a computable presentation of C;y (given from its
approximation). We start by defining a computable function f: C<* x w — bf; such that for
every tuple @ € C<¥,

o (Vs) f(a,s) <i f(@,s+ 1) and
o (Ft)(Vs >1t) f(a,s) = t(a).
Recall that t(a) satisfies that for all 7 € bf; with || = [a],

CE e (a) — 7<1t),
or, in other words, t(a) is the <;-largest o such that C = ¢, (@). To define f(a, s) we can look
for the <; largest o that has appeared so far with C = ¢_(@). More concretely, at each s,
look for o € bf; such that C = ¢,(a) and for all 7 € bf; with Gédel number below s and
|7| = |a| we have that C = ¢,.(a) <= 7 <; 0. Such a ¢ always exists (namely o = t(a)),
and for all s greater than the Gédel number of t(a) we have f(a, s) = t(a).

We will now use f to define a 1-approximation to C. The only reason why we have not done
so already is that for a fixed s, the types f(a@, s) might not be consistent with each other for
the different tuples @ € C[s]<“. Let C[s] be the substructure of C whose domain is the first s
elements of C, namely c¢1,...,cs = ¢. We now need to define t(a)[s] for all tuples a € C[s]<¥
Notice that is enough to define t(cy, ..., ¢5)[s], and then take the restriction of this II;-type to
its sub-tuples. Search for ¢ > s such that if we assign f(¢,t) to the elements of C[s], then, for
every a € C[s — 1], if 7 is a restriction of f(¢,¢) to @, then

(1) 7 >1 t(a)[s — 1], and
(2) 7 =1 f(@@s).
Such a t exists, namely any ¢t with f(¢,t) = t(¢). Let us define t(¢)[s] = {(c, t).

For each tuple @ we have that, on one hand t(a)[s] <; t(@) because t(¢)[s] <; t(¢), and, on
the other hand, f(a,s) <j t(a)[s]. It follows that for large enough s, t(a)[s] = t(a), and that
{(C]s],t[s]) : s € w} is a l-approximation to C. O

5. THE LOW PROPERTY

Recall from 1.3 the definition of the low property.

The following lemma will be necessary in the proof that oo-diagonalizability implies that
the low property fails. A similar lemma was proved by Harris and the author in [HM] for the
class of Boolean algebras.

COPYABLE STRUCTURES 9

Lemma 5.1. If K is aziomatizable by a 11 sentence and has a computable 1-back-and-forth
structure, then 0’ can effectively list all the structures in

{Aq) : A€ K, A computable}.

Proof. The main difficulty to get an effective list of {A : A € K, A computable} is, of course,
that we cannot list all total computable functions. With an oracle 0/, however, if we have a
non-total function, we will eventually find out. By the time we find out we would have built
part of a structure, which 0’ now needs to recycle into another structure within the class.
Furthermore, 0 will also be able to get the structural jumps of these structures too. Here are
the details.

Write the II§ axiom defining K as A, V7;0i(7;) where each 6; is a X formula. First, we
observe that if A is a computable structure in K, then there is a computable approximation
A[0] € A[1] C --- to A which satisfies one instance of one conjunct 6; at the time. That is,
for every s, A[s + 1] |= 6;(@), where (i,a) is the sth pair consisting of some ¢ € w and some @
of length [7;].

For each e € w, using 0’ we uniformly define a computable structure Bfl), such that, if {e}
is a computable approximation to A € K as above, then B¢ = A.

Fix e € w. For each s, let A[s] be the finite structure with index {e}(s). If {e}(s) is
undefined, or not an index for the right kind of structure, we let A[s] be undefined. First, we
can assume that {e} is defined on an initial segment of w, as, once one A[s] is undefined, we
leave A[t] for t > s undefined too. Second, we can assume that A[s] C A[s + 1], as we can
pretend as if A[s + 1] is undefined if not. Third, we can also assume that A[s + 1] satisfies
one new instance of one conjunct 6; as explained above. If A[s| is defined for all s, we let
A=, Als].

So far, we have that either A[s] is defined for all s, in which case we know A satisfies the II§
axiom defining K, or \A[s] is undefined from some point on. Notice we have not used 0’ yet.
We will now define a structure B(;, (that we denote B(;)) uniformly in 0/, such that if A[s] is
defined for all s, then B = A, and if not, then By is some structure in K(;). At stage s, we
define an £y | s-structure B()[s]. At each stage, we also make sure that there is some 75 € bf;
verifying the consistency of B(;)[s]. We say that 7 € bfy verifies the consistency of B(y[s] if

|7| = |Bls]| and, if Bls] had II;-type 7, then for each @ € B[s]<“, and all & with
Godel index less than s, B(y)[s] = ¢, (@) holds if and only if the restriction of
Ttoais > o.

