
CODING AND DEFINABILITY IN COMPUTABLE STRUCTURES

ANTONIO MONTALBÁN

In computable structure theory, we study the computational aspects of mathematical
structures. We are interested in questions like the following: How difficult is it represent
a certain structure? Which structures can be represented computably? How difficult is
it to recognize a given structure? How can information be coded in the isomorphism type
of a structure? How difficult is to compute certain relations on a structure, or perform
certain constructions on it? We are particularly interested in answers that connect
computational properties with algebraic or combinatorial properties of the structure.

Let K be a class of countable structures, like, for example, the class of all countable
linear orderings. Let n be a natural number. The reader may start assuming n = 1,
as this case is already interesting enough. In this course we will analyse the following
two questions: Can we characterize all the relations on the structures of K that can
be defined within n Turing jumps? How much information can be encoded into the
(n − 1)th Turing jump of the structures in K? We will see that these two questions
are closely connected. Furthermore, we will see that these questions are connected
with other a structural property of the class K, namely the number of n-back-and-forth
equivalence classes in K.

The idea of the course is to introduce some basic concepts about computable struc-
tures and to develop all the background necessary to present the main result from
[Mon10]. We will give lots of examples along the way. A large number of these ex-
amples will be about the class of linear orderings, as this is a class that has been well
studied by computability theorist and that presents an interesting behavior.

We will start the paper introducing the notions of Turing degree and degree spectrum
of a structure. Then, in the second section, we will look at the information that is
encoded on a structure and possible ways to decode it. Section 3 is about the relations
that can be defined in a structure within a certain number of jumps. In Section 4 we
will present a standard technique to build copies of a structures that we will use to
prove some fundamental theorems from the previous sections. Then, in Section 5, we
introduce the notion of the jump of a structure. Finally, in the last section, we will show
the main theorem from [Mon10], that for a class of structures K and for a number n,
either we can nicely characterize all the relations in the structures of K that are defined
within n jumps, or we can (weakly) code any set in the (n−1)st jump of some structure
from K, but not both–either one or the other. This proof requires introducing the useful
notion of n-back-and-forth relations.

0 Saved: on Oct 28
Compiled: November 22, 2010

These lecture notes were produced after a one-month-, 10-hour-long course Montalbán gave at the
University of Notre Dame in September 2010. An original version of these notes, which are now the
back-bone of this paper, were produced during the course by Notre Dame students: Jesse Johnson,
Steve VanDenDriessche, Quinn Culver and Victor Ocasio Gonzalez.

1

2 ANTONIO MONTALBÁN

1. Degrees of Structures

Throughout this course we will use L to denote a countable language, that is, a set
of symbols for constants, functions and relations. We will study countable L-structures
from a computable view point.

Definition 1.1. L is a computable language if there is a computable procedure that,
given a symbol, tells what kind of symbol it is and also gives the arity of the symbol, if
the symbol is a relation or a function. For this to make sense, every symbol in L has to
have an associated Gödel number.

All the languages we will consider are computable.
We would like to have some notion of computational complexity for structures. Since

computability theory is developed on the natural numbers we need to work with struc-
tures whose elements can be enumerated by natural numbers. Given a structure A , a
presentation of A is nothing more than isomorphic copy of A whose domain is either
ω or an initial segment of ω (the latter case being only possible when A is finite).
Since we will consider only countable structures, all structures have presentations, and
whenever we are given a structure, we will assume we are given a presentation for it.

When L is finite, the Turing degree of a presentation can be defined to be the join
the Turing degrees of its relations and functions (which are subsets of ωk for relations
of arity k and subsets of ωk+1 for functions of arity k). When L is infinite, the situation
is slightly more delicate, and we need to take an infinite join taking in consideration
the Gödel numbering of each symbol. Instead of doing this, we will use a different, but
equivalent, definition of degree of a presentation.

For each natural number i, we consider a constant element bi. Given a presentation
B with domain B ⊆ ω, for each i ∈ B, we interpret bi as i. We enumerate all the
atomic formulas {φ0, φ1, . . . } of the language L ∪ {b0, b1, . . . } in some effective way.

Definition 1.2. The degree of a presentation B is deg(D(B)), where D(B) is the
atomic diagram of B, that is

D(B) = {i ∈ ω : B |= φi} ⊆ ω,

and deg(X) is the Turing degree of X. We say that Y ⊆ ω computes a copy of A , if
D(B) ≤T Y for some presentation B of A .

Note that this definition is no different from our first notion of degree since atomic
formulas determine, nothing more, and nothing less, than the relations among elements
and the values of the functions.

This notions of degree of a presentation, is clearly dependent on the particular pre-
sentation chosen for a certain structure, and two isomorphic presentations of the same
structures might have different degree. We would like to have a way of measuring the
complexity of an isomorphism type of a structure that is independent of the particular
presentation chosen.

Definition 1.3 (Jockusch [Ric81]). Given X ⊆ ω, we say that an L-structure A has
Turing degree X if

(∀Y ⊆ ω) Y computes a copy of A ⇔ Y ≥T X.

COMPUTABLE STRUCTURE THEORY 3

It is clear that if such an X exists, it determines the complexity of the structure A .
But the is no reason to assume that, for a structure A , such a set X exists. Let us see
a few examples.

Example 1.4. A has a computable copy iff A has Turing degree 0.

Example 1.5. Fix X ⊆ ω. Let G be a graph that consists of disjoint cycles where if n ∈ X,
then G has a cycle of length 2n + 3, and if n 6∈ X, then G has a cycle of length 2n + 4, and
there are no other cycles in G.

Claim 1. G has Turing degree X.

Proof. (⇐): Suppose Y ≥T X. We need to show that Y computes a copy of G. We build G
step by step. Recall that G will have domain ω, that is, each vertex will be represented by a
natural number. At the first step, if 0 ∈ X, we build a cycle in G using the first three natural
numbers, and if 0 6∈ X, we use the first four natural numbers. At the (n+ 1)-st step, using Y
as an oracle, we can determine whether or not n ∈ X. If n ∈ X, then we use the next 2n+ 3
numbers to make a cycle. Otherwise, we use the next 2n+ 4 numbers.

(⇒): Suppose Y computes a copy of G. We need to show that Y ≥T X. So given n, using
oracle Y , we want to determine if n ∈ X. Again using Y as an oracle, we can look through
our copy of G element by element. As we search, we can see which elements are part of a
cycle, and we can easily determine the length of these cycles once we find them. So we search
through our graph until we find a cycle of length 2n+ 3 or 2n+ 4, exactly one of which will
appear by our construction of G. If we find a cycle of length 2n+ 3, then n ∈ X. If we find a
cycle of length 2n+ 4, then n 6∈ X. Therefore, Y ≥T X. �

We have shown that for every set X there is a graph with Turing degree X.

Example 1.6. The situation with linear orderings is quite different.

Theorem 1.7 (Richter [Ric81]). Every linear ordering has two presentations, A and B, such
that

deg(A) ∧ deg(B) = 0.

Corollary 1.8. Only if X ≡T 0, we can have a linear order L with Turing degree X.

Proof. Suppose that L has a Turing degree X. Consider the presentations A and B of L that
satisfy the previous theorem. Then deg(A) ≥T X and deg(B) ≥T X. So deg(A)∧deg(B) ≥T
X. Therefore, by the choice of A and B, X ≡T 0. �

Since there are continuum many linear orderings, and only countably many of them
have computable copies, this corollary shows that most linear orderings do not have
Turing degree. This indicates that our definition for degrees of structures may not be
as good as we would like. The following definition works for all structures.

Definition 1.9. Given a structure A , we define the degree spectrum of A to be

Spec(A) = {deg(B) : B is a copy of A } ⊆ D,

where D is the set of all Turing degrees.

Notice that a structure A has Turing degree X if and only if Spec(A) = {deg(Y) :
Y ≥T X}, the cone above deg(X). But degree spectra do not always need to be shaped
as a cone above a degree.

