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Abstract. In this paper, we survey recent work in the study of classes of structures from
the viewpoint of computability theory. We consider different ways of classifying classes
of structures in terms of their global properties, and see how those affect the structures
inside the class. On one extreme, we have the classes that are Y-small. These are
the classes which realize only countably many J-types, and are characterized by having
tame computability theoretic behavior. On the opposite end, we look at various notions
of completeness for classes which imply that all possible behaviors occur among their
structures. We introduce a new notion of completeness, that of being on top for effective-
bi-interpretability, which is stronger and more structurally oriented than the previously
proposed notions.
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1. Introduction

In this paper, we survey recent work on the study of classes of structures from
the viewpoint of computability theory. By classes of structures we mean classes
like the one of fields or of p-groups or of linear orderings. Our general objective
is to consider global properties of the classes and derive properties about their
individual structures.

Computable structure theory is an area inside computability theory and logic
that is concerned with the computable aspects of mathematical objects and con-
structions. In particular, we are interested in the interplay between structure and
complexity, or in other words, in understanding how the algebraic properties of a
structure interact with its computational properties. For instance, we ask questions
like the following: What kind of information can be encoded into an isomorphism
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paper.
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type of a structure? How difficult is it to represent a certain structure? How
difficult is it to recognize it?

When we consider classes of structures, there are two ends of the spectrum.
On the one end are the classes which have some global property restricting the
behavior of their structures. On the other end are the classes which are complete
in the sense that they allow all possible behaviors to happen. Let us say a bit more
about these two extremes.

Tame classes. In Section 2, we will review some concepts we will need later.
One notion of simplicity is that of a class having a bound on the Scott rank of
its structures. These classes are not necessarily that simple from a computational
viewpoint, and much less from the viewpoint of Borel equivalence relations. How-
ever, for natural classes this bound tends to be quite low, which makes them easier
to analyze. The Scott rank of a structure is related to the number of Turing jumps
necessary to fully understand it, and hence, the lower the Scott rank, the more
manageable the structure.

A second notion of simplicity, one we believe is the most relevant to computabil-
ity theory, is that of ¥-smallness, or actually effective ¥-smallness. This notion
is studied in Section 3. The author started studying such classes in [Mon10b],?
although the term “X-small” is new.

Definition 1.1. A class of structures K is 3-small if it realizes countably many
J-types, that is, if the set

{F-tpa(a): AeK,ae AV}
is countable, where
F-tpa(a) = {¢: () is a first order existential formula with A = ¢(a)}.

We remark that knowing the 3-type of a is equivalent to knowing what finite
sub-structures we can find in A extending a. This is not entirely correct when L is
infinite, where we need to consider sub-structures which only mention only a finite
number of the symbols in £. Another remark is that the types above are without
parameters.

We start Section 3 by developing the effective version of this notion. The ef-
fectiveness assumption is not that strong, as it holds of all the examples we have
analyzed. A large list of examples can be found in Subsection 3.1. We then study
the role of ¥-small classes in many topics that have been widely studied in com-
putable structure theory: Richter’s extendibility condition, jumps of structures, the
low property, the categoricity property and the Turing ordinal. As more evidence
towards its naturalness, we will see in Theorems 3.14 and 3.15 how Y-smallness
induces a strong dichotomy on classes.

'In [Mon10b] we used the phrase “K has a computable 1-back-and-forth structure” for what
we now say “K is effectively X-small.”
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Complete classes. In Section 4, we review various ways of mapping structures
from one class into another. For each of these reducibilities we have classes that
are on top in the sense that all other classes can be reduced to it. We start with the
well-known notion of Borel reducibility, and then move on to effective reducibility
and Turing-computable reducibility, and to classes that are complete in the sense

of Hirschfeldt, Khoussainov, Shore and Slinko.
In Section 5, we develop a new and stronger notion of reducibility based on the

idea of effective-bi-interpretability between structures. We do not know that much
about this new notion, but we do show that it preservers even more computational
properties than all the previous reducibilities.

Properties on a cone. There are many properties in computability theory which
tend to behave nicely when we have a nice natural class of structures, but that
do not in general. One can often build strange and unnatural classes of struc-
tures where these nice behaviors do not occur. In this paper, we are interested in
properties that hold of natural classes. Since we cannot quantify over “all natural

classes,” we often use the technical device of considering Ppmperties on a cone.
When we have a computability theoretic property P, we can often consider

its relativization PX for a given oracle X € 2¢. We then consider the properties
relatively-P, which means that P¥X holds for all X, and P on a cone, which means
that there is a Z € 2% such that PX holds for all X >; Z. When we have a
proof that a natural property P holds (or does not hold) when applied to a natural
object, this proof almost always relativizes. Thus, we have a proof of relatively-P,
and in particular, of P on a cone. So, if our objects are natural, we should not
care whether we are using P, relatively-P, or P on a cone. However, due to the
unnatural examples, many results can only be proved in general if we consider the
properties on a cone. Such results usually call for a further analysis of its degree
of effectiveness — we will not concentrate on this here.

Disclaimer. This paper does not pretend to be exhaustive. What it attempts
is to convey the author’s viewpoint, unifying many ideas that have been floating
around for a while. The choice of topics and how much attention they receive is
purely motivated by the author’s taste, the author’s own work, and the new ideas
the author wants to develop.

Background and notation. We only consider countable structures through-
out, so “structure” means “countable structure.” We only consider relational lan-
guages, as we do not lose any generality for our purposes. The languages we
consider are all computable: that is, if £ consists of relations R; for i € I, where
I C w and R; has arity a(i), the function a: I — w is computable. (This only

matters when £ is infinite.)
A presentation of a structure A, or a copy of A, is just a structure B isomorphic

to A whose domain is a subset of w. This allows us to use everything we know about
computable functions on w to study B. Given a presentation A = (A; R{*,i € I),
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with A C w, we let

DA) = A@@Rfl - wu|_|wa(i).

icl iel

Via standard coding, we then think of D(A) as a subset of w, or equivalently a
sequence in 2¢. Note that D(.A) is essentially the atomic diagram of 4. When we
say that the presentation A computes X, or is computable in Y, we mean that
D(A) computes X or is computable in Y. By a class of L-structures we mean a set
K of presentations of L-structures which is closed under isomorphism. We often
think of K and of {D(A) : A € K} C 2% as the same thing, and hence treat K as
a class of reals.

