
BOREL STRUCTURES: A BRIEF SURVEY

ANTONIO MONTALBÁN AND ANDRÉ NIES

Abstract. We survey some research aiming at a theory of effective structures

of size the continuum. The main notion is the one of a Borel presentation,

where the domain, equality and further relations and functions are Borel. We
include the case of uncountable languages where the signature is Borel. We

discuss the main open questions in the area.

1. Introduction

When looking at structures of size continuum from an effective viewpoint, the
following definition is a natural generalization of ideas from computable model
theory.

Definition 1.1. Let X be either 2ω, ωω or R, and let C be a (complexity) class of
relations on X. A C-presentation of a structure A is a tuple of relations
S = (D,E,R1, . . . , Rn) such that

• All D,E,R1, . . . , Rn are in C;
• D ⊆ X and E is an equivalence relation on D (D is called the domain);
• R1, . . . , Rn are relations compatible with E.

S is a C-representation of A if A ∼= S/E. When E is the identity on D, we say that
S is an injective C-presentation of A.

There are various possible choices for C. In this paper we concentrate on the
case that C is the class of Borel relations. Given a topological space X as above,
the σ-algebra of Borel sets is the smallest σ-algebra containing the open sets. That
is, the Borel sets are the ones obtainable from the open sets by closing under
complementation, countable unions, and intersections. A structure A is a Borel
structure if it has a Borel presentation. The number of classes of a Borel equivalence
relation is either countable or 2ℵ0 (Silver’s Theorem; see [Hjo11]). Thus, the same
statement holds for the sizes of Borel structures. We give some examples of Borel
structures.

(1) The fields (R,+,×) and (C,+,×) are Borel structures.
(2) All Büchi automatic structures (see [HKMN08]) are Borel structures.
(3) The Boolean algebra B which is (P(N),⊆) modulo finite differences of sets

is a Borel structure.
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(4) For a countable structure in a countable functional signature, the lattice
of substructures, the congruence lattice, and the automorphism group are
Borel structures.

In fact, structures of size at most the continuum one finds in books related to
analysis or algebra are usually Borel. In contrast, the well-ordering (2ℵ0 ,≤) is not
Borel. For assume it is. Let S be a Borel presentation. The class G of linear
orderings of N which embed in S is Σ1

1. On the other hand, it is exactly the class
of countable well-orderings, and hence Π1

1 complete (for each Π1
1 class C ⊆ P(ω),

there is a total Turing functional Ψ such that X ∈ C ↔ Ψ(X) ∈ G). Contradiction.
The same argument shows that (ω1,≤) is not Borel.

History. Borel structures were first considered by Friedman in unpublished work
dating from the late 1970s; [Ste85b] refers to Friedman’s unpublished notes [Fri78,
Fri79]. After that, they appear in a few papers till the late 1990s. In the last
few years, the authors, together with Hjorth and Khoussainov [HKMN08, HN11],
brought the topic up again, prompted by a question on Büchi automatic structures.
After describing some of the earlier work, we survey this more recent research. Many
questions, and even whole research directions, remain open.

Friedman [Fri78, Fri79] studied a logical system where the language is enriched
by one of the following quantifiers: “for all but countably many x...”, “for all x in
a co-meager set ...”, or “for all x in a full-measure set ...”. Borel structures are
very appropriate to model logics that use these quantifiers. Friedman then studied
axiomatizations, completeness, decidability, etc., in these extended languages. A
survey including all these results was written by Steinhorn [Ste85b]. In [Ste85a] he
continued to work in this direction.

Further relevant work was on Borel linear orderings. Some very interesting
results were obtained. Harrington and Shelah [HS82] showed that for every Borel
linear ordering A there exists ξ < ω1 such that A � 2ξ, where 2ξ is ordered by
the lexicographical ordering and � is the embeddability relation. As a corollary,
no Borel linear ordering contains a copy of ω1 or ω∗1 .

Later on, Louveau [Lou89], extending work of Marker, showed the following
unexpected result: For every Borel linear ordering A and ξ < ω1, either A �
2ω·ξ or 2ω·ξ+1 � A. Another surprising result is that under the assumption of
hyperprojective determinacy, the Borel suborderings of Rω are well-quasi-ordered
under �. This last result, due to Louveau and Saint-Raymond [LSR90], shows how
one can obtain interesting properties of a class of structures if one eliminates the
pathological cases and restricts oneself to Borel structures.