4 ANTONIO MONTALBÁN

To introduce the next theorem, we must say what a trivial structure is. A structure
is trivial if there are finitely many elements such that any permutation of the domain
of the structure which leaves these elements fixed is is an automorphism. For example,
a complete graph, where all elements are related, is trivial as any permutation of the
vertices is an automorphism.

Theorem 1.10 (Knight [Kni98]). For every non-trivial structure A ,

Spec(A) = {x ∈ D : x computes a copy of A }.

Thus, Spec(A) is upwards closed in the Turing degrees.

2. Information coded on a structure

Knight’s theorem above implies that, given a non-trivial structure A , we have that,
for every set X ⊆ ω, there is a copy of A that computes X. In short, every non-trivial
stucture has a copy that, in a sense, encodes any information we want. However, if we
want to look at the information that is encoded in the isomorphism type of a structure,
we would like this information to encoded in every copy of A .

Definition 2.1. A set D ⊆ ω is coded by a structure A if D is computably enumerable
in the degree of every presentation of A .

A set D ⊆ ω is strongly coded by a structure A if D is computable in every presen-
tation of A .

Note that D is strongly coded in A if and only if D and D are coded in A (where
D is the complement of D). Also note that any c.e. set is coded by any structure.

Example 2.2. Linear orders cannot strongly code anything except 0. This follows from
Richter’s Theorem 1.7 above.

Example 2.3. Consider our graph G from Example 1.5 above. Notice that G strongly codes
X. Let GY be a graph consisting of cycles where it has a cycle of length n+ 3 if and only if
n ∈ Y . Then Y is coded by GY . Note that our original example was GX⊕X .

Sometimes, information is not coded in such a direct way.

Example 2.4. Let X ⊆ ω. For each n, construct a linear order

Ln '

{
Z if n 6∈ X
Z+ (n+ 1) + Z if n ∈ X,

where Z + (n + 1) + Z means we have an order consisting of a Z-chain, followed by n + 1
elements, followed by another Z-chain. Let

LX = L0 + L1 + L2 + · · · .

It is clear that, in some way, the set X is encoded in LX . How difficult is it to decode it
this information from LX? Unfortunately, it is not that easy.

Claim 2. If Y computes a presentation of LX , then X is c.e. in Y ′′.

Proof. We know that n ∈ X if and only if we can find n + 1 elements in the linear ordering
with a few properties: these elements must form a chain with no other elements in between

COMPUTABLE STRUCTURE THEORY 5

them, and this chain must be in between two Z-chains. We can express these conditions in
the following formula about LX :

n ∈ X ⇔ ∃x0, . . . , xn ∈ LX


x0 < x1 < · · · < xn &
∀y(x0 ≤ y ≤ xn → y = x0 ∨ · · · ∨ y = xn) &
∀y < x0∃z(y < z < x0) &
∀y > xn∃z(xn < z < y)

 .

Since LX is Y -computable, notice that the information inside the large parentheses is a ΠY
2

statement. So Y ′′ computes it. The outside existential quantifier makes membership in X a
ΣY

3 statement. This is equivalent to saying that X is c.e. in Y ′′. �

This example motivates the following definition.

Definition 2.5. D is coded by the nth jump of a structure if D is c.e. in the nth Turing
jump of the degree of any presentation of A .

Example 2.6. So, in the example above we get that X is coded in the 2nd jump of LX . We
will now show that the statement of the claim above is sharp.

Claim 3. Y can compute a presentation of LX ⇔ X is ΣY
3 .

Proof. (⇒) This direction was done in the previous claim.
(⇐) Suppose X is ΣY

3 . Then there is a Σ0
3(Y) formula ∃xφ(n, x), where φ(n, x) is Π0

2(Y)
and n ∈ X ↔ ∃xφ(n, x). Let φ(n, x) = ∀yθ(n, x, y) where θ is Σ0

1(Y). We want to make two
standard assumptions on our formulas φ and θ.

• If ∃xφ(n, x), then ∃!xφ(n, x).
• If θ(n, x, y), then ∀y′ < yθ(n, x, y).

For the first assumption, we need to change φ(n, x) for a formula that says that 〈x′, y′〉 is
a pair such that x′ is the first witness for φ(n, x) and y′ is the least element below which we
can find witnesses showing that φ(n, x1) does not hold for any x1 < x′. (See the Figure fig W
of W = θ.) All we need to do is replace φ(n, x) by the formula

(x = 〈x′, y〉)) ∧ φ(n, x′) ∧ (∀x1 < x′)(∃y1 < y′)¬θ(n, x1, y1)∧
¬((∀x1 < x′)(∃y1 < y′ − 1)¬θ(n, x1, y1)).

Note that this formula is Π0
2(Y). Once we are assuming φ satisfies the first assumption, for

the second assumption all we need to do is replace θ(n, x, y) by ∀y′ ≤ yθ(n, x, y′).
We may proceed with the proof. Fix some n. We want to build Ln uniformly in n. Let

W = {(x, y) | θ(n, x, y)}. Let An = (ω,≤An) be a computable presentation of ω+ (n+ 1) +ω∗

where ω∗ is the ordering of the negative integers.
Using An, we will define an ordering≤W onW essentially by restricting the product ordering

(ω,≤)× (ω,≤An) on ω2 to W . We define ≤W as follows:

(x1, y1) ≤W (x2, y2)⇔ ((x1 < x2) ∨ (x1 = x2 ∧ y1 ≤An y2)).

This means that (x1, y1) ≤W (x2, y2) if and only if either the x1 column is to the left of the x2

column or if the points are in the same column then the y1 entry appears below the y2 entry
in the An ordering.

If n 6∈ X, then every column of W if finite. So our final ordering will be an infinite sequence
of finite linear orders, and hence will look like ω. If n ∈ X, then we will have exactly one
column of 1’s, as in Figure 1. In this case, inside this column, the ordering is isomorphic to
An. Therefore, our final ordering would look like (finite order) +An + ω.

6 ANTONIO MONTALBÁN

x

y

1

1

0

0

1

1

1

0

0

1

1

1

1

1

1

1

1

0

0

...
An

x′

y′

.

Figure 1. Figure of W ⊆ ω2 when n ∈ X.

The domain of this ordering is W which is c.e. in Y , but not necessarily computable in Y .
If we consider a Y -computable one-to-one enumeration of W , say {w0, w1, ...}, we can pull
back the ordering ≤W to ω: Let ≤V be an ordering on ω such that i ≤V j if wi ≤W wj . So we
have that V = (ω,≤V) is a Y -computable linear ordering that is isomorphic to either ((finite
order) +An + ω) or ω depending on whether n ∈ X or not.

Finally, let Ln = ω∗ + V . Then, if n ∈ X, we have that Ln = ω∗ + (finite order +ω+ (n+
1) + ω∗) + ω ' Z + (n + 1) + Z, and if n 6∈ X we have that Ln = ω∗ + ω ' Z, as desired.
Since this Y -computable construction of Ln is uniform in n, Y can compute a presentation of
LX = L0 + L1 + · · · . �

Definition 2.7. Given X ≥T 0(n), we say that a structure A has nth-jump Turing
degree X if and only if ∀Y (Y can compute a copy of A ↔ Y (n) ≥T X).

Example 2.8. Observe that for every X ⊆ ω, in the example above we have that LX⊕X̄ has

2nd-jump Turing degree X since X ≤T Y ′′ ↔ X ∈ ΣY
3 ∧ X̄ ∈ ΣY

3 .

Theorem 2.9 (Knight [Kni86]). Every linear order has two copies A , B such that

(deg(A))′ ∧ (deg(B))′ = 0′.

Corollary 2.10. Only for X ≡T 0′, there exists linear orderings which have 1st-jump Turing
degree X.