Notice that this is a computable property.

At stage s, suppose we have already defined B(j)[s — 1], that 751 verifies the consistency
of Byy[s — 1], and that, so far, B[s — 1] = A[s — 1]. Ask 0" if A[s] is defined. If it is not we
know we can define the rest of B(;) in which ever way we want. We do the following:

First, we declare that B[s — 1] will have type 75_1 within B, which we know
is consistent with the amount of B(;) defined so far. We then define By)[t] for
all t > s, so that By is any £y structure in K extending B[s — 1] and giving
B[s—1] IT;-type 7s—1. The fact that we can uniformly build a £ structure in K
with a tuple satisfying a prescribed II;-type was proved in [Mon10, Proposition
2.10] and in [Monb].
Suppose now that A[s] is defined. We will now attempt to define B[s] = A[s] and use 0’ to
define By)[s], unless we find out that A[t] is not defined for some ¢ > s. For each o € bf; with

Godel index less than s, we need to define ¢ (a) for each @ € Als| of length |o|. We start by
defining an auxiliary predicate R,(a) as follows. For each such o and @, let

10 ANTONIO MONTALBAN

R, (@) hold if for all ¢ > s for which A[t] is defined, and all IT;-formula ¢ (Z) € o,
we have Alt] = ¢(a).

Notice that 0/ can decide this TI{ question. If A[t] is actually defined for all ¢, then this
is exactly the definition of A = ¢, (@), so we would want to define ¢_(a) in Bls| this way.
However, if A[t] is not defined for some ¢, then this R,(a) gives us irrelevant information.
Thus, before defining ¢, (@) as R, (@), we need to check that these answers are consistent. We
ask 0" if there exists a 7 € bf; which verifies the consistency of By)[s] if it were to be defined
that way. If the answer is yes, we define ¢, (@) according to R,(a), and we let 75 be such 7
for future reference. If the answer is no, we know that there is some inconsistency and hence
that some A[t] is undefined. In this case we define BJ[t] for all ¢ > s exactly as we did above
in the case when A[s] was undefined. O

Theorem 5.2. Let K be a class of structures aziomatizable by a 11§ sentence and with a
computable 1-back-and-forth structure, and let Ky be as in Definition 4.3. If K is oo-
diagonalizable, then K does not have the low property.

Proof. In Lemma 5.1 we show that 0’ can list
{Aq) : A € K, A computable}.

Since K1) is oco-diagonalizable, playing against that list, D can build a 0’-computable structure
D1y € K(y different from all those in the list. That is, D, (the restriction of D(y) to £) has
no computable copy. In [Mon09, Theorem 3.1] (see also [Mona, Lemma 6.3]) we show that if
0’ computes a copy of the structural jump D(y) of a structure, then D has a low copy. So, D
witnesses that K does not have the low property. O

We now move towards the proof that if K;) is oco-copyable, K has the low property. We
start by reviewing the notion of true stage.

Definition 5.3. Fix a computable enumeration of 0": {kg, k1,...}. We say that r € w is a true
stage if Vs > r(ks > k). Throughout the rest of the paper we will use g < 1 < --- to denote
the sequence of true stages for the enumeration of 0/. We say that r looks true at s > r if for
all sp with r < sg <s, ks, > k.

In the following lemma we approximate 0’-computable 1-approximations.

Lemma 5.4. Suppose that D has a 0'-computable 1-approximation. Then, there is a com-
putable sequence of finite labeled structures {(D]s],[s]) : s € w} such that

(D1) {(D]r;],t[ri]) : i € w} is a I-approximation to D, and

(D2) if sg looks true at sy, then (Dlsol, t[so]) <1 (D[s1], t[s1]).

Sketch of the proof. Let {Bt : t € w} be a 0/-computable l-approximation to D, and let ®
be the computable functional such that ®%'(¢) gives the index for B;. By slowing down this
approximation and repeating outcomes, we can assume that the use to compute <I>O/(t) is at
most ¢t. Also notice that the ¢-th true stage r; can compute at least ¢ bits of /.