There was also a considerable amount of work on Borel partial orderings. For
example, Harrington, Marker and Shelah [HMS88] showed that every thin Borel
partial ordering can be written as the countable unions of Borel chains (to be thin
means that there is no uncountable Borel antichain). Kanovei [Kan98] studied
under which conditions a Borel partial ordering has a Borel linearization.

The more recent work of Hjorth, Khoussainov, Montalbán and Nies [HKMN08]
used Borel structures to answer a question on injective presentations that was
originally posed only for Büchi presentable structures. The paper of Hjorth and
Nies [HN11] concentrates on theories of Borel structures in uncountable languages.
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2. Effective content of the completeness theorem

The completeness theorem states that each consistent first-order theory T has a
model M no larger than the size of the language. In this section we will study the
effective content of this theorem.

Let us first recall the computable case (where the language is countable). Every
computable complete theory has a computable model. On the other hand, there is
a computable theory without a computable model. Thus, the completeness theo-
rem in the computable setting fails because there are computable theories without
computable completions.

We will now look at the completeness theorem in the Borel setting, and still
for a countable language. Of course, each countable structure is Borel, so in this
case the completeness theorem works for Borel structures. On the other hand,
interesting Borel structures have size the continuum. When Friedman introduced
Borel structures he obtained the following result.

Theorem 2.1. [Fri78, Ste85b] Every theory in a countable language with infinite
models has an injective Borel model of size 2ℵ0 . The model can be chosen so that
its elementary diagram is Borel.

Sketch of a proof. Extend T to a complete theory T1 in some countable language
L1 ⊇ L such that T1 has Skolem functions. (See [Chang, Keisler; Section 3.3].)
Consider constants

C = {cx : x ∈ ω × R≥0},

where R≥0 denotes the non-negative reals. Order these constants as R≥0 many
copies of ω. Let U be an L1-model of T1 which has C as a set of order indiscernibles
and such that every element of U is a term in the language L1 using constants
from C. Such a model U is obtained as in [Chang, Keisler; Thm 3.3.11].

Let U0 be the elementary submodel of U generated by C0 = {cx : x ∈ ω × {0}}.
Note that U0 is countable. Using the theory S of U0 as a real parameter, we will
construct an injective presentation of U that is ∆1

1(S), and hence Borel.
Let T be the set of all the terms in the language L1 with constants from C

substituted for the free variables. We define an equivalence relation on T by

t0(d̄0) ≡ t1(d̄1) ⇐⇒ U |= t0(d̄0) = t1(d̄1),

where d̄0 and d̄1 are tuples from C. This equivalence relation is ∆1
1(S): to tell

whether t0(d̄0) ≡ t1(d̄1), we can consider tuples of constants ē0 and ē1 from C0

which are in the same order as d̄0 and d̄1. Then we have that t0(d̄0) ≡ t1(d̄1) ⇐⇒
U0 |= t0(ē0) = t1(ē1). In a similar way we can calculate the effect of functions and
relations of L1 over the equivalence classes of terms in T. It is then clear that the
Borel presentation with domain T/ ≡ is isomorphic to U .

Now we want to build an injective ∆1
1(S) presentation of U . We show that the

equivalence relation ≡ on T has a Borel choice function. Consider some enumeration
of the terms in L1 (without using the constants from C). So, for every u ∈ T there
is a least term t0 in this enumeration such that U |= u = t0(d̄) for some constants
d̄ ∈ C. However, there might be many possible choices for d̄. Let n be the length
of the tuple d̄ = (d1, ..., dn). We order Cn lexicographically (so it has order type
(ω × R≥0)n).
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Claim 2.2. For every u ∈ T and each term t0 as above there is a least tuple ē such
that u ≡ t0(ē). Further, the term t0(ē) ∈ T can be chosen in a Borel way.