Proof. Suppose that L is a linear ordering with 1st-jump Turing degree X. Therefore (∀Y),
Y computes a copy of L ↔ Y ′ ≥T X. Let Y1 and Y2 be the degrees of the two copies of L
that satisfy the previous theorem. Thus, Y ′1 ∧ Y ′2 = 0′. Since Y ′1 ≥ X and Y ′2 ≥ X, we have
0′ ≥ X. So X = 0′. �

Definition 2.11 (Jockusch and Soare [JS94]). Given a class of structures K, and an
ordinal α, we say that K has Turing ordinal α if for every X ≥T 0α, there is a structure
in K with α-th jump Turing degree X, and for every β < α, only for X ≡T 0β can a
structure in K have βth-jump Turing degree X.

Example 2.12. (1) Graphs have Turing ordinal 0, as it follows from Example 1.5.
(2) Linear Orderings have Turing ordinal 2, as it follows from Theorem thm: kni86 and

Example 2.6.

COMPUTABLE STRUCTURE THEORY 7

(3) Boolean Algebras have Turing ordinal ω ([JS94]).
(4) Equivalence structures have Turing ordinal 1 (see [Mon10] for a proof).

2.1. Coding and enumeration reducibility. In this section we will give a charac-
terization of the sets coded in a structure. We will delay the proofs to Section 4 below.
Let us start by recalling the notion of enumeration reducibility.

Theorem 2.13 (Selman [Sel71]). Let A,B ⊆ ω. The following are equivalent:

(1) There exists a Turing functional Φ such that for every onto function f : ω → B,
Φf is a and onto function from ω to A.

(2) For every onto function f : ω → B, there exists g ≤T f which is an onto function
from ω to A.

(3) For every X ⊆ ω, if B is c.e. in X, then A is c.e. in X.
(4) There exists a c.e. set Γ ⊆ Pf (ω) × ω, (where Pf (ω) is the set of finite subsets

of ω) such that

A = {n ∈ ω : (∃D ∈ Pf (ω)) 〈D,n〉 ∈ Γ ∧D ⊆ B}.

Definition 2.14. If A and B satisfy any of the conditions of the theorem above, we
say that A is enumeration reducible to B, and we write A ≤e B.

There is one other bit of notation that we need before our characterization of the
sets coded in a structure. Given ā ∈ A<ω, we let Σ1 -tpA (ā) ⊆ ω, the Σ1-type of ā, be
the set of indices of finitary Σ1 formulas φ(x̄) such that A |= φ(ā). Notice that the set
Σ1-tpA (ā) is defined independently of the given presentation of A . It is not hard to
see that for every ā, Σ1-tpA (ā) is coded in A . The next theorem says that, essentially,
these are the only sets that are coded in a structure A .

Theorem 2.15 (Knight [AK00]). A set X is coded in a structure A if and only if for
some ā ∈ A<ω,

X ≤e Σ1 -tpA (ā).

The proof of this theorem is somewhat similar to the one of Theorem 4.2.

2.2. Weakly coding. There is another way of coding information into a structure
without taking jumps. We first need to recall the notion of left c.e. set. For σ, τ ∈ 2<ω,
we let σ ≤Q τ if for γ = σ ∩ τ , we have that σ is compatible with γ_0 and τ is
compatible with γ_1. It not hard to see that (2<ω,≤Q) is isomorphic to the ordering
on the rationals. We can then extend this ordering to 2≤ω in the obvious way, getting
the lexicographic ordering when restricted to 2ω. We say that a D ∈ 2ω is left c.e. if
{σ ∈ 2<ω : σ <Q D} is c.e.. These reals are also sometimes called left-approximable or
c.e. reals.

Definition 2.16. D is weakly coded in the nth jump of A if for every B ∼= A , D is left
c.e. in D(B)(n).

We will that in some cases weakly coding is all we can do.

Example 2.17. We will now define a class of structure K, such that every structure A of K
is determiened by a ≤Q-downwards closed subset RA of 2<ω, and such that RA is coded in
A (i.e. it is c.e. in every copy of A).

8 ANTONIO MONTALBÁN

The language for these structures consists of two unary relations A and B, a function symbol
f , and a constant symbol cq for each q ∈ 2<ω. The set RA that we mention above will be
decoded from the set of cq’s which are in the range of f . Let K be the class of structures on
this language which satisfy the following properties:

• A and B partition the universe in two sets.
• Every element of B is named by some constant cq, and no element of A is.
• Different constants are assigned to different elements.
• The range of f is included in B.
• f is the identity on the elements of B.
• f is one-to-one on the elements of A.
• If q <Q r ∈ 2<ω and (∃x ∈ A)f(x) = cr, then (∃y ∈ A)f(y) = cq.

It is not hard to see that each structure A of K is completely determined by the set
RA = {q ∈ 2<ω : A |= (∃x ∈ A)f(x) = cq} which is an initial segment of (2<ω,≤Q), an could
be any given initial segment of (2<ω,≤Q). Furthermore, RA is coded by A . Therefore, for
every D ∈ 2ω, there is a structure A ∈ K with RA = {σ ∈ 2<ω : σ <Q D}, and hence A
weakly codes D.

3. Relations on a structure

Definition 3.1. A relation R on a structure A (R ⊆ Ak) is relatively intrinsically
computably enumerable (r.i.c.e.) if for every copy (B, Q) of (A , R), Q is c.e. in D(B).

Example 3.2. Let L be a linear order and let Succ(x, y) ≡ x < y ∧ ∀z¬(x < z < y).
¬ Succ(x, y) is r.i.c.e.. To see this, given two elements x, y, for ¬ Succ(x, y) to hold, either
y < x, which we can tell computably, or there is a z such that x < z < y, which we can search
computably.

Example 3.3. On a graph, the relation Conn(x, y) ≡ (x and y are joined by a path) is r.i.c.e..
To see this, just enumerate all the paths in the graph looking for a path between x and y.
This is a c.e. process.

Note that there is no 1st order formula in the language of graphs that defines connectedness.

The definition of relatively intrinsically computably enumerable relation can be ex-
tended in an obvious way to the whole arithmetic hierarchy.

Definition 3.4. A relation R on a structure A is relatively intrinsically Σ0
n if for every

copy (B, Q) of (A , R), Q is many-one reducible to D(B)(n).

Thus, these relations are exactly the ones that can be define within n Turing jumps
of the structure, independently of the presentation of the structure. Our goal now is to
characterize the relatively intrinsically Σ0

n relations on a structure.

Definition 3.5. Given a set L of relation, function and constant symbols, we introduce
the infinitary language over it. Lω1,ω is the least set of formulas such that

• All first order L-formulas are in Lω1,ω.
• If {φ0, φ1, . . . } ⊆ Lω1,ω and altogether they use only finitely many free variables

then
∧
i∈ω φi and

∨
i∈ω φi ∈ Lω1,ω.

• If φ ∈ Lω1,ω, then ∀xφi ∈ Lω1,ω and ∃xφi ∈ Lω1,ω.

COMPUTABLE STRUCTURE THEORY 9

The interpretation of an infinitary formula on an L-structure is defined in the obvious
way.

The hierarchy of Lω1,ω formulas is defined as follows. The Σin
0 and Πin

0 formulas are
formulas without quantifiers and without infinite disjunctions or conjunctions. The Σin

n

formulas are the ones of the form
∨
i∈ω ∃x̄φi(x̄), where φi is Πin

m for some m < n, and
the Πin

n formulas are the ones of the form
∧
i∈ω ∀x̄φi(x̄), where φi is Σin

m for some m < n.
This definition can be extended throughout the ordinals, but in this paper we only
consider the finite levels. (See [AK00, Chapter 6].)

A formula φ ∈ Lω1,ω is computably infinitary if all its conjunctions and disjunctions
are of c.e. sets of formulas. We then denote Σc

n for the computably infinitary Σin
n

formulas, and Πc
n for the computably infinitary Πin

n formulas. (See [AK00, Chapter 7].)