At each stage s we do the following: Let r§ < r{ < ... < r} = s be the sequence of stages
that look true at s and let Ky = {ko, ..., ks} [, 11 € 2ks*1 be our current approximation to
K = 0. Before defining D[s] = ®X+(i) we need to verify that our sequence will satisfy (D2).
If Dirs ;] <1 ®X+(i), then we define D[s] = ®X (i), otherwise we know s is not a true stage
and we let D[s] = D[r}_,].

The rest of the verification is standard. O

COPYABLE STRUCTURES 11

In the next lemma we show that K has the low property under the assumption that K is
copyable, rather than oo-copyable. We prove this lemma first because the proof is simpler in
terms of notation, and then the proof of Theorem 5.6 is just an adaptation of this proof.

Lemma 5.5. Suppose that K has a computable I1-back-and-forth structure. Then, if Ky is
copyable, K has the low property.

Proof. Let D € K be a low structure; we will show that D has a computable copy. By
relativizing this argument, we get that K has the low property.

We consider the version of the game G(K(;)) where the players play 1-approximations to C
and D rather than approximations to C(1) and D(y). It follows from Lemma 4.8 that these two
games are equivalent, and hence we know that C has a winning strategy.

Since D is low, D has a 0/-computable 1-approximation. Let {D[s] : s € w} be as in the
lemma above.

The idea of the proof is that at each stage s, we will set up a finite sequence of moves by D
and see what C answers. We will only let D play ﬁ[t] at those values t that look true at the
current stage. We will also decide how many times we want D to pass in between moves. The
tension is produced by the fact that we have to produce a computable copy of C, and hence
when we find out that our guess to D was wrong we cannot change that part of C we built
already.

At each stage s we will build a finite sequence s € w<* which we will use to determine a
finite sequence of moves by D and then we will let C [7s] be C's answer to those moves. We
will do it in such a way that

(¥s) Clys] <o Clsl,

(i.e. Clvs] € Clys+1])- This will allow us to define a computable structure C = | JC[s] forgetting
about the values of €.

Given a non-empty increasing sequence v € w<¥, we let ¢ [v] be defined as follows: Let
t = last(y), and let] the i-th stage that looks true at stage ~(¢) if there is such a stage, and
let 7] be (i) if there is not (i.e., if there are less than i stages that look true at v(4)). Notice
that if (i) > r;, then 7] = r;. (Recall that r; is the i-th true stage in the enumeration of 0'.)
We define €[] to be the step ¢ outcome of C’s strategy after D has played D[r]] at stage (i)
for i < |y| —1, and has passed on the moves that are not in the image of v (by ‘pass’ we mean
play the same structure played at the previous stage).

Observe that if § C v, then C[0] <; €[] because the sequence of moves by D in the definition
of C[¢] is an initial segment of the sequence of moves in the definition of C[y], so C’s answers
are part of a 1-approximation to some structure. More generally, and for the same reason, we
get, that

if 6Cy and s<~(|6]) = C[67s] <1 Cly).
Given ¢ € w<¥ we let C[0%] be the union of the structures C[y"s| for s € w. So, C[d%] is C’s
structure in the case when D has played D[r?] at stages (i) for i < |y| — 1, and has passed
ever after. Since C wins, we know this is a structure in K.

Before defining the sequence {vs : s € w} we still need a couple more definitions. We say
that a stage so is stable for ¢ if the 1-bf-type in C[d*] of any tuple from C[d] has settled by
stage sg, or equivalently, if

(Vs > s0) C[67 0] Ef[(s] C[67 s].

In the definition above we allow § = (), where C[()] is the empty structure.
We say that v € w<¥ is good if for all i < |v|,

12 ANTONIO MONTALBAN

e r; =7, and
e 7(7) is stable for ~ ;.
Notice that being good is a II{ property, and hence if a string is not good, we will eventually
find out.
Observe that if sg is stable for 0, and v O 07 sg, then there is a stage ss such that C[]
embeds in C[0" ss] fixing C[d]. The reason is that

Cly] =1 C[6s0] =5 Clo+),

and hence, it follows from Lemma 4.6 that C[y] embeds in C[dx] fixing C[d].

Our best hope would be to define 75 to be good at all stages. However, this will not be
possible, and we can only try to get v, to be as good as possible.

First, we say that so looks stable for & at £ if (Vs)sg < s < = C[0 " s0) Efm C[67s].