Without loss of generality, suppose u = t0(d1, ..., dn) with d0 ≤ d1 ≤ ... ≤ dn ∈
C. First we claim that there exists a least e such that U |= u = t0(e, c̄) for some
c̄ ∈ Cn−1 where e ≤ c1 ≤ . . . ≤ cn. If there is such an e in C0, there is clearly
a least one. Otherwise there is a unique such e: if U |= t(e1, c̄1) = t(e2, c̄2) for
e1 < e2, then, since the constants in C are order indiscernibles, for any e ∈ C0 with
e ≤ e1 we have that U |= t(e, c̄) = t(e2, c̄2) where c̄ is obtained from c̄1 by changing
the occurrences of e1 to occurrences of e. In either case, there is a least such e;
call it e0. Now fix e0. Note that the linear order induced on {x ∈ C : x ≥ e0} is
isomorphic to C. Hence, by a similar argument as for e0, there is a least e1 such
that U |= u = t0(e0, e1, c̄) for some c̄ ∈ Cn−2 where e0 ≤ e1 ≤ c2 ≤ . . . ≤ cn, and
so on. In this way we obtain ē as desired.

To verify the second part of the claim, it suffices to show that the set of ē ∈ Cn
which are the least ones determining a value of t0 is Borel. Suppose there exists c̄
which is below ē in Cn such that U |= t0(ē) = t0(c̄). This can happen if and only
if there exist ē1, ē2 ∈ Cn0 which are ordered in the same configuration as ē, c̄ such
that U0 |= t0(ē1) = t0(ē2). Since we are using the theory S of U0 as a parameter,
this property is Borel. �

By a Borel automorphism of a structure with an injective Borel representation we
mean an automorphism of the structure with a Borel pre-image on D×D where D is
the domain of the presentation. For instance, conjugation is a Borel automorphism
of the field of complex numbers with the natural presentation. The structure with
the Borel presentation obtained in Theorem 2.1 has many Borel automorphisms.
Thus we obtain:

Corollary 2.3. Every theory in a countable language with infinite models has an
injective Borel model of size 2ℵ0 with 2ℵ0 many Borel automorphisms.

Proof. There are 2ℵ0 many Borel automorphisms g of the linear order ω × R≥0

(obtained by extending automorphisms of the linear order of the positive rationals).
Each automorphism g of this linear order extends to an automorphism ĝ of the
structure U : ĝ is well-defined via the equation

ĝ(t(d̄)) = t(g(d̄))

for each term t ∈ L1 and each tuple d̄ from C. If g is Borel then so is ĝ for the
injective presentation of U obtained above. For, in the setting of Claim 2.2 , if t0
is a term and ē is the least tuple such that u ≡ t0(ē), then g(ē) is the least tuple
such that ĝ(u) ≡ t0(g(ē)). �

A natural question is what happens to the completeness theorem in the Borel
setting with the language the size of the continuum. A little more care is needed
here with the basic definitions. We follow [HN11]. For generality, we allow arbitrary
Polish spaces as domains. Thus, Borel set will mean a Borel subset of some Polish
space. A Borel signature is a Borel set L of function and relation symbols (coded
for instance as reals) such that the arity function is Borel.

Using prefix (or Polish) notation one can naturally identify formulas in the re-
sulting first-order language with finite strings in

L ∪ {¬,∨,∧,∀,∃, v0, v1, ...},
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where v0, v1, ... are our variable symbols. The collection of well-formed first-order
formulas, Lω,ω, is a Borel subset of

(L ∪ {¬,∨,∧,∀,∃, v0, v1, ...})<ω.

Let L be a Borel signature. Then a Borel first-order theory in L is a Borel
subset T of Lω,ω. It is not hard to see that the closure under logical inference of a
Borel theory is analytical, but may fail to be Borel.

Definition 2.4. Suppose a Borel signature L has been fixed. Let M be an L
structure with domain M . We say that M, together with a Polish space X and a
Borel equivalence relation E ⊂ X ×X, is a Borel presentation if

M = X/E = {[x]E : x ∈ X},

and {(a0, ..., an−1, R) ∈ Xn × L :
R is an n-ary relation symbol of L & M |= R([a0]E , ..., [an−1]E)}

is Borel as a subset of Xn × L;
further, {(a0, ..., an−1, b, f) ∈ Xn+1 × L :

f is an n-ary function symbol of L & M |= f([a0]E , ..., [an−1]E) = [b]E}
is Borel as a subset Xn+1 × L. We say that a structure N is Borel if there is a
Borel presentation M which is isomorphic to N .

We will usually denote presentations as (X,E; ...) whereM = X/E and the (...)
refers to the interpretations of the various non-logical symbols of L.