For this definition to make sense, that is, to be able to talk about c.e. set of formulas,
we need to assign a Gödel number to each computably infinitary formula. This is done
from the bottom up. That is, we define the codes for the Σc

n and Πc
n by recursion on

n: Once all the Σc
n−1 and Πc

n−1 formulas have Gödel numbers, we can give codes to the
Σc
n and Πc

n formulas using the index for the c.e. sets of formulas being considered.

Example 3.6. On a graph (V,E), Conn(x, y) ≡
∨
n∈ω ∃x1, . . . , xn(xEx1∧x1Ex2∧· · ·∧xnEy).

Note this is a Σc
1 formula.

Example 3.7. “A group is torsion” (all elements have finite order) can be defined by ∀x
∨
n∈ω x

n =
1. This one is a Πc

2 sentence.

Observation 3.8. If φ(x̄) is a Σc
n formula, then {ā ∈ A|x̄| : A |= φ(ā)}, as a subset of ω,

is Σ0
n in D(A). Furthermore, this is uniform in φ. That is, if ϕi(x̄i) denotes the ith Σc

n

formula in a standard enumeration, then {〈i, ā〉 : i ∈ ω, i ∈ A|x̄i|,A |= φi(ā)} is also Σ0
n

in D(A).

The following theorem gives the first characterization of set relatively intrinsically Σ0
n

relations. Notice how this theorem provides an equivalence between a computational
notion that is defined in terms of the presentations of a structure and a syntactical
notion that is completely independent of the presentations involved.

Theorem 3.9. [Ash, Knight, Manasse, Slaman; Chishholm] Given a relation R on A ,
the following are equivalent:

(1) R is relatively intrinsically Σ0
n.

(2) There are a Σc
n formula φ(x̄, ȳ) and parameters b̄ ∈ A such that

(∀ā ∈ Ak) ā ∈ R⇔ A |= φ(ā, b̄).

We will prove this theorem at the end of Section 5. Now, we will see how, in some
cases, one can find a much better characterization of the relatively intrinsically Σ0

n

relations.

Example 3.10. The class of linear orderings gives us again a nice example.

Lemma 3.11. In the class of linear orderings, every Σc
1 formula is equivalent to a finitary

Π1 formula in the language (≤, Succ).

Before proving this lemma, we need to prove the following auxiliary result.

10 ANTONIO MONTALBÁN

Lemma 3.12. For (a1, a2, . . . , an) and (b1, b2, . . . , bn) ∈ ωn, we declare (a1, . . . , an) ≤ (b1, . . . , bn)
if (∀i ≤ n) ai ≤ bi. Then, every A ⊆ ωn has a finite subset B ⊆ A such that

∀x ∈ A∃y ∈ B(y ≤ x).

This lemma says is that ≤ is a well-quasi-ordering.

Proof. Since ≤ is clearly well founded, A has a subset B of minimal elements, satisfying
∀x ∈ A∃y ∈ B(y ≤ x). We need to prove that B is finite. Note that all the elements of
B are incomparable, so, it will be enough to show that (ωn,≤) has no infinite antichains.
We claim that for every sequence {x̄i : i ∈ ω} ⊆ ωn, ∃i, j(i ≤ j) ∧ (x̄i ≤ x̄j). The proof of
this claim is done by induction on n: Split each x̄i as ȳi_mi where ȳi ∈ ωn−1 and mi ∈ ω.
There is a subsequence where the mi’s are non-decreasing. Along this subsequence, we know
by induction, that there are i < j such that ȳi ≤ ȳj . Since mi ≤ mj for all i < j in that
subsequence, we get x̄i ≤ x̄j . This completes our induction step. �

We now prove the Lemma 3.11.

Proof. Let x̄ = (x1, . . . , xn) and φ(x̄) =
∨
i∈ω ∃ȳiψi(x̄, ȳi), where the ȳi can be of different

lengths for different i’s. We need to show that this is equivalent to a finitary Π1 formula. For
each finite map f from the set of variables {x̄, ȳi} to an initial segment of ω, let ψf (x̄, ȳi) be
the formula that says that these variables appear in the same order as their image through f .
That is ψf (x̄, ȳi) is conjunction of the formulas w < z for w, z ∈ {x̄, ȳi} with f(w) < f(z) and
the formulas w = z for w, z ∈ {x̄, ȳi} with f(w) = f(z). It is not hard to see that each each ψi
is equivalent to a finite disjunction of formulas of the form ψf . So, by pulling the disjunction
out, we can assume all the ψi are of this form.

Since there are only finitely many ways to order x̄, it is enough to show that φ(x̄) ∧ (x1 <
x2 < · · · < xn) is equivalent to a Π1 (≤, Succ)-formula. So, we can assume all the ψi are
consistent with (x1 < x2 < · · · < xn). Then ψi looks like

y1 < y2 < · · · < yli0
< x1 < yli0+1 < · · · < yli1

< x2 < yli1+1 < · · · < x2 < · · · < x3 < · · · < xn.

Thus, if we let Dl(z, w) denote ∃(y1, . . . , yl)(z < y1 < · · · < yl < w), then

∃ȳψi ≡ Dli0(−∞, x1) ∧ Dli1(x1, x2) ∧ · · · ∧ Dlin(xn,∞).

Note that this formula is equivalent to a Π1 formula over {≤, Succ}:

Dl(z, w) ≡
∧
k<l

(∀y1, . . . , yk)¬(Succ(z, y1) ∧ Succ(y1, y2) ∧ · · · ∧ Succ(yk, w)).

Let A = {(li0, li1, . . . , lin) : i ∈ ω} ⊆ ωn+1. Then by lemma 4.11, there exists a finite B ⊆ A
such that ∀l̄ ∈ A∃m̄ ∈ B(m̄ ≤ l̄). It follows that

φ(x̄) ∧ (x1 < x2 < · · · < xn) ≡
∨
m̄∈B

Dm0(−∞, x1) ∧ Dm1(x1, x2) ∧ · · · ∧ Dmn(xn,∞). �

Observation 3.13. We can obtain the equivalent Π1 formula computably in 0′.

Corollary 3.14. Every computably infinitary Σc
2 formula about linear orderings is equivalent

to a 0′-computable disjunction of finitary Σ1 formulas over the language (≤, Succ).

Proof. From the lemma above, we get that every Πc
1 formula is equivalent to a finitary Σ1

formulas over the language (≤, Succ). Then, use that Σc
2 formulas are Σc

1 over Πc
1 formulas. �

COMPUTABLE STRUCTURE THEORY 11

This corollary gives a nice characterization of the class or relatively intrinsically Σ0
2

relations on a linear ordering. We are interested in finding for which other classes of
structures and for which other n do we have such nice characterization of the class or
relatively intrinsically Σ0

n relations.

Definition 3.15. Given a class of structures K, a computable set of Πc
n formulas,

{φ1, φ2, . . . }, is a complete set of Πc
n formulas for K if every Σc

n+1 formula is uniformly

equivalent to a 0(n)-computable disjunction of finitary Σ1 formulas over L∪{φ1, φ2, . . . }.
Note that for the definition above, it is enough to ask that every Πc

n formula is
uniformly equivalent to a 0(n)-computable disjunction of finitary Σ1 formulas over L ∪
{φ1, φ2, . . . }. So, a complete set of Πc

n formulas for K is a set of formulas that capture
the whole Πc

n structural content of the structures in K.

Example 3.16. In the class of linear orderings, {Succ} is a complete set of Πc
1 formulas. This

is what we just proved.