We will often consider the infinity language L, .,, where countably infinite
conjunctions and disjunctions are allowed, and its computable version, where these
conjunctions and disjunctions must be computable. See [AK00, Sections 6 and 7].
We use B to denote the infinitary 3, formulas and ¢, to denote the computably
infinitary 3, formulas. For the Scott rank of a structure A we use the following
definition: SR(A) is the least o such that every automorphism orbit in A is 3i-
definable without parameters. There are various definitions of Scott rank in the
literature that give slightly different values (see [AKO00, Section 6.7]). The reason
we prefer ours is that it matches better with other complexity measures used in
computability theory and descriptive set theory (see [Monc]).

2. Axiomatization and the isomorphism problem

The first measure of the complexity for a class is in terms of its complexity as a
set of reals. This is directly connected with the complexity of the class in terms of
its axiomatizations:

Theorem 2.1. (Lopez-Escobar [LE65]) Let K C 2% be a class of presentations of
structures closed under isomorphisms. Then K is Eg in the Borel hierarchy if and
only if K is aziomatizable by an infinitary 33 sentence.

The lightface version of this theorem is also true: K is lightface X0 if and only
if it is axiomatizable by a computably infinitary ¢ formula [VBO07].

Not all nice classes of structures are L,,, .,-axiomatizable, or equivalently Borel,
as for instance the class of ordinals, which is IT3-complete. We, however, are mostly
interested in L., ,-axiomatizable classes. Most of the natural classes we consider
are actually II§-axiomatizable, so we will sometimes make this assumption when
we prove general results.

The second measure of complexity is the difficulty in telling apart different
structures in K. This is captured by the set

{(D(A),D(B)) : A, BEK, A= B} C (2¥)%

usually called the isomorphism problem for K. For a Borel class of structures, this
set is 31. For some classes, like linear orderings, this problem is ¥1-complete.
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For other classes, this problem is quite simple, like Q-vector spaces for which it
is TI3-complete. If we assume ZFC+VX (X* exists), then non-Borel isomorphism
problem must be Xi-complete. This follows from Wadge’s theorem (see [Mos80,
Lemma 7D.3]), as every set that is not I}, is X1-hard.

Theorem 2.2. ([BK96, Corollary 7.14]) Let K be an L., .,-aziomatizable class.
The following are equivalent:

(1) The isomorphism problem for K is Borel.

(2) K has bounded Scott rank.

When we say that K has bounded Scott rank we mean {SR(A) : A € K} has a
supremum S < wy. For example, the classes of Q-vector spaces and of algebraically
closed fields have bound 2 on their Scott ranks. The classes of equivalence struc-
tures and of torsion free abelian groups of finite rank have bound 3.

A simple remark is that if K has countably many structures (up to isomorphism,
of course), it has bounded Scott rank. It follows from the model-theoretic Martin’s
conjecture that if K has a first order axiomatization and countably many structures,
then w 4 w is a bound for the Scott ranks of the structures in K (see [Gao01] for
the statement of Martin’s conjecture). For more on how high this bound can be
see [Mar90, Sac07].

3. Y-Small classes of structures

In this section, we see how the notion of Y-small class connects with a lot of
well-known concepts in computable structure theory.

Before looking at examples among familiar classes, let us introduce the effective
version of this definition. If K is a natural class of structures and it is -small, we
have a natural countable collection of 3-types. It is then reasonable to expect that
one can list, compare and manipulate these types. An effectively X-small class is
one where we can do this computably:

Definition 3.1. A Y-small class K is effectively X-small if there is a computable list
{pi : i € w} of computable I-types listing all the I-types realized in K without rep-
etitions, where the operations of erasing and permuting variables are computable,
and deciding inclusion of 3-types is also computable.?

3.1. Examples. All the classes of structures below are Y-small. It is worth
remarking that most of the examples mentioned below have been attractive to com-
putability theorists for a long time because they enjoy nice computability properties
other classes do not.

Vector spaces (over a fixed computable field F). If K has only countably many
structures, it is clearly -small. Proving that F-vector spaces are effectively
Y-small requires understanding their 3-types, which is not hard to do.

2The exact list of properties that are required for a class to be effectively S-small is currently
work in progress, and so far they are motivated from what we see in applications.
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Algebraically closed fields. Same as above.

Differentially closed fields of characteristic 0 (DCFy). They are ¥-small be-
cause they are w-stable. The class of models of an w-stable theory is always
Y-small, as even using countably many parameters and full first-order types,
there are still countably many types. It has not been verified whether DCFy
is effectively Y-small or not.

Abelian p-groups. That Abelian p-groups are effectively Y-small follows from
work of Khisamiev [Khi04].

Equivalence structures. We refer the reader to [MonlOb, Section 4.2] for an
analysis of the I-types on equivalence structures.

Trees (as partial orderings). By ’trees’ we mean downward closed subsets of w<¥.
That they are effectively Y-small in the language of partial orderings follows
from Richter’s work [Ric81]. Let us remark that a key tool in her proof is
Kruskal’s theorem [Kru60] on the well-quasi-ordering of finite trees.

Trees of finite height (as graphs). The proof is like the case above using Kruskal’s
theorem for finite trees of a fixed height.

Linear orderings. All an 3-type can say about a tuple a = {ag, ..., ax—1) is the
order among the elements of the tuple and, for each n € w and each i, j < |al,
whether there are at least n elements between a; and a;. Thus, existential
types are determined by the number of elements between the elements of the
tuple, and hence there are countably many of them. One can also use this
to prove they are effectively Y-small.

Linear orderings with an added relation for adjacency. When we add the
adjacency relation, the 3-types get a bit more complicated, but they are still
effective and countable (see [Monl0b, Section 4.1]).

Boolean algebras. All an 3-type can say about a tuple is how many elements
are below each Boolean combination of the elements of the tuple. These are,
again, not that difficult to analyze.

Boolean algebras with an added relation that identifies atoms. What makes

Boolean algebras particularly interesting is that they remain Y-small even
if we add to them any ¥ relation. For instance, we can add all of the
relations used by Knight and Sob [KS00] (atom, atomless, infinite, atomic,
l-atomic, atominf, ~-inf, Int(w + 7)), infatomicless, 1-atomless, and nomax-
atomless) and they remain effectively ¥-small. An in-depth analysis of the
Yin_types of Boolean algebras was done by Harris and Montalban in [HM12].
The fact that there are countably many of them uses key ideas from work of
Flum and Ziegler [FZ80].

Generalized Boolean algebras. These are distributive lattices with 0 and where
every interval [a, b] is a Boolean algebra. They are usually known in Russia
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as Ershov algebras. That they are effectively X-small follows from work of
Khisamiev [Khi04].