We say that 7 looks good at £, if, for all i < ||,

(L1) r] is the ith stage that looks true at ,

(L2) ~(7) looks stable for v [; at ¢, and

(L3) for every 0 C +, there is an s5 < ¢ such that C[y] embeds in C[07 s;] fixing C[4].

The third item above will be used to recover from our mistakes at the moment when we find
out that some -, is not good. Notice that if a string v is good, it looks good at any sufficiently
large stage ¢ (namely larger that all the ss for 6 C). Thus, for any string v, good or not,
there is a stage ¢ at which either 7 looks good at ¢, or v is been proved to be not good (i.e.,
either (L1) or (L2) above do not hold).

We are now ready to define our construction. The idea is to define 75 so that it looks good
at some large enough stage ¢5. At stage s = 0, non-uniformly we define vy to be any string of
length one which is good, and let £y be any number larger than the one in vy. At stage s+ 1,
suppose we have already defined ~s and /5, and we now want to define 541 and f511. Search
for a stage ¢, a number r with £5 <r < ¢, and an i < |v;| such that

vs [; 1 looks good at ¢,

and one of the following happens:
(C1) i = |7, or
(C2) r?s does not look true at ¢, or
(C3) ~s(i) does not look stable for s [, at /.

Define v541 =75 [; “r and 549 = £.

We claim that will eventually find such ¢, r and i. Let i < |y;| be the largest such that
vs [© is good. Then, there exists an r such that 5 [; 7r is good, and there exists ¢ such that
vs 1 looks good at £. If i = |v,| these ¢, r and i work for us. Otherwise, v, [, is not good
and there must exists an ¢ where we see this is the case and either (C2) or (C3) holds.

We now need to show that C[ys] € C[vs+1]- In the case when 541 D s, we have that
Clvs] <1 C[ys41]- Suppose now that i < |vs|, and let § =+, [;. Since 5 looks good at £, for
ss as in (L3) we have that C[vys] embeds in C[0™ ss] preserving C[d]. Since r > ¢5, we have that
r > s5 and that C[0"ss] C C[0"r]. Since vs41 = d7r, we get that C[ys] embeds in C[yst1]
preserving C[vs [;].

Using this chain of embeddings we can now define C = |J, C[vs].

For each 17, let t; be the first stage such that ~, [; is good. Using standard arguments one
can show by induction on ¢ that ¢; exists, that |y, | = ¢, and that (Vs > ¢;) vs 2 v,. We also
note that for all s > ¢;, the embedding from C[v] into C[ysy+1] preserves Cly,].

Consider now the sequence {C[t;] : i € w}. This sequence is a subsequence of C’s answer in a

game where D plays D[r;] at stage ., (i) and passes at the other stages. Since {D[r;] : i € w}

141

COPYABLE STRUCTURES 13

is a l-approximation to D, we have that {é [ti] : i € w} is a l-approximation to a structure
isomorphic to D. Thus C = D. O

Theorem 5.6. Suppose that K has a computable 1-back-and-forth structure. Then, if K is
oo-copyable, K has the low property.

Proof. The proof is very similar to the one of the lemma above, but now C is using infinitely
many strategies, one of which is correct. The only extra care we need take is that all the
strategies must produce computable structures simultaneously. This requires modifying the
notion of good string a little bit.

We start with a sequence {D][s] : s € w} exactly as above. At each stage s we will build a
finite sequence v € w<* modifying the definition above slightly. Then, pretty much as above,
we will use 7, to determine a finite sequence of moves by D and then we will let C7[,] be the
jth structure in C’s answer to those moves. We will do it in a way that, on one hand, if s is a
true stage, then D only uses the values of 75[7”] at true stages r (which are real steps towards
a l-approximation of D), and, on the other hand, for every j, there exists an s; such that

(Vs > 55) Clvs] € Clyss1]

This latter part will allow us to define computable structures ¢ = | s> C[s] forgetting about
the values of €.

Given an increasing sequence v € w<* and j < |y|, we define Ci [7] to be the jth structure
produced by the step ¢ (= last(y)) outcome of C’s strategy after D has played D[r]] at stage
~(i) for i < |y] — 1, and has passed on the moves that are not in the image of v, exactly as
above. ‘ ‘

Given § € w<¥ we let C7[§*] be the union of the structures C/[y"s] for s € w, exactly as
above.