Example 3.17. Let Sn(x, y) ≡ @(z1, z2, . . . , zn)[x < z1 < · · · < zn < y ∧ Succ(z1, z2) ∧ · · · ∧
Succ(zn−1, zn)]. This says that in between x and y there does not exist an n-string of successor
elements. Then, for instance, S2, (x, y) says that the open interval between x and y is dense,
and S1(x, y) is equivalent to Succ(x, y). Let limleft(x) ≡ ∀z < x∃y(z < y < x), the formula
that says that x is a limit from the left, and let limright(x) ≡ ∀z > x∃y(x < y < z). It is
proved in [Mon10] that the set

{limleft(·), limright(·), S1(·, ·), S2(·, ·), S3(·, ·), . . . , S1(−∞, ·), S2(−∞, ·), . . . , S1(·,∞), . . . }
is complete for Πc

2 formulas.

Example 3.18. The set of all Πc
n formulas is a complete set of Πc

n formulas.

The following lemma provides one of the motivations for being interested in complete
sets of Πc

n formulas.

Lemma 3.19. Let {φ1, . . . , φn, . . . } be a complete set of Πc
n formulas for a class of

structures, K. Let A ∈ K and R be a relatively intrinsically Πn relation on A . Then
for all X ≥T 0(n), if X computes a copy B of (A , φA

0 , φ
A
1 , . . .), then X ≥T RB.

The following theorem provides further motivation.

Theorem 3.20 (Jump Inversion Theorem). Let X ≥T 0′ compute a copy of (A , ψA
0 , ψ

A
1 , . . .)

where {ψ0, ψ1, . . . } is a complete set of Πc
1 formulas. Then there exists Y such that

(1) Y ′ ≡T X
(2) Y computes a copy of A .

We will prove this theorem in the next section. This theorem is due independently
to [?] and to Soskov and A. Soskova [?]. In [?], they never state this theorem, and what
they call the “Jump Inversion Theorem” is a different result. But this theorem follows
from the proof of [?, Theorem 12].

Example 3.21. The following corollary was proved independently by Frolov as a tool to obtain
other results.

Corollary 3.22 (Frolov [Fro06]). If 0′ computes a linear ordering (L,≤, Succ), then (L,≤)
has a low copy.

Proof. Here, use the Jump Inversion Theorem, letting X = 0′ and using the fact that {Succ}
is Πc

1-complete. �

12 ANTONIO MONTALBÁN

4. Building copies of a structure

Given some structure A , we would like to build a ‘generic copy’ of A . Let P be the
set of finite tuples of distinct elements from A . We want to build sequences p1 ⊆ p2 ⊆
· · · ∈ P such that every element of A appears in some tuple in the sequence. Here
pi ⊆ pi+1 means that pi is an initial segment of pi+1. Let

G = ∪i∈ωpiA ω.

So, G : ω → A is one-to-one and onto. Then, we obtain a structure with domain ω by
pulling back A . Call this structure B. So, if R is a relation on A , then RB = G−1(RA).

Recall that |B| = B = {b0, b1, . . . } is a set of constants naming the natural numbers.
Using this, we are able to obtain an enumeration via Gödel numbering of atomic (L∪B)-
sentences, {φ0, φ1 . . . }.

Given p ∈ P, we say p |= φi(b0, ..., bk) (where the constants that appear in φ are
among the shown ones) if k < |p|, and A |= φ(p(0), . . . , p(k)) (where p(j) is the jth
element of p).

Definition 4.1. Given n ∈ ω, if L is a finite language, let kn be the number of L ∪
b0, ..., bn atomic formulas, using all symbols in L as relation symbols. If L is an infinite
language, then let kn be the number of such formulas which only use the first n many
relations. We will always assume that in our enumeration of atomic formulas, the kn
formulas just mentioned appear first, and that this is true for every n. Given p ∈ P, we
let D(p) ∈ 2k|p| be such that for i < k|p|,

D(p)(i) =

{
1 if p |= φi
0 otherwise.

Notice that

D(B) = ∪i∈ωD(pi) ∈ 2ω.

Now we have the machinery to prove the Jump Inversion Theorem 3.20 and Theorems
2.15 and 3.9.

Proof of Theorem 3.20. We want to build G ≤T X such that (D(B))′ ≤T X.
Step 0: Let p0 = ∅.
Step s + 1 = e: Suppose we have already defined ps; we now define ps+1: We ask if
∃q ∈ P such that q ⊇ ps and

{e}D(q)(e) ↓ .

(Here, we are using {e} for the eth partial computable function, and we use the conven-
tion that if a oracle is a finite string of length s, then the computation does not run for
more than s steps.) If so, let qs+1 be the q found in the search. Otherwise, let qs+1 = ps.
In either case, let ps+1 = qs+1

_a where a is the first element in A not in the range of
qs+1. This later part of the construction is to make G onto A.

We claim that the construction is computable in X and that (D(B))′ ≤T X. Note
that the statement

∃q ∈ P((q ⊇ ps) ∧ ({e}D(q)(e) ↓))

COMPUTABLE STRUCTURE THEORY 13

holds if and only if

A |=
∨

σ∈2<ω

{e}σ(e)↓

∃a1, . . . , an=|σ|−|ps| ∈ A
(
D(ps

_〈a1, . . . , an〉) = σ
)
,

where D(p) = σ can be written as
∧
i:σ(i)=1 φi(p)∧

∧
i:σ(i)=0 ¬φi(p), which is a quantifier-

free finitary formula. So, the formula above is a Σc
1 formula with parameters ps. Since

X computes 0′ and (A , φA
0 , φ

A
1 , . . .), X can compute the Σc

1 formula above, and hence
X can run the construction above. Furthermore, (D(B))′ ≤T X, because e ∈ (D(B))′

if and only if at stage s+ 1 = e there existed such q. �

We now prove the case n = 1 of Theorem 3.9.

Theorem 4.2. Given a relation R on A , the following are equivalent:

(1) R is r.i.c.e.
(2) There are a Σc

1 formula φ(x̄, ȳ) and b̄ ∈ A such that

(∀ā ∈ Ak) ā ∈ R⇔ A |= φ(ā, b̄).

Proof. (2)⇒ (1): This is the easy direction. It follows from Observation 3.8.
(1) ⇒ (2): We will build a copy B of A by building a sequence of ps ∈ P as above,

and at step s + 1 = e we will try to diagonalize RB against W
D(B)
e . One of these

attempts will have to fail, and we will use its failure to define φ as wanted.
Step 0: Let p0 = ∅.
Step s+ 1 = e: We try to make RB 6= W

D(B)
e . Ask if

(∃q ⊇ ps)(∃n < |q|) n ∈ WD(q)
e ∧ q(n) 6∈ R.

If so, let qs+1 = q. Otherwise, let qs+1 = ps. In any case, let ps+1 = qs+1
_a, where a is

the first element in A not in the range of qs+1.
We now have a sequence p1 ⊆ p2 ⊆ . . . and define G and B as above. Since B is

isomorphic to A , and R is relatively intrinsically c.e., for some e, RB = W
D(B)
e , where

RB = G−1(R). Let s = e− 1. We now observe that for a ∈ A,

a ∈ R ⇐⇒ (∃q ⊇ ps)(∃n < |q|) n ∈ WD(q)
e ∧ q(n) = a.

The direction from left to right follows from the fact that G−1(R) = W
D(B)
e , so all we

need is n = G−1(a) and q a sufficiently large initial segment of G. For the right to left

direction, we need to observe that if (∃q ⊇ ps)(∃n < |q|) n ∈ WD(q)
e ∧ q(n) = a∧ a 6∈ R,

then at stage s+ 1 we would have acted and prevented RB = W
D(B)
e .

Now the right-hand side of the equation above can be written as the following Σc
1

formula: ∨
σ∈2<ω
n∈Wσ

e

∃c̄
(
D(ps

_c̄) = σ ∧ (ps
_c)(n) = a

)
,

obtaining a Σc
1 definition of R with parameters ps. �

14 ANTONIO MONTALBÁN

5. The jump of a structure

We start by defining the notion of the jump of a structure. Note that this definition
is independent of the presentation of the given structure.