3.2. Richter’s computable extendibility condition. In her Ph.D.
thesis® [Ric77], Linda Richter introduced the computable extendibility condition in
order to show that there are structures that do not have Turing degree as defined
by Jockusch. (A structure A has Turing degree x if x computes a copy of A, and
every copy of A computes x.)

Definition 3.2. [Ric81, Section 3] A structure A has the computable extendibility
condition if each 3-type realized in A is computable. A structure A has the c.e.
extendibility condition if each 3-type realized in A is c.e.

Richter’s original definition was not in terms of types but in terms of finite
structures extending a fixed tuple. As we mentioned right after Definition 1.1, these
formulations are equivalent. The c.e. extendibility condition was not considered
by Richter, but we include it here because it makes Theorem 3.3 below more
rounded. In Russia, structures with the c.e. extendibility condition are said to be
locally constructivizable.

Of course, if K is effectively Y-small, then every structure A in K satisfies the
computable extendibility condition. On the other hand, if every structure in K
satisfies the c.e. extendibility condition, then K is 3-small, because there are only
countably many c.e. sets. Furthermore, the proofs in the literature that linear
orderings, Boolean algebras and trees (as posets) in [Ric77, Ric81] and p-groups
and generalized Boolean algebras in [Khi04] satisfy the computable extendibility
condition are essentially proofs that these classes are effectively ¥-small.

The reason Richter introduced this notion is to prove the following theorem
and its corollary below.

Theorem 3.3. (Essentially Richter) Let A be any structure. The following are
equivalent:

(1) A has the c.e. extendibility condition.

(2) Every set X C w which is c.e. in every presentation of A is already c.e.

Proof. That (1) implies (2) is essentially the same proof as [Ric81, Theorem 3.1].
For the other direction, notice that every I-type realized in A is c.e. in every
presentation of A. |

Corollary 3.4. If A has the c.e. extendibility condition and has Turing degree x,
then x = 0.

We can read Theorem 3.3 as saying that structures in an effectively X-small
class cannot directly encode any non-trivial information. In a sense, -smallness
is not only a sufficient, but also a necessary condition for this to be the case. The
following theorem shows that if K is not >-small, quite the opposite happens: every
real is coded by some structure in K in a left-c.e. way. We recall that X € 2% is

3directed by Carl Jockusch
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left-c.e. in A € 2¥ if the set {0 € 2<% : 0 <jop, X} is c.e. in A, or equivalently, if
there is an A-computable approximation to X from the left.

Theorem 3.5. [Mon10b, Theorem 3.1] Let K be an L, ,-axiomatizable class of
structures. The following are equivalent:
(1) K is not X-small.
(2) Relative to every oracle on a cone, the following holds: For every Y € 2%,
there is a structure A € K such that' Y 1is left-c.e. in every copy of A.

Part (2) of the theorem can be strengthened by changing “left-c.e.” to just “c.e.”
in most cases. However, an example where left-c.e.ness is required is constructed
in [Mon10a, Section 2.2].

3.3. Complete sets of r.i.c.e. relations. Another advantage of ¥-small
classes is that they have nice structural jumps. We will see below how, when
we have a Y-small class K, we usually have a nice and simple set of relations
that give us all the structural information about the jump of the structures in K.
Understanding these complete sets of relations is usually very useful in applications.

Before talking about the jump, we need a notion of c.e.-ness among the relations
on a structure. We will then look at complete relations among these and use them
to define the jump of a structure. An equivalent notion of jump for a structure was
originally defined by I. Soskov [Bal06], although he used a very different format.
The definition we use here is in the spirit of that introduced in [Mon09] (see [Mon12,
Definition 1.2] for more historical remarks).

Definition 3.6. A relation R C A< is relatively intrinsically computably enu-
merable (r.i.c.e.) if, on every copy (B, RE) of (A, R), we have that R® (viewed as
a subset of w<¥) is c.e. in D(B).

Example 3.7. Over a Q-vector space, the relation of linear dependence is r.i.c.e.;
Over aring, the relation that holds of (rg, ..., 7) if the polynomial 7o+ z+.. . +rpak
has a root is r.i.c.e.

This definition gives a notion of c.e.-ness that we can use to define other stan-
dard concepts from computability theory on the subsets of A<“.

Definition 3.8. A relation R C A<¥ is relatively intrinsically (r.i.) computable if
it and its complement are both r.i.c.e. R is r.i. computable in Q C A<¥ if R is r.i.
computable in (A, Q). A partial function f: A<¥ — A<¥ is partial 7.i. computable
if its graph is a r.i.c.e. subset of (A<¥)2.

Remark 3.9. The use of subsets of A<“ not only allows us to consider sequences
of subsets of A" for all n uniformly, but essentially all finite objects that can be
built over A. For instance, given Q C (A<¥)?, let us define R C A<¥ by b € R iff
|b| = (n,m) for some n,m € w and ((bo, .., bp—1), (b -+, burm—1)) € Q. We then
have that @ is r.i.c.e. (as in Definition 3.6 but for subsets of (A<“)?) if and only if
R is r.i.c.e. In a similar way, we can code subsets of (A<¥)<“ by subsets of A<%.
Given R,Q C A<, we define R® Q by b € R® Q if either |b| =2n and b[n € R
or | =2n+1and b[n € Q. We can also encode a set X C w by a set X c A
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by letting b € X if and only if |b| € X. With a bit more work, we can encode any
subset of HF(A) (the hereditarily finite extension of A) as a subset of A<“ (see
[Mon12, Section]).

R.i.c.e. relations can be characterized in a purely syntactic way, without re-
ferring to the different copies of the structure, using X§ formulas. Recall that a
3¢ formula is just a computable disjunction of 3-formulas over a finite set of free
variables.

Theorem 3.10 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm [Chi90]).
Let A be a structure, and R C A<% a relation on it. The following are equivalent:

(1) R is r.i.c.e.

(2) R is uniformly definable by 35 formulas with parameters from A. That is,
there is a tuple a € A<“ and a computable sequence of X5 formulas p;(z1, ..., T|al> Y1,
fori € w, such that

(Vbe ASY) be R <= A= ¢y (a,b).

Definition 3.11. A relation R C A<% is r.i.c.e. complete in A if it is r.i.c.e. and
every other r.i.c.e. relation Q C A<¥ is r.i. computable from R.

R.i.c.e. complete relations always exist. For instance, we can consider the analog
of Kleene’s predicate K: If we let ¢; j(y1,...,y;) be the ith X formula of arity j,
then the relation K4 C A<¥ x w defined by

(b,i) € KA <= Al ¢, 5(0)
is r.i.c.e. complete.

Definition 3.12. [Monl12] We define the jump of A to be the structure A" =
(A, K4). Given a class K, we let K' = {A": A € K}.