Before defining the sequence {7 : s € w} we still need a couple more definitions. For
J < 18], we say that a stage s is stable for j and § if the 1-bf-type within C’[d%] of any tuple
from C’[6] has settled by stage so. Accordingly, we say that so looks stable for j and § at (if
(Vs)so < s <€ = Ci[57s0) =P Ci[s~s]. (Notice that C7[6] is not defined when j = |4,
but for the definition of stable to make sense we let Cl%I[§] be the empty structure.)

We say that v € w<“ is good if for all i < |/,

o r; =7 and
e (i) is stable for j and v [; for all j <.

We say that v looks good at £, if, for all i < ||,

(L1) r] is the ith stage that looks true at ,

(L2) for all j <4, v(7) looks stable for j and ~y [; at ¢, and '

(L3) for every 6 C v and every j < ||, there is an s5; < ¢ such that C/[y] embeds in

CI[07 s5] fixing C7[4].

The rest of the construction is exactly as above. At stage s + 1, search for a stage ¢, a

number 7 with /3 <7 < ¢, and an ¢ < |y4| such that

vs [; 7 looks good at ¢,

and one of the following happens:
(C1) i = [7s], or
(C2) r/* does not look true at ¢, or

(C3) for some j < i, v5(i) does not look stable for j and s [; at £.

7

14 ANTONIO MONTALBAN

Define v541 =75 [; "r and 541 = £.

We will eventually find such ¢, r and i for the same reason as above, namely that good
sequences do exists of all lengths. Again, let ¢; be the first stage such that ~, [, is good. By
the same arguments as in the previous theorem, for j < t; and for all s > t;, C/[,] is defined
and C7[ys] € C’[ys41]. Using this chain of embeddings we can now define ¢/ = (J,~,. C7[vs].

We also note that for all s > t; > t;,1, the embedding from C’[vs] into C7[ysi1] preserves
¢’ [’yti]‘

Consider now the sequence {CI[t;] : i € w,i > j}. This the jth structure of C’s answer in a
game where D plays D[r;] at stage 7, . (1) and passes the other stages. Since {D[ry] : i € w}
is a l-approximation to D, we have that, for some j, {é] [t;] : i € w} is a l-approximation to
a structure isomorphic to D. Thus C’ is a computable copy of D. O

6. ADDING GUESSES TO THE GAMES

For each computable ordinal «, we define a new version, G*(K), of the game that is in
between the game G(K) and the game G*(K). (For concreteness, the reader may assume « is
a natural number for the rest of this section.)

In the game G%(K), player C still gets to enumerate infinitely many structures C' as in
G*>(K), but he has to point at the one he claims is isomorphic to D, and he is allowed to
use a-Turing jumps to choose which structure to point at. More concretely, the game G (K)
is played exactly as the game G*°(K), but C has to start by picking an index e € w for the
procedure he is going to use to pick his structure C.

Player D | Do) < D[] < D2 --- D=J,D]s]
Player C Coe[O] c iy < 2 c C0=J,Cs
co] € O € -l =Ulcls)

After the game is finished, we decide who wins as follows:

(1) If for some i, C* ¢ K, then D wins.

(2) If for all 4, C* € K, but D ¢ K, then C wins.

(3) If D € K, but {e}X<a)(0) 7, then D wins, where X = (D[s] : s € w). Otherwise, let
. x(e)
io = {e}* (0). ,

(4) If D,C% C, ... ¢ K and D =2 C%, then C wins.

(5) If D,CY% C, ... ¢ K and D % C%, then D wins.

Definition 6.1. We say that K is a-copyable if C has a computable strategy in the game
G*(K). We say that K is a-diagonalizable if D has a computable strategy in the game G*(K).

Observation 6.2. We note that for a class K
copyable = 1-copyable = 2-copyable = 3-copyable = - - oco-copyable,
and that
diagonalizable < 1-diagonalizable < 2-diagonalizable < - - - oo-diagonalizable.
For an oo-copyable class K, we define the game ordinal of a class K to be the least ordinal

« such that K is a-copyable (relative to some X). We expect these games to give much finer
information about the structure K than the games G(K) and G*(K).

COPYABLE STRUCTURES 15

7. LINEAR ORDERINGS

In this section we show that the class of infinite linear orderings is 4-copyable (and hence
oo-copyable) and 2-diagnonalizable.

Lemma 7.1. The class of infinite linear orderings with no mazximal elements is copyable.