Definition 5.1. If {φ0, φ1, . . .} is a complete set of Πc
n relations on A , we say that

(A , φA
0 , φ

A
1 , . . .) is an nth jump of A , written A (n). When {φ0, φ1, . . .} is the sequence

of all Πc
n formulas, we say that (A , φA

0 , φ
A
1 , . . .) is the canonical nth jump of A .

Other definitions of the jump of a structure in slightly different settings were given
independently by Baleva [?] and further studied by Soskov and A. Soskova, and also
independently by Morozov and Puzarenko [?, ?], and then further studied by Stukachev.

Observation 5.2. It is worth observing that an nth jump of a kth jump of a structure
is an (n + k)th jump because a complete set of Πc

k formulas over a complete set of Πc
n

formulas yields a complete set of Πc
n+k formulas.

Observation 5.3. If X ∈ Spec(A), then X ′ ∈ Spec(A ′). If Y ∈ Spec(A ′), and Y ≥T 0′,
then there is X ∈ Spec(A ′) such that X ′ ≡T Y by the jump inversion theorem. Thus

Spec(A ′) ∩D(≥0′) = {x′ : x ∈ Spec(A)},

where D(≥0′) is the set of Turing degrees that compute 0′.
If A ′ is the canonical jump of A , then A ′ strongly codes 0′ (because there is a

computable sequence of Πc
1 sentences ψi such that A |= ψi if and only if i 6∈ 0′, and hence

A ′ codes the complement of 0′.) Therefore Spec(A ′) ⊇ D(≥0′), and hence Spec(A ′) =
{X ′ : X ∈ Spec(A)}.

Example 5.4. If L is a linear order, then Lemma 3.11 and Example 3.17 show that

L′ = (L, Succ)

and

L′′ = (L, limleft(·), limright(·), S1(·, ·), S2(·, ·), . . . , S1(−∞, ·), . . . , S1(·,∞), . . .).

Example 5.5. Boolean Algebras provide a very interesting example. The relations needed to
get the first four jumps of a Boolean algebra were considered by Knight and Stob [KS00], and
a proof that they are actually complete sets of relations at the right level can be indirectly
obtained from [HM]. For example, if B is a Boolean algebra, we have that that B′ = (B, atom)
and B′′ = (B, atom, inf, atomless). This was then extended to all n ∈ N by Harris and
Montalbán.

Theorem 5.6 (Harris, Montalbán [HM]). For every n there is a finite complete set of Πc
n

relations for the class of Boolean algebras.

The relations used for the first four jumps of a Boolean algebra were used to prove the
following lemma.

Lemma 5.7. Let B be a Boolean algebra. For every X ⊆ ω:
(1) X ′ computes a copy of B′ iff X computes a copy of B (Downey, Jockusch [DJ94]);
(2) X ′ computes a copy of B′′ iff X computes a copy of B′ (Thurber [Thu95]);
(3) X ′ computes a copy of B(3) iff X can compute a copy of B′′ (Knight, Stob [KS00]);
(4) X ′ computes a copy of B(4) iff X computes a copy of B(3) (Knight, Stob [KS00]).

COMPUTABLE STRUCTURE THEORY 15

Notice that these statements are stronger than the jump inversion theorem. The jump
inversion theorem would only give us that if X ′ computes a copy of B′, then there is a copy
of B that is low over X.

Corollary 5.8. Every low4 Boolean algebra has a computable copy.

Proof. If B is a low4 Boolean algebra, then we know that 0(4) computes a copy of B(4).
Working backwards through the statements in the lemma, we conclude that ∅(3) computes a
copy of B(3), ∅(2) computes a copy of B(2), ∅′ computes a copy of B′, and finally ∅ computes
a copy of B. �

The following open question was already posed in [DJ94].

Question 1. Does every lown Boolean algebra have a computable copy?

Let us now re-state the jump inversion theorem using the jump notation.

Theorem 5.9. If X ≥ ∅(n) computes A (n), then there is a Y such that Y computes a
copy B of A and Y (n) ≡T X. Furthermore, an isomorphism between A and B can be
found computably in X.

This version of the theorem follows immediately form the proof of Theorem 3.20 and
Observation 5.2. We will now use it as a tool to prove the full version of Theorem 3.9.
Recall that in Section 4 we only proved the case n = 1.

Proof of Theorem 3.9. We already knew that (2) ⇒ (1). We will now prove (1) ⇒ (2).
So, we have that R is relatively intrinsically Σ0

n+1. We now claim that R is r.i.c.e. over

A (n), where A (n) is the canonical nth jump of A . To prove this claim, suppose Bn is
a copy of A (n), that Bn = B(n) and that X computes D(B(n)). By the jump inversion
there is a Y such that Y (n) ≡T X and Y computes a copy C of B, and X computes
an isomorphism between C and B. Since R is relatively intrinsically Σ0

n+1, the relation
RC is Σ0

n+1 in Y and hence also c.e. in X, so that RB is also c.e. in X (because the

isomorphism is computable in X). Therefore, R is r.i.c.e. in A (n−1) as claimed.
The just-proven claim implies that R is definable in A (n) by a Σc

1 formula. Since
A (n) comes equipped with a complete set of Πc

n relations on A , R is definable in A by
a Σc

n+1 formula. �

6. Connecting the notions

Given a class of structures K and n ∈ ω, we ask the following questions: Does there
exist a “natural” complete set of Πc

n relations for K? Is there, for every D ⊆ ω, a
structure A ∈ K that encodes D in its nth jump?

Of course, to answer the first question we would need to give a precise meaning to
the idea of “natural” complete set of Πc

n formulas. For this we will use the fact that all
natural concepts in computability are relativizable. That is, if a natural set of formulas
is complete Πc

n, it should also be complete Πc
n relative to any oracle. Notice that this is

the case with our natural examples, like {Succ}, but it is not the case with the sequence
of all Πc

n formulas.
For this we will look at the boldface version of this notion.

Definition 6.1. A set of Πin
n formulas {φ0, φ1, . . .} is a complete set of Πin

n formulas if
every Πin

n formula is equivalent to a Σin
1 formula over L ∪ {φ0, φ1, . . .}.

16 ANTONIO MONTALBÁN

We aim to prove the following dichotomy theorem, whose proof is postponed pending
further machinery that will be developed in the next sub-section.

Theorem 6.2. Fix a class of structures K and n ∈ ω. Either

(1) there is a countable complete set of Πin
n formulas for K and

(2) no set D is coded in the (n−1)st jump of any structure A ∈ K unless D ≤1 0(n),

or

(1) there is no countable complete set of Πin
n formulas and

(2) every set D is weakly coded in the (n− 1)st jump of some structure A ∈ K,

all relative to some oracle.

6.1. Back-and-Forth Relations. The main tool to prove theorem 6.2 will be the
back-and-forth relations.

Definition 6.3. Fix a class K of structures. We define a relation ≤n for each n on
pairs (A , ā), where A ∈ K and ā ∈ A<ω. Given A ,B ∈ K, ā ∈ A<ω, b̄ ∈ B<ω, with
|ā| = |b̄|. The relation ≤0 is defined by (A , ā) ≤0 (B, b̄) if for any atomic formula φ
(with index ≤ k|a|, where kn is defined in 4.1) we have

A |= φ(ā)⇔ B |= φ(b̄),

or equivalently, if D(ā) = D(b̄).
Supposing ≤n to be defined, we define

(A , ā) ≤n+1 (B, b̄) ⇐⇒ ∀d̄ ∈ B<ω∃c̄ ∈ A<ω(A, ā, c̄) ≥n (B, b̄, d̄).

To help understand this definition we present a few examples.

Example 6.4.