For a structure over a finite language, being Borel in the sense of the present def-
inition is clearly equivalent to being Borel in the sense of Section 1. If the language
is uncountable, the present definition is more restrictive than merely requiring that
each individual relation or function be Borel: the relations and functions need to
be “uniformly Borel”.

For instance, the fields R,C in the extended language with names for all elements
and for all continuous functions from the field to itself are Borel structures.

Just as in the computable setting, we can’t always find a completion of a Borel
theory that is Borel. This result of [HN11] first came up in work related to
[HKMN08].

Theorem 2.5. There exists a consistent Borel theory with no Borel completion.

Proof. Let U be a free ultrafilter on N. We will consider a Borel subtheory of
the atomic diagram of the structure (P (N),U), such that any model of it codes
a free ultrafilter on N. The existence of a Borel completion of this theory would
contradicts the easy fact that there are no free Borel ultrafilters on N: on the one
hand such a filter would have measure 1/2. On the other hand, being closed under
finite variants it would have measure 0 or 1 by the 0-1 law. Also see [Kec95, Exercise
8.50].

To give more detail, the signature of our theory contains a unary predicate U ,
and for each A ⊆ N a constant symbol cA. The theory contains the axioms cA 6= cB ,
for every A 6= B ⊆ N. Furthermore, it contains axioms saying that U determines
a free ultrafilter as far as the elements named by the cA are concerned. Thus the
theory contains the following axioms: U(cN); U(cA)→ U(cB), for every pair of sets
such that A ⊆ B ⊆ N; U(cA) ↔ ¬U(cN\A), for every A ⊆ N; U(cA) & U(cB) →
U(cA∩B), for every A,B ⊆ N; ¬U(cA), for each finite set A ⊆ N.



6 ANTONIO MONTALBÁN AND ANDRÉ NIES

Clearly, this theory is Borel. The theory is consistent, because it has the model
(P (N),U) extended by constants naming each subset of N. If T is a completion of
our theory which is Borel, then

{A ⊆ N : T |= U(cA)}
is a Borel free ultrafilter. Contradiction. �

The theory above also does not have any Borel model X : otherwise, {A ⊆ N :
cXA ∈ UX } would be a Borel free ultrafilter on N.

Even if we have a complete theory, the Borel version of the completeness theorem
fails. This contrasts with the computable case.

Theorem 2.6 (Hjorth, Nies [HN11]). There exists a complete and consistent Borel
theory which has no Borel model.

This theorem relies on a well known fact from descriptive set theory. For a proof
see Example 1.6 in [Hjo11].

Fact 2.7. There is no Borel function F : P(N)→ P(N) such that

X =∗ Y ⇔ F (X) = F (Y )

for each X,Y ⊆ N.

Broadly speaking, to prove Theorem 2.6 one builds a theory such that any Borel
model would contain a function contradicting the foregoing fact. Part of the diffi-
culty is that one also has to rule out non-injective Borel presentations.

A Borel algebraic closure of a Borel field F of characteristic m is a Borel model
of the complete theory which is axiomatized by the atomic diagram of F together
with ACFm. In other words, one embeds F in a Borel way into an algebraically
closed Borel field.

The usual construction of an algebraic closure uses a construction of Artin akin
to the proof of the completeness theorem (see [Lan65]). In particular, one needs
the axiom of choice when the given field is uncountable.

Question 2.8. Does each Borel field F have a Borel algebraic closure?

A negative answer would yield a further example, somewhat more natural than
Theorem 2.6, of a complete Borel theory without a Borel model.

3. Borel presentability

In the computable case there is no need to differentiate between injective and
non-injective presentations: if E is a computable equivalence relation, then the
quotient under E can be represented computably by taking the first (in N) element
of each equivalence class. However, this is not possible in the Borel case.

Theorem 3.1 (Hjorth, Khoussainov, Montalbán, Nies [HKMN08]). There is a
Borel structure in a finite language without an injective Borel presentation.

They actually build a Büchi automatic structure without an injective Borel pre-
sentation. Recall from the introduction that B denotes the Boolean algebra P(N)
modulo finite differences. The structure built in the proof of Theorem 3.1 is the
disjoint union of the Boolean algebras P(N) and B, together with the canonical
projection map p : P(N)→ B