Proof. Let us describe C’s strategy. At each step s, C will keep track of an isomorphism
p: D[s] — C]s] so that the image of p is always an initial segment of C[s]. While D passes,
C adds elements to the right end of C[s]. If D adds an element to its structure which is to
the right of all the previous elements, then C maps it through p to the least element in C[s]
outside the image of p, if such an element exists, and adds one element if it does not exist.
If D adds an element to D[s] which is not to the right of the rest, then C adds an element to
C[s] in the appropriate place so that it can extend p to D[s].

Since D has no maximal elements, then all elements in C will eventually be part of the
image of p, and we will get an isomorphism between D and C. O

Lemma 7.2. The class of linear orderings is 4-copyable.

Proof. Player C will build structures

° CO7

° Cl,

e C%L for each a in the domain of D (that is, in w),
e C»% for each a in the domain of D,

e C%" for each a,b in the domain of D, and
o C2.

Each structure will be built using a different strategy under a different guess about D. When-
ever this guess is correct, we will get an isomorphic copy of D, and it is going to take us 4
Turing jumps to guess corectly.

We build C° exactly as in the previous lemma, under the assumption that D has no greatest
element. We build C! in a symmetric way, assuming D has no least element.

For each a in the domain of D, we build C*¥ under the assumption that @ is a limit point of
D from the left, (that is, that Vo < a3y (z < y < a)). All we do is build C*" as a sum of two
linear orderings, the right one copying D>, step by step (and passing when D passes), and the
left one copying D, using the strategy of the previous lemma (where C never passes), since
we are under the assumption that D(.,) has no maximal element. We build C»® analogously
under the assumption that a is a limit point from the right. These are II§ guesses.

For each a,b € D, we build C*? under the assumption that the interval (a, b)p is isomorphic
to w4 w*. We build C*? as a sum of three linear orderings, the left one copying D(<q) step by
step, the right one copying D(>) step by step, and the middle being a copy of w + w* adding
one new element at each step. These are II5 guesses.

Suppose that none of these guesses is right. So, D has a least element, a greatest element
and any other element has a predecessor and a successor. Thus D has the form w+ (- £+ w*
for some linear ordering £ (where (is the ordering of the integers). Furthermore, since D has
no segments isomorphic to w + w*, £ cannot have two adjacent elements, nor it can have a
least or a greatest element. It follows that the only possibility left is that D 2 w + (- n + w*
(where 7 is the ordering of the rationals). Just build C? to be w + ¢ - n + w*.

Guessing that all the previous guesses are wrong is IIj, so within 4 Turing jumps of the
diagram of D we can choose the correct strategy to copy D. O

16 ANTONIO MONTALBAN

Note the similarity in flavor of the above argument and Rosenstein’s theorem that every
computable linear ordering has a computable sub-ordering isomorphic to either w, w*, w + w*
orw+(¢-n+w.

Lemma 7.3 (Kach-Montalban, with ideas from Jockusch and Soare [JS91]). The class of
linear orderings is diagonalizable.

Proof. The strategy for D is the following:

We pledge that D will be isomorphic to either w or m + w* for some m € w. Wait for one
element ¢ to appear in C, which we fix for the rest of the construction.

At each stage s, let n[s] be the number of predecessors of ¢ in C[s].

For our construction, we will use a restraint-function m/[s]; we will never add elements
to D[s] below its m[s]'th element. Start by setting m[s] = 0. At all stages we make sure
m[s] < n[s]. At stage s:

(1) If C enumerates an element to the right of ¢ at stage s, we enumerate one more element
to the right of the m[s]’th element of D[s]. That is, we take one step towards enumerating
m[s] + w*. We note that if this happens infinitely often without changing the value of m[s],
then ¢ in C will have infinitely many elements to its right and n[s] many to its left, while no
element in m[s] + w* has this property.

(2) If C enumerates an element to the left of ¢, we pass, unless n[s] becomes greater than
|D[s]]. In this case we take this opportunity to take one step towards building D = w: We
re-set m[s] = |Ds|, ensuring that every element enumerated in the future is to the right of all
elements of D[s]. Notice that if this happens infinitely often, we will get that D = w and that
¢ has infinitely many elements to its left in C.

If Cis actually building an infinite linear ordering, then either (2) will occur infinitely often,
or from some point on (1) will occur infinitely often without m|s| changing. We already argued
that in either case we are getting D 2 C. (]

Lemma 7.4. The class of linear orderings is 2-diagonalizable.