If X C wis a c.e. set, then X C A<w (as in Remark 3.9) is clearly r.i.c.e. It
follows that 0’ must be r.i. computable in every r.i.c.e. complete relation. On some
structures, like (w;0,1,+), 0 is r.i.c.e. complete, but this is always not the case.
If A is a linear ordering, then co-Adj & 07 is r.i.c.e. complete, where co-Adj is the
complement of the adjacency relation. For most linear orderings co-Adj is not r.i.
computable from 0.

Definition 3.13. We say that R is structurally r.i.c.e. complete if Ra&( isric.e.
complete. We then say that (A, R) is a structural jump of A.

So, for a linear ordering L, (£, co-Adj) is a structural jump.

The author showed in [MonlOb] that if K is X-small, there is a countable
sequence of ¥ formulas which define a structurally complete r.i.c.e. relation in
all the structures in K relative to every oracle on a cone.

"'7yi);
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Theorem 3.14. ([Mon10b]) Let K be effectively X-small, and let {p; : i € w} be
a computable list of all the I-types realized in K. Then, the 3§ formulas

= \/{1/; 2 is an 3-formula, and 1 & p;},
for i € w define a structurally r.i.c.e. complete relation on all structures in K.

In most natural examples, we can find simpler structurally r.i.c.e. complete
relations than the one given by Theorem 3.14. For instance, on QQ-vector spaces
and algebraically closed fields, the relations of linear dependence and algebraic
dependence are structurally r.i.c.e. complete, and on Boolean algebras, the not-
atom relation is structurally r.i.c.e. complete.

It is also shown in [Monl0Ob] that this is not the case when K is not X-small:
there is no sequence of formulas which works for all structures simultaneously.

Theorem 3.15. If K is not X-small, there is no computable sequence of Xf-
formulas defining a structurally r.i.c.e. complete relation simultaneously on all
structures in K.

3.4. The low property. The low property has been studied for various
classes in the last couple of decades. Only recently has it been looked at a general
setting.

Definition 3.16. A class K has the low property if every low presentation A € K
has a computable copy.

We recall that a set X C w is low if X’ is computable from 0. A presentation
A is low if D(A) is.

Jockusch and Soare [JS91] proved that the class of linear orderings does not have
the low property, that is, that there is a low linear ordering without a computable
copy. Downey and Jockusch [DJ94] proved that the class of Boolean algebras has
the low property. In that paper, they asked the following question, that is still
open despite the efforts of various researches:

Question 1. Does every low,, Boolean algebras have a computable copy?

Some partial results are known. Thurber [Thu95] proved that Boolean algebras
have the lowy property and Knight and Stob [KS00] the low, property. The lows
property is still open. Harris and Montalban showed that the difficulty at level 5
is not just that it needs one more jump, but a qualitatively new behavior: to show
this behavioral difference is essential, they produced a lows Boolean algebra not
0(M-isomorphic to any computable one — for n = 1,2, 3,4, it was known that every
low,, Boolean algebra is 0"1t2)-isomorphic to a computable one.

Let us review some of the other examples. The class of equivalence structures
does not have the low property. However, the class of equivalence structures with
infinitely many infinite equivalence classes has the low property, as it follows from
[CCHMO06, Lemmas 2.2.(c) and 2.3]. Even if linear orderings do not have the low
property, some sub-classes do. For instance, the class of all linear orderings where
all elements have successor and predecessors does. More examples can be found
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in [ATF09, Frol0, Fro12]. The class of linear orderings with only finitely many
descending sequences (up to equivalence) was proved to have the low,, property
for all n by Kach and Montalbdn [KM11] (where two sequences are equivalent if
they determine the same cut). It is open whether scattered linear orderings have
the low property. The class of ordinals not only has the low property, but the
low,-property for all computable ordinals a. Classes that have the low,-property
for all a < w{X are said to satisfy hyperarithmetic-is-recursive, that is, every
hyperarithmetic structure in the class has a computable copy. We will get back to
these classes in Theorem 3.26.

All the examples of classes with the low property we know are Y-small. This
happens for a reason:

Theorem 3.17. Let K be a 1I3*-class. If K has the low property on a cone, then
K is X-small.

Sketch of the proof. It follows from the author’s construction in [Monl0b, Lemma
2.9 and Theorem 3.1] that if K is not X-small, there is an oracle relative to which
the following happens: For every X € 2¢ and Y c.e. in X, there is a structure .4
in K computable from X and such that Y is left-c.e. in every copy of A. All we
need to do now is observe that there is a set that is c.e. over a low set but not
left-c.e. For instance, Chaitin’s € relativized to low 1-random real R is c.e. in R
and, since it is 2-random, is not of c.e. degree. Thus {o € 2<% : 0 <, QR} is c.e.
in R but not left-c.e (because left-c.e. sets have c.e. degree). a

3.5. Listable classes. The author started looking at this property with the
intention of characterizing the low property.

Definition 3.18. A class K is listable if there exists a Turing functional which,
for every oracle X, produces an X-computable sequence of structures listing all
the X-computable structures in K (allowing repetitions).

This definition appeared first in [Mon13b], but the underlying idea of consid-
ering classes whose computable models can be listed computably is much older.
However, the uniformity in Definition 3.18 is needed to get the consequences we
want. Nurtazin [Nur74], almost four decades ago, gave a sufficient condition for
a class of structures to be listable which includes the classes of linear orderings,
Boolean algebras, equivalence structures, Abelian p-groups, and algebraic fields of
characteristic p. Nurtazin’s result says that, if there exists a computable structure
in the class such that any other structure can be embedded into it, and such that
any subset of that structure generates a structure in the class, then the class is
listable (see [GN02, Theorem 5.1]). Nurtazin’s condition is not a necessary condi-
tion for a class to be listable, and for many of the cases we are interested in, it is
too strong.

The more general way of proving that a class is listable is by a priority argument,
where one monitors all computable functions and tries to list the ones that code
structures in the class. In [Monl13b], the author developed a game, G*(K), that
captures the combinatorial argument behind these constructions. This game is
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played by two players, C and D. Along the game, player C builds an infinite list of
structures in K via finite approximations, adding a new element to each structure
in each move. Player D, however, builds only one structure and he is allowed to
wait and only add elements to his structure when he thinks it is worth it. Player
C’s goal is to get one of his structures to be isomorphic to D’s structure (i.e. “to
copy”), while D’s goal is to diagonalize. See [Mon13b] for a more detailed definition
and for other related games. The classes K for which C has a winning strategy are
said to be co-copyable.

The connection between listability, the low property, and the games was unex-
pected.