• If A and B are linear orders, ā = 〈a1,, ak〉 ∈ Ak, and b̄ = 〈b1,, bk〉 ∈ Bk, then
(A , ā) ≤0 (B, b̄) if and only if ai < aj ⇔ bi < bj for i, j ≤ k. Further, (A , ā) ≤1 (B, b̄)
if and only if |[ai, ai+1]| ≥ |[bi, bi+1]| for each i ≤ k, thinking of a0 as −∞ and ak+1 as
∞.
• If A = (Z, <) and B = (Q, <), then taking a0 and b0 to be one-element sequences

in A and B respectively, we have (A , a0) ≡1 (B, b0) but (A , a0) �2 (B, b0). To see
why the latter inequality is strict, note that by selecting a1 = a0 + 1 as the d̄ in the
definition, there is no b1 ∈ Q so that (Z, a0, a1) ≤1 (Q, b0, b1) because we can find an
element in Q between b0 and b1, but not an element in Z between a0 and a1.

For the next theorem, we use the notation Πin
n -tpA (ā) to mean the set of all Πin

n

formulas satisfied by ā (i.e. the Πin
n -type of ā).

Theorem 6.5. The following are equivalent:

(1) (A , ā) ≤n (B, b̄)
(2) Πin

n -tpA (ā) ⊆ Πin
n -tpB(b̄)

(3) Given that a structure (C , c̄) that is isomorphic to either (A , ā) or (B, b̄), de-
ciding whether (C , c̄) ∼= (A , ā) is Σ0

n-hard; i.e. given a Σ0
n set S ⊆ 2ω, there is

a continuous function f : 2ω → K× ω|a| such that

f(X) ∼=

{
(A , ā) if X ∈ S
(B, b̄) if X /∈ S.

COMPUTABLE STRUCTURE THEORY 17

Observation 6.6. By the (2) on the previous Theorem we can easily prove that the rela-
tion ≤n is both reflexive and transitive. Therefore ≤n imposes an equivalence relation
≡n on K.

Notation 6.7. We will use lowercase greek letters, α, β, etc., for the equivalence classes
of ≡n. Further, we say that a tuple (A , ā) has n-type α, and we write n -tp(A , ā) = α,
if (A , ā) belongs to the equivalence class α. Of course, α can be seen as a complete
Πin
n -type, as all the tuples in α have the same Πin

n -type. We use Πin
n -tp(α) to denote

this type.

Definition 6.8. bfn(K) = {(A , ā) : A ∈ K, ā ∈ A<ω} / ≡n denotes the set of the n-
back-and-forth equivalence classes.

Note that (bfn(K),≤n) is a partial ordering. We will see that the size of bfn(K) will
give us useful information about the structures in K. Since by definition ≤n is Borel,
the following theorem, due to Silver, reduces the posibilies to just two.

Theorem 6.9 (Silver [Sil80]). Every Borel equivalence relation on 2ω has either count-
able or 2ℵ0 many equivalence classes.

Corollary 6.10. |bfn(K)| is either countable or 2ℵ0.

Example 6.11. All these examples require proofs which we won’t include here.

(1) If K is the class of Boolean Algebras, then ∀n ∈ ω, |bfn(K)| ≤ ℵ0.

(2) If K is the class of Linear Orderings, then |bfn(K)| =

{
ℵ0 for n = 1, 2;

2ℵ0 for n ≥ 3.

(3) If K is the class of Equivalence Structures, then |bfn(K)| =

{
ℵ0 for n = 1;

2ℵ0 for n ≥ 2.

Notation 6.12. Since we have defined ≤n between pairs of the form (A , ā), if α is the
n-type of (A , ā), we denote |α| to be lenght of the tuple ā.

For α ∈ bfn(K), given a Πin
n formula ϕ(x̄) with |x̄| = |α|, we write α |= ϕ if ϕ ∈

Πin
n -tp(α). For each α ∈ bfn(K), we let

extn(α) ⊆ bfn−1(K)

be the set of all δ ∈ bfn−1(K) such that for all (A , ā) with n -tp(A , ā) = α, there exists
c̄ such that (n− 1) -tp(A , ā, c̄) ≥n−1 δ.

Observation 6.13. Straight from the definition of extn(α) we have:

• extn(α) is closed downwards under ≤n−1;
• α ≤n (B, b̄) ⇔ (∀d̄ ∈ B<ω) (n− 1) -tp(B, b̄, d̄) ∈ extn(α); and
• α ≤n β ⇔ extn(α) ⊇ extn(β).

We now begin building the machinery needed for the proof of Theorem 6.16.

Lemma 6.14. If bfn−1(K) is countable, then for each α ∈ bfn(K) there exists a Πin
n

formula, ϕα(x̄), such that for every B ∈ K, and b̄ ∈ B|α|,

α ≤n (B, b̄) ⇔ B |= ϕα(b̄) ⇔ ϕα ∈ Πin
n -tpB(b̄).

18 ANTONIO MONTALBÁN

Proof. Suppose that for each δ ∈ bfn−1(K) we already have a Πin
n−1 formula ϕδ as

wanted. Then have that

α ≤n (B, b̄) ⇔ (∀d̄ ∈ B<ω)(n− 1) -tp(B, b̄, d̄) ∈ extn(α)

⇔ ¬(∃d̄ ∈ B<ω)(n− 1) -tp(B, b̄, d̄) 6∈ extn(α)

⇔ ¬(∃d̄ ∈ B<ω)
∨

δ∈bfn−1(K);
δ /∈extn(α)

δ ≤n−1 (B, b̄, d̄)

⇔ B |= ¬
∨

δ∈bfn−1(K)
δ /∈extn(α)

(∃ȳ)ϕδ(b̄, ȳ).

Where the third equivalence uses that extn(α) is closed downwards. Notice that the
formula in the last line is Πin

n−1, and that the infinitary disjunction is countable because
bfn−1(K) is countable. Therefore, ϕα(x̄) =

∧
δ∈bfn−1(K)
δ /∈extn(α)

(∀ȳ)¬ϕδ(x̄, ȳ) is as wanted. �

Lemma 6.15. If |bfn(K)| ≤ ℵ0, then there exists a countable complete set of Πin
n

formulas.

Proof. We will show that {ϕα : α ∈ bfn(K)} is Πin
n -complete. Let ψ be any Πin

n formula.
We claim that

ψ(x̄)⇔
∨

α∈bfn(K)
|α|=|x̄|
α|=ψ

ϕα.

(⇒) Assume A |= ψ(ā) and let α be the n-type of (A , ā). Then α |= ψ and A |= ϕα(ā).
Therefore (A , ā) satisfies the right-hand-side.

(⇐) Suppose (A , ā) satisfies the right-hand-side. Then, for some α from the infinitary
disjunction, A |= ϕα(ā). Therefore, α ≤n (A , ā) and α |= ψ. Since ψ is Πin

n , A |= ψ(ā)
too.

This proves the claim and the lemma. �

Notation 6.16. We let Πin
n -impl(ϕα) denote the set of all Πin

n -formulas implied by ϕα in
the class K.

Observation 6.17. Let α ∈ bfn(K), then from Lemma 6.14 above, we get that Πin
n -tp(α) =

Πin
n -impl(ϕα), because both are equal to

⋂
β≥nα Πin

n -tp(β).

The following theorem provides the first big step towards proving Theorem 6.16 while
at the same time unifying the concepts discussed in this section and those of complete
set of formulas.

Theorem 6.18. For a class of structures K and n ∈ ω, we have that |bfn(K)| = ℵ0 if
and only if there exists a countable complete set of Πin

n -formulas.