Sketch of the proof. Tt is well know that a 0” guess can be viewed as “the least one that repeats
infinitely often.” More formally, given e € w and X € 2¥, one can build computable functions
z and g such that

e there is at most one ¢ such that z(s) = ¢ for infinitely many s,
e such an / exists if and only if {e}X"(0) |, and
e if {5 = z(s) for infinitely many s, then {e}X”(0) = g(fo).
A proof of this fact is given in [HM]. The proof is actually uniform in e and X.

To define D’s strategy, we start by waiting to see what number e C plays, and then consid-
ering the functions z and g as above. The strategy will have infinitely many requirements Ry
working under the assumption that z(s) = ¢ for infinitely many s, and trying to diagonalize
against C9(). For ¢y < (1, Ry, will have higher priority than Ry,. At each stage s, we act for
requirement Ry, and initialize R, for all £ > 2(s).

Each requirement R, will choose an element ¢, € C, and use auxiliary values ny[s] and
my[s]. The one new condition we will require is that if ¢y < ¢1, then my,[s] < my,[s] (if both
are defined). The first time Ry acts (after its last initialization) it wants to choose my[s] >
max{m;[s] : 7 < £}. So, Ry won’t start acting until C[s] has more than max{m;[s] : j < £}
many elements, and only then it will chose ¢, to be the last element in C[s], ng[s] to be the
number of elements in C[s] to the left of ¢, and my[s] = ny[s]. At the rest of the stages for
which z(s) = ¢, R, will act exactly as the strategy for D in the lemma above.

Suppose that {e}X"(0) | and z(s) = £y for infinitely many s. Standard arguments show
that there will be a stage after which Ry, is never initialized again, and the requirements to

COPYABLE STRUCTURES 17

the right of ¢y do not injure R, . Arguing like in the lemma above we will get that either
limg my,[s] |=m, D = m+ (¢ and ¢y, has at least m elements to its left and infinitely many
to its right, or limg my,[s] = co, D = w and ¢y, has infinitely many elements to its left. O

REFERENCES

[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra is isomorphic to a recursive one. Proc.
Amer. Math. Soc., 122(3):871-880, 1994.

[GN02] S. S. Goncharov and Dzh. Nait. Computable structure and antistructure theorems. Algebra Logika,
41(6):639-681, 757, 2002.

[HM] Kenneth Harris and Antonio Montalban. Boolean algebra approximations. Submitted for publication.

[HM12] Kenneth Harris and Antonio Montalbdn. On the n-back-and-forth types of Boolean algebras. Trans.
Amer. Math. Soc., 364(2):827-866, 2012.

[JS91] Carl G. Jockusch, Jr. and Robert I. Soare. Degrees of orderings not isomorphic to recursive linear
orderings. Ann. Pure Appl. Logic, 52(1-2):39-64, 1991. International Symposium on Mathematical
Logic and its Applications (Nagoya, 1988).

[KM11] Asher M. Kach and Antonio Montalbdn. Cuts of linear orders. Order, 28(3):593-600, 2011.

[KS00] Julia F. Knight and Michael Stob. Computable Boolean algebras. J. Symbolic Logic, 65(4):1605-1623,
2000.

[Mil01] Russell Miller. The AJ-spectrum of a linear order. J. Symbolic Logic, 66(2):470-486, 2001.

[Mona] Antonio Montalbdn. Rice sequences of relations. To appear in the Philosophical Transactions A.

[Monb] Antonio Montalbdn. When hyperarithmetic is recursive. In Preparation.

[Mon09] Antonio Montalbédn. Notes on the jump of a structure. Mathematical Theory and Computational
Practice, pages 372-378, 2009.

[Mon10] Antonio Montalbdn. Counting the back-and-forth types. Journal of Logic and Computability, page
doi: 10.1093/logcom/exq048, 2010.

[Nur74] A. T. Nurtazin. Computable classes and algebraic criteria for autostability. PhD thesis, Institute of
Mathematics and Mechanics, Alma-Ata, 1974.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, USA
E-mail address: antonio@math.berkeley.edu
URL: wuw.math.berkeley.edu/~antonio

http://www.math.berkeley.edu/~antonio/index.html

	1. Introduction
	The game
	Listable classes
	The low property
	Adding guesses to the game

	2. The game
	2.1. Listable classes

	3. The infinity game
	4. The back-and-forth structure
	5. The low property
	6. Adding guesses to the games
	7. Linear orderings
	References