Theorem 3.19. ([Mon13b]) Let K be a TI3* class of structures. The following are
equivalent:

(1) K has the low property on a cone.

(2) K is 3-small and K’ is listable on a cone.

(3) K is X-small and K’ is co-copyable.

3.6. Computable categoricity. The objective of this subsection is to ar-
gue that computable categoricity is easier to analyze on Y-small classes.

The notion of computable categoricity has been studied intensively for the
past few decades. A feature of computable structure theory is that computational
properties of presentations need not be invariant under isomorphism, and instead
they are invariant under computable isomorphisms. In other words, a structure can
have two isomorphic computable presentations which have different computational
properties. For instance, there are computable presentations of the countable,
infinite-dimensional Q-vector space, Q°°, where all the finite-dimensional subspaces
are computable, and computable presentations of QQ* where no finite-dimensional
subspace is computable (see [DHK'07]). The computably categorical structures
are exactly the ones where this does not happen:

Definition 3.20. A computable structure A is computably categorical if between
any two computable copies of A there is a computable isomorphism.

There are many results classifying the computably categorical structures within
certain classes. A linear order is computably categorical if and only if it has
finitely many adjacencies (Dzgoev and Goncharov [GD80]); a Boolean algebra is
computably categorical if and only if it has finitely many atoms (Goncharov, and
independently La Roche [LR78]); a Q-vector space is computably categorical if and
only if it has finite dimension; a p-group is computably categorical if and only if it
can be written in one of the following forms: (i) (Z(p™))*@® G for £ € wU{cc} and
G finite, or (ii) (Z(p>))" ® (Zyx)> @ G where G is finite, and n, k € w (Goncharov
[Gon80] and Smith [Smi81]); a tree of finite height is computably categorical if and
only if it is of finite type (Lempp, McCoy, R. Miller, and Solomon [LMMS05]); and
S0 on.

There are also many classes where computably categoricity is quite difficult to
describe. Indeed, it was recently proved by Downey, Kach, Lempp, Lewis, Mon-
talban and Turetsky [DKLT] that the index set of computable categorical struc-
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tures is IT1{-complete. The relativized notion is, however, much better behaved and
usually easier to characterize (recall the notions of “relatively P” and “P on a cone”
from Section 1). A nice characterization of the relatively computably categorical
structures was given by Goncharov [Gon77]: they are exactly the atomic models,
over a finite set of parameters, where all the types are generated by J-formulas,
and there is a c.e. listing of those formulas. The author [Monc| has recently found
that there is an even nicer characterization of the structures which are computably
categorical on a cone. They are exactly the ones that have a Xi* Scott sentence.
The classes where we have the best hope of characterizing computable categoricity
are the ones where the three notions of computable categoricity — plain, relative,
and on a cone — coincide.

Definition 3.21. We say that K has the categoricity property if every computably
categorical structure in K is relatively computably categorical.

Q-vectors spaces, algebraically closed fields, Boolean algebras, linear orderings,
equivalence structures, trees (as posets), ordered abelian groups, and p-groups all
have the categoricity property.

Conjecture 1. Every Y-small TI3"-class K satisfies the categoricity property on a
cone.

One thing we know is that X-small IT3*-classes always contain structures which
are categorical on a cone [Monc].

3.7. The back-and-forth ordinal. It is not hard to observe that X types
over a structure A are equivalent to 3-types over A’, and X§-types to 3-types over
A”. One can use this to get, for instance, that a structure is AY-categorical on a
cone if and only if it is A" is computably categorical on a cone; or that a a class K
has the lows property on a cone if and only if both K and K’ have the low property
on a cone. Thus, understanding K’ can be helpful for the understanding of these
higher-level properties. If we have an effectively Y-small class K, we have a nice
and uniform notion of jump among the structures in K (Theorem 3.14). We then
want to know if K’ is effectively Y-small. If it is, we can then consider K" and ask
if it is X-small.

Definition 3.22. K is X*-small if it realizes countably many %I* types.

The effective notion of X**-smallness is considered in [Mon10b, Mon13a] under
the name “effective n-back-and-forth structure.” We omit the definition here. In
[Mon10b], we proved that on X*-small classes have nice 3¢ -complete relations and
that no set can be coded in the (n — 1)st jump of their structures. An opposite
behaviour happens, on a cone, for structures that are not Xi*-small. Thus, for a
class K, there is a qualitative jump in behavior from the a’s at which K is X**-small
to the ones where it is not.

Definition 3.23. The bf-ordinal of a class of structures K is the least o € w1 + 1
such that K is not ¥**-small, and we let it be oo if there is no such a.
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The notion of bf-ordinal is quite close to the notion of “Turing-ordinal” intro-
duced by Jockusch and Soare [JS94].

Definition 3.24. A structure A has Bth jump Turing degree x if the Sth jump of
every copy of A computes x, and x computes the Sth jump of some copy of A.

A class K has Turing-ordinal 7 if for all 8 < 7, whenever a structure in K has
Bth-jump Turing degree, it is 00%), while for all x >7 0(7), there is a structure in
K with 7th-jump Truing degree x.

Theorem 3.25. Let K be a I13*-class with bf-ordinal T < wy, and suppose that it
has Turing ordinal on a cone. Then, on a cone, K has Turing ordinal either T or
T4+ 1.

Sketch of the proof. This sketches assumes familiarity with either [Mon10b, Proof
of theorem 3.1] or [Mon13a, Section 5]. Since for all v < 7, K is X*-small, on a
cone the greatest lower bound of each degree spectrum of structures in K is 0(7).
On the other hand, since K is not X*-small, there is a perfect tree T of I-types over
the language £, as in [Monl0b, Proof of theorem 3.1] and also [Monl3a, Section
5]. Let us relativize to that tree, and hence assume T is computable. For every
X above 0/, there is a 1-generic G such that G ® 0/ =r G’ =r X. Then, there
is a structure A, € K computable in G realizing the I-type T[G] (by [MonlOb,
Lemma 2.9]). So X computes the jump of some copy of A,. On the other hand,
G is left-c.e. in every copy of A,. So, the jump of every copy of A, computes G
and 0’, and hence X. It follows that A has 7 + 1-jump degree X.

Thus, the Turing ordinal on a cone of K is at least 7 and at most 7 + 1. O

It is not hard to see that the bf-ordinal of K is oo if and only if it has countably
many structures. If K is an £, ,-axiomatizable class, it follows from Morley’s
proof [Mor70] that, for every o < wi, the number of Xi* types it realizes is ei-
ther countable or continuum. Therefore, the bf-ordinal of K is less than w; if
and only if K has continuum many countable models. In the remaining case,
when the bf-ordinal of K is w;, K must then have N; many countable models.
Vaught’s conjecture [Vau61] claims that this last case never occurs. Thus, if K is
L, -axiomatizable and its bf-ordinal is wy, we say that K is a counterexample to
Vaught’s conjecture.