Proof. The left-to-right implication was proved in Lemma 6.15. To prove the other
direction suppose that {R1, R2, . . .} is a countable complete set of Πin

n -formulas. We will
prove, by induction on k ≤ n, that |bfk(K)| = ℵ0. So, suppose that |bfk−1(K)| = ℵ0.
We claim that for each α ∈ bfk(K) there exists a finitary Σ1-formula ψα over L∪{R1, . . .}
such that Πin

n -tp(α) = Πin
n -impl(ψα). Then, since there are only ℵ0 many such Σ1

COMPUTABLE STRUCTURE THEORY 19

finitary formulas, the claim implies that bfk(K) is countable, and the theorem follows.
Let us now prove the claim. Since |bfk−1(K)| = ℵ0, we know that for each α ∈ bfk(K),
there exists a Πin

k -formula ϕα such that Πin
k -tp(α) = Πin

k -impl(ϕα). Since {R1, R2, . . .}
is a countable complete set of Πin

n -formulas, ϕa it is equivalent to a Σin
1 -formula over

L ∪ {R1, . . .}. So, ϕα ≡
∨
i∈ω ψi, where each ψi is finitary Σ1 over L ∪ {R1, . . .}. Take

(A , ā) of type α, and, since A |= ϕα(ā), take i such that A |= ψi(ā). Now,

Πin
k -tp(α) = Πin

k -impl(ϕα) ⊆ Πin
k -impl(ψi) ⊆ Πin

k -tpA (ā) = Πin
k -tp(α).

Therefore Πin
k -tp(α) = Πin

k -impl(ψi) and the claim is proved. �

Lemma 6.19. If |bfn(K)| = ℵ0, then there exists an oracle X such that if D is encoded
by the the (n− 1)st jump of some structure in K, then D ≤T X.

Proof. The reason is that there are countably many Σc
n-types of tuples from structures

in K, and every set D coded by some structure in K has to be enumeration reducible
to one of these. All we need to do is let X bound the jumps of these countably many
Σc
n-types. �

Observe that the previous results provide a proof for the first part of Theorem 6.2.
The following discussion will focus on the case where |bfn(K)| is uncountable.

Definition 6.20. The bf-ordinal of K is the least γ such that |bfγ(K)| > ℵ0 if such a
γ exists and ∞ otherwise.

If K is a class of countable structures, as all the ones we are considering, one can
show that K has bf-ordinal ∞ if and only if K contains only countably many isomor-
phism types, and otherwise the bf-ordinal of K is at most ω1. Also, it is not hard to
prove that if K has bf-ordinal ω1 then K has ℵ1 many isomorphism types. This is the
case, for instance, when K is the class of all countable well-orders. If K is first order
axiomatizable, it is unknown whether K can have size ℵ1, in the case when ℵ1 6= 2ℵ0 .
That this is not possible is the well-known Vaught conjecture. It is also not known in
the case where K is a Borel class of countable structures.

Corollary 6.21. If the Turing ordinal of K exists and is n, then the bf-ordinal of K is
≤ n.

Theorem 6.22. If |bfn(K)| = 2ℵ0 then, relative to some oracle X, every D ∈ 2ω can
be weakly coded in (n− 1)th jump of some A ∈ K.

Proof. Suppose that there are countably many (n− 1)-bftypes. Otherwise, replace the
existing n by the least n such that there are continuum many n-bftypes, and note that
if the theorem is true for the new value of n, it is true for all m ≥ n. For some k ∈ ω,
we have that {α ∈ bfn(K) : |α| = k} has size continuum. We will assume k = 0 to
simplify the notation needed in the proof; the general case is essentially the same.

Since bfn−1(K) is countable, we know there is a complete set of Πin
n−1 formulas. Extend

the language to L̂ by adding all these formulas. If L̂ is not computable, relativize the
rest of the proof to the Turing degree of L̂ and of all the degrees of the formulas we
just added. Thus, all the Σin

n L-formulas are equivalent to Σin
1 L̂-formulas, and the

Σc
n-L-types of the tuples in K are determined by their finitary-Σ1-L̂-types.

20 ANTONIO MONTALBÁN

Now we define tA ∈ 2ω to be the characteristic function of the finitary-Σ1-L̂ theory
of A . More formally: Enumerate all the finitary-Σ1-L̂ sentences in a list (ψ0, ψ1, ...).
For every structure A let tA ∈ 2ω be such that tA (i) = 1 if A |= ψi and tA (i) = 0
otherwise. Observe that the set {i : tA (i) = 1} can be coded by the (n − 1)st jump
of A (because the (n− 1)st jump of any presentation of A can compute the relations

in L̂ and then enumerate Σ1-L̂ -tpA). Let R = {tA : A ∈ K} ⊆ 2ω. Note that
Σin
n -tpA is determined by tA , and hence tA = tB if and only if A ≡n B. Thus, since
|{α ∈ bfn(K) : |α| = 0}| = 2ℵ0 , R has size continuum. Notice that R ⊆ 2ω is a Σ1

1

class, because R is the image of K under t, K is Borel, and t is arithmetic. Since R
is uncountable and Σ1

1, Suslin’s theorem (see [Mos80, Corollary 2C.3]) says that R has
a perfect closed subset [T], determined by some perfect tree T ⊆ 2<ω (where [T] is
the set of paths through T). In what follows, we relativize our construction to T , so
we assume T is computable. Thinking of T as an order-preserving map 2ω → 2ω, for
X ∈ 2ω we let T (X) be the path through T obtained as the image of X under this map.

For each X, T (X) gives us a Σ1-L̂-type that is consistent with K and of Turing degree
X (modulo all the relativization we have already done). There is some A ∈ K with

Σ1-L̂-type tA = T (X), and hence T (X) can be enumerated by the (n−1)st jump of any
presentation of A . One can show that {σ ∈ 2<ω : σ ≤Q X} is enumeration reducible
to T (X). If follows that X is weakly coded by the (n − 1)st jump of A . We chose X
arbitrarily, so any set can be weakly coded into the (n − 1)st jump of some structure
A of K. �

References

[AK00] C.J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hierarchy. Elsevier
Science, 2000.

[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra is isomorphic to a recursive
one. Proc. Amer. Math. Soc., 122(3):871–880, 1994.

[Fro06] A. N. Frolov. ∆0
2-copies of linear orderings. Algebra Logika, 45(3):354–370, 376, 2006.

[HM] K. Harris and A. Montalbán. On the n-back-and-forth types of boolean algebras. To appear
in the Transactions of the AMS.

[JS94] Carl G. Jockusch, Jr. and Robert I. Soare. Boolean algebras, Stone spaces, and the iterated
Turing jump. J. Symbolic Logic, 59(4):1121–1138, 1994.

[Kni86] Julia F. Knight. Degrees coded in jumps of orderings. J. Symbolic Logic, 51(4):1034–1042,
1986.

[Kni98] J. F. Knight. Degrees of models. In Handbook of recursive mathematics, Vol. 1, volume 138
of Stud. Logic Found. Math., pages 289–309. North-Holland, Amsterdam, 1998.

[KS00] Julia F. Knight and Michael Stob. Computable Boolean algebras. J. Symbolic Logic,
65(4):1605–1623, 2000.

[Mon10] A. Montalbán. Counting the back-and-forth types. Journal of Logic and Computability, 2010.
[Mos80] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foun-

dations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.
[Ric81] Linda Jean Richter. Degrees of structures. J. Symbolic Logic, 46(4):723–731, 1981.
[Sel71] Alan L. Selman. Arithmetical reducibilities. I. Z. Math. Logik Grundlagen Math., 17:335–350,

1971.
[Sil80] Jack H. Silver. Counting the number of equivalence classes of Borel and coanalytic equivalence

relations. Ann. Math. Logic, 18(1):1–28, 1980.
[Thu95] John J. Thurber. Every low2 Boolean algebra has a recursive copy. Proc. Amer. Math. Soc.,

123(12):3859–3866, 1995.

	1. Degrees of Structures
	2. Information coded on a structure
	2.1. Coding and enumeration reducibility
	2.2. Weakly coding

	3. Relations on a structure
	4. Building copies of a structure
	5. The jump of a structure
	6. Connecting the notions
	6.1. Back-and-Forth Relations

	References