We actually do not know any example of a II:*-class K whose bf-ordinal is
greater than a + w unless it is co. The closest example we know is the class of
Boolean algebras which is V5 and has bf-ordinal w.

Question 2. Is there a IIi* class K with 2% many models whose bf-ordinal is
greater than w?

Let us remark that question 2 asks about a strengthening of Vaught’s conjec-
ture in the opposite direction as Martin’s conjecture. Martin’s model-theoretic
conjecture is about complete first order theories which have less than 28° many
countable models, and implies that they all have bounded Scott rank by at most
w + w. Wagner had proposed a strengthening of Martin’s conjecture which in-
cluded theories with 2% many countable models, which turned out to be false
(Gao [Gao01]).
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The author found the following connection between these examples and the iter-
ates of the low-property mentioned above. Recall that K satisfies “hyperarithmetic-
is-recursive” if it has the low, property for all a < w{®, which is equivalent to
saying that every hyperarithmetic structure in K has a computable copy.

Theorem 3.26. (ZFC+VX (X* exists)) Let K be an L., .-aziomatizable class
with uncountably many models. The following are equivalent:

(1) K is a counterexample to Vaught’s conjecture.

(2) K satisfies hyperarithmetic-is-recursive relative to all oracles on a cone.

The proof in [Mon13a] used projective determinacy, but this was then improved
to VX (X* exists) in [Mona]. Furthermore, in [Mona] the result above is extended
to all analytic equivalence classes E: E has N; equivalence classes if and only if it
satisfies hyperarithmetic-is-recursive on a cone non-trivially.

The main theorem of [Mon13a] is actually stronger than Theorem 3.26. As-
suming X3-determinacy and relative to all oracles on a cone, K has the low-for-w;
property, that is, if a structure in K has a presentation that is low-for-w,, then it
has a computable copy. (We recall that X is low-for-w; if wit = w{K.)

4. Comparing the complexity of classes

Reducibilities between classes allow us to classify structures in one class in terms
of structures in another class. With this in mind, Friedman and Stanley [FS89]
defined the notion of Borel reducibility. Since then, the study of Borel reducibility
on arbitrary Borel and analytic equivalence relations has been extremely active in
descriptive set theory. We concentrate here on the isomorphism relation.

Definition 4.1. (H. Friedman and L. Stanley [FS89]) A class of structures K is
Borel reducible to a class S, and we write K <p §, if there is a Borel function
f: 2% — 2¢ that maps presentations of structures in K to structures in S and
preserves isomorphism. That is, for all A € K, f(D(A)) = D(B) for some B € S,
and if A € K with f(D(A)) = D(B), then

A2 A «— BB

(Recall that D(.A) is the atomic diagram of A coded as a subset of w.)
A class K is on top for Borel reducibility if for every language L, the class of
L-structures is Borel-reducible to K.*

They first observed that it is enough to use the language with only one binary
relation (i.e. directed graphs) in the definition above. Then, they built Borel
reductions to show that the classes of trees, linear orderings, 2-step nilpotent groups

4In the literature these classes are sometimes called Borel complete, but we want to avoid that
notation here. The reason is that when we say that K is 2%—complete we mean that there is a
continuous reduction from any 2% subset of 2¢ to the isomorphism problem of K as a set, and
not as an equivalence relation. Reductions that preserve equivalence relations are quite different.
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and fields are all on top for Borel reducibility. Camerlo and Gao [CGO01] added
Boolean algebras to that list. Friedman and Stanley observed that if a class is
on top, then its isomorphism problem must be Xi-complete, giving them a whole
range of examples which are not on top for Borel reducibility. Torsion abelian
groups are an interesting class: their isomorphism problem is ¥1-complete, but
they are not on top for Borel reducibility [FS89, Theorem 5]. (The reason is
that their isomorphism problem can be reduced to countable subsets of ordinals
via de Ulm invariants in a constructible way, and hence Ey does not reduce to it.)
Whether torsion-free abelian groups are on top was stated as an open question then
and remains so. Since then, Downey and Montalban showed that their isomorphism
problem is X}-complete, using ideas of Hjorth [Hjo02]. It is also open if abelian
groups are on top.
In this paper, we are interested in effective versions of this reducibility.

4.1. Effective reducibility. One way of effectivizing the notion of Borel
reducibility is by considering computable reductions that act on indices of com-
putable structures. There has been some recent interest on this reducibility which
has turned out to be much more interesting than expected [FF09, FFHT12, CHM12,
Monb].

Definition 4.2. We say that a class of structures K is effectively reducible to a class
S if there is a computable function f: w — w which maps indices of computable
structures in K to indices of computable structures in S preserving isomorphism.
A class of structures K is said to be on top for effective reducibility if for any
computable language L, the class of L-structures effectively reduces to it.

(One could also consider hyperarithmetic reductions, but the author has re-
cently shown that, on a cone, being on top for effective reducibility is equivalent
to being on top for hyperarithmetic reducibility [Monb, Theorem 1.6], and hence
does not make a difference for natural classes.)

E. Fokina, S. Friedman, V. Harizanov, J. Knight, C. MaCoy and A. Montalbdn
[FFH™12] gave proofs that linear orderings, trees, fields, p-groups and torsion-free
abelian groups are all on top. Note that this is different from the Borel-reducibility
case where p-groups are not on top, and where it is open if abelian groups are.

It is not hard to see that if a class is on top, its isomorphism-index-set,

E(K) = {(n,m) € w?: n and m are indices

for isomorphic computable structures in K},

must be ¥1-complete. Thus, Q-vector spaces, equivalence structures, torsion-free
abelian groups of finite rank, etc. cannot be on top because they have arithmetic
isomorphism problems. So far, this is the only way we know to produce examples
of classes which are not on top.

Definition 4.3. A class K is intermediate for effective reducibility if it is not on
top for effective reducibility, and its isomorphism-index-set is not hyperarithmetic.
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No specific example of an intermediate class is known. Becker [Bec], and in-
dependently Knight and Montalbdn [unpublished], showed that such a class of
structures exists under the assumption that Vaught’s conjecture fails (relative to
some oracle). The question now is whether such examples can be built without
using a counterexample to Vaught’s conjecture:

Question 3. Are the following statements equivalent?
e Vaught’s conjecture.
e No L, .-axiomatizable class of structures is intermediate for effective re-
ducibility, relative to every oracle on a cone.

Recent work by the author [Monb] gives a partial reversal, showing that the
second statement follows from a strengthening of Vaught’s conjecture (which might
turn out to be equivalent to Vaught’s conjecture too).

4.2. Turing-computable reducibility. The notion of Turing computable
reducibility between classes of structures was introduced by Calvert, Cummins,
Knight and S. Miller [CCKMO04]. It is defined exactly as Borel reducibility (Defi-
nition 4.1) except that the function f is required to be a computable operator.

Definition 4.4. A class K is Turing computable reducible (tc-reducible) to S, and
we write K <;. S, if there is a Turing operator ® such that for every presentation
A € K, P is the characteristic function of D(B) for some B € S in a way that,

if also L) = D(B), then
A=A = B=B.

So, instead of working on indices, these operators act on the atomic diagrams
given as reals. This makes more of a difference than it seems. It is not hard
to see that tc-reducibility implies effective reducibility. This implication does not
reverse, as tc-reducibility also implies Borel-reducibility, which is not implied by
effective-reducibility (e.g. abelian p-groups).

A class K is then on top for tc-reducibility if for every computable language
L, the class of L-structures tc-reduces to K. All the reducibilities produced in
[FS89] are not just Borel but also effective, showing that trees, linear orderings,
nilpotent groups and fields are actually on top for tc-reducibility. However, the fact
that tc-reduction is finer than Borel reduction allows it to get finer comparabilities
between certain classes of structures. For instance, any two classes of structures
with countably infinitely many models are Borel-equivalent — this is not the case
for tc-reductions, and an interesting structure can be found among these (see
[KMVBO7]). There are even classes of finite structures that are not trivial under tc-
reducibility. But the most interesting fact about tc-reducibility is that it preserves
the back-and-forth structure:

Theorem 4.5 (Pull Back theorem). (Knight, S. Miller and Vanden Boom [KMVB07])
Let @ be a Turing computable embedding from K to S. Then, for every II¢ -formula
w, there is a 1IS, formula ©* such that for all A € K,

AEe" = oAFy
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(where ®(A) is the presentation B such that P = D(B)). It follows that if

A <, A, then ®(A) <, ®(B) (where <, is the a-back-and-forth relation as in
[AK00, Chapter 15]).

This theorem allowed Knight, S. Miller and Vanden Boom to characterize the
classes K such that K <;. S for certain fixed classes S, like Q-vector spaces.

4.3. Completeness for degree spectrum. A stronger notion of com-
pleteness was analyzed by Hirschfeldt, Khoussainov, Shore and Slinko [HKSS02].
The idea is that these complete classes of structures contains structures exhibiting
all the possible computability theoretic behaviors that structures can have. Their
objective was to show that certain nice classes of structures are indeed complete
in this sense. Their definition is rather cumbersome, but we include it here for
completeness.

Definition 4.6. [HKSS02, Definition 1.21] A class of structures K is complete with
respect to degree spectra of nontrivial structures, effective dimensions, expansion by
constants, and degree spectra of relations (which we will write as HKSS-complete) if
for every non-trivial structure G over a computable language L, there is a structure
A € K with the following properties:
(1) DgSp(A) = DgSp(G).
(2) If G is computably presentable, then the following holds:
(i) For any degree d, A has the same d-computable dimension as G.
(ii) If x € G, there is an a € A such that (A, a) has the same computable
dimension as (G, x).
(iii) If S C G, there exists U C A such that DgSpa(U) = DgSpg(S) and if S
is intrinsically c.e., then so is U.

We recall that the degree spectrum of a structure A is DgSp(A) = {X € 2¢ :
X computes a copy of A}.

They did not talk about a reducibility, but their notion can be easily be made
into a reduction.

They showed that undirected graphs, partial orderings, lattices, integral do-
mains of arbitrary characteristic (and in particular rings), commutative semi-
groups, and 2-step nilpotent groups are all HKSS-complete. Y-small classes cannot
be HKSS-complete. This is because the degree spectrum of a structure in a 3-small
class can never be the upper cone over a base which is higher than the complexity
of all the 3-types realized in the structure.

We suspect that if a nice class is not on top for tc-reducibility, it should not be
HKSS-complete either.

5. Complete classes for effective-bi-interpretability

In this section, we introduce a notion of completeness much stronger than the
ones above. This new notion is more structural, as its definition does not involve
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presentations of structures. Its main attraction is that it preserves a whole range
of computational properties. The notion as defined here is new, although it is
composed of a few already-well-known concepts. In [HKSS02], one can already
see the idea of having interpretations which are somewhat effective. However, the
properties they require use presentations and are not as clean cut or as general as
the one here.

We start by introducing the notion of effective-bi-interpretability which is a
variation of the classical model theoretic notion of bi-interpretability.

5.1. Effective-bi-interpretability. Before looking at effective-bi-interpretability,
let us consider effective-interpretability in just one direction. Informally, a struc-
ture A is effectively-interpretable in a structure B if there is an interpretation of
A in B as in model theory, but where the domain of the interpretation is allowed
to be a subset of B<%, and where all sets in the interpretation are required to be
uniformly r.i. computable, except for the domain which is allowed to be uniformly
ri.c.e’®

Before giving the formal definition, we need to review one more concept. A
relation R on A< is said to be uniformly r.i.c.e. if there is a c.e. operator W
such that for every copy (B, R®) or (A, R), R = WP®B). These are exactly the
Y$-definable relations without parameters. We can then extend this definition and
define uniformly r.i. computable in the obvious way.

Definition 5.1. Let A be an L-structure, and B be any structure. Let us assume
that £ is a relational language £ = {Fy, P, Ps,...} where P; has arity a(i); so
A= (4; P, PA,..) and PA C A°(),
We say that A is effectively-interpretable in B if, in B, there is
e a uniformly r.i.c.e. set Dﬁ C B<“ (the domain of the interpretation),
e a uniformly r.i. computable relation n € B<% x B<“ which is an equivalence
relation on Dﬁ (interpreting equality),
e a uniformly r.i. computable sequence of relations R; C (B<*)*® closed under
the equivalence 7 within DS (interpreting the relations P;),
e and a function f5: D5 — A which induces an isomorphism:

(DB /nm; Ry, Ry, ...) = (A; P, P, ).

Let us clarify that: The sets R; do not need to be subsets of (Di)“(i), and,
when we refer to the structure (Dﬁ/n; Ry, Ry, ...), we of course mean (Di/n; (RoN
(DB /n, (Ry N (DB)*W)/n,...). By uniformly r.i. computable sequence we
mean that @, Ricr is uniformly r.i. computable.

If we add parameters, this notion is equivalent to that of ¥-definability intro-
duced by Ershov [Ers96] and widely studied in Russia. Ershov’s definition is quite
different in format: it uses H F(B) instead of B<“, and 3-definable sets with param-
eters instead of uniformly r.i.c.e. ones. (It is known that r.i.c.e. subsets of B<“ are

5We remark that this definition is slightly different from what the author called effective-
interpretability in [Mon13c, Definition 1.7], as we now allow the domain to be a subset of B<%
rather than B™ for some n, and we do not allow parameters in the definitions.
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equivalent to X-definable (with parameters) subsets of HF(B); see [Mon12, Section
4].) Another well-known notion is that of X-equivalence between two structures,
which just means that the structures are 3-definable in each other. This is, indeed,
quite a strong notion of equivalence, but the one we consider below is stronger,
as we also require the composition of the isomorphisms to be computable in the
respective structures. Here is the formal definition:

Definition 5.2. Two structures A and B are effectively-bi-interpretable if there
are effective-interpretations of each structure in the other as in Definition 5.1 such
that the compositions

~ B ~ A
flofR: DA — B and  fRofi: DYE) 4

are uniformly r.i. computable in B and A respectively. (Here ffl: (D5)<¥ — A<
is the obvious extension of f§: D§ — A.)

In the next lemma, we see how effective-bi-interpretability preserves most com-
putability theoretic properties.

Lemma 5.3. Let A and B be effectively-bi-interpretable.

(1) A and B have the same degree spectrum.

(2) A is computably categorical if and only if B is.

(3) A and B have the same computable dimension.

(4) A is rigid if and only if B is.

(5) A and B have the same Scott rank.

(6) For every a € A<“, there is a b € B<¥ such that (A,a) and (B,b) have the
same computable dimension, and vice-versa.

(7) For every R C A<%, there is a Q C B<% which has the same degree spectrum,
and vice-versa.

(8) A has the c.e. extendibility condition if and only if B does.

(9) The index sets of A and B are Turing equivalent, assuming A and B are
infinite structures.

(10) The jumps of A and B are effectively-bi-interpretable.

(Of course, items (2)-(10) assume A and B are computable.)

Sketch of the proof. Throughout this proof, assume that A is the presentation that
is coded inside B<%, i.e. with domain Dﬁ, and B is the copy of B coded inside

A<¥ i.e. with domain D;;l = Dgf‘. We let f be the isomorphism from B to B.

For part (1), just observe that via the Y-interpretation, given a copy of B, we
can enumerate a copy of A4, and hence compute one.

For part (2), we need the following observation: Let B; and By be copies
of B, and let A; and Ay be the presentations of A coded inside By and By
respectively. The point we need to make here is that if A; and A are computably
isomorphic, then so are By and Bs: A computable isomorphism between A; and Az
induces a computable isomorphism between B; and Bs, which each are computably-
isomorphic to By and By respectively. Thus, if A is computably categorical, so is
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B. For (3), we have that if B has k non-computably isomorphic copies By, ..., B,
then the respective structures Ay, ..., Ag cannot be computably isomorphic either.
So the effective dimension of A is at least that of B, and hence, by symmetry, they
must be equal.

For part (4), suppose B is not rigid. Let h be a nontrivial automorphism of 5.
It then induces an automorphism of B<%, which then induces an automorphism g
of A, which then induces an automorphism hy of B. Since f is invariant, we have
ho f = foh; and, since h is nontrivial, hy is not trivial either. It follows that the
automorphism g of A cannot be trivial either.

For part (5), suppose that SR(A) = «, that is, that every automorphism orbit
in A is $I* definable. Take a tuple b € B<¥; we will show its orbit is also ¥i*
definable. Let @ € B<Y C B<“ be such that f(¢) = b. The orbit of ¢ is X1* definable
inside A, and since A is X-definable in B, the orbit of ¢ is also ¥i* definable in
B. Since f is X¢-definable in B, the orbit of b is also ¥:1* definable. It follows that
SR(B) < a, and, by symmetry, that SR(B) = a.

For part (6), think of @ as a tuple in (DE)<% C B<“ and call it b. It is not
hard to show that (A,a) and (B,b) are effectively-bi-interpretable.

For part (7), think of R as a subset of (DE)<% C B<¢ and call it Q. Clearly,
for every copy of B, R and @ have the same degree. Conversely, for each copy of
A, if we look at the copy of B inside and then at the one of A inside it, we get
that R and @ have the same degree too.

For part (8), all we have to notice is that each 3-type in A is 1-1 reducible to
a X§-type in B, and vice-versa.

For part (9), given an index of a structure that we want to know if it is iso-
morphic to B, we can produce an index for the structure that is then supposed
to be isomorphic to A. If it is not, then we know the original structure was not
isomorphic to B. If it is, we need to check that the bi-interpretability does produce
an isomorphism, which 0" can check. One has to notice that all index sets compute
0”, as their domain must be infinite.

Last, for part (10), it is not hard to interpret the complete r.i.c.e. relations from
one structure into the other by interpreting X¢-formulas in one by 3§ formulas in
the other. a

5.2. Reduction via effective-bi-interpretability. As we mentioned
before, uniform r.i.c.e. sets are X definable. So, an effective-bi-interpretation is
given by a list of X§ formulas defining all the relations involved. When we fix these
formulas, we obtain a map from one kind of structure into another (which might
not always define a bi-interpretation). We can use this to define a reducibility
between classes:

Definition 5.4. A class K is reducible to S via effective-bi-interpretability if there
are 2§ formulas such that for every A € K, there is a B € S such that A and B are
effectively-bi-interpretable using those formulas. A class K is on top for effective-
bi-interpretability if for every computable language £, the class of L-structures is
reducible to K via effective-bi-interpretability.

Not much is known about this definition. Classes that are ¥-small are not
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on top for effective-bi-interpretability for the same reason they are not HKSS-
complete. Classes that have bounded Scott rank cannot be on top because effective-
bi-interpretability preserves Scott ranks. Using the interpretations defined by
Hirschfeldt, Khoussainov, Shore and Slinko [HKSS02], we get the following: undi-
rected graphs, partial orderings, and lattices are on top for effective-bi-interpretability;
if we add a finite set of constants to the languages of integral domains, commu-
tative semigroups, or 2-step nilpotent groups, they become on top for effective-
bi-interpretability too. A recent result by R. Miller, J. Park, B. Poonen, H.
Schoutens, and A. Shlapentokh [MPP™] shows that fields are on top for effective-
bi-interpretability.
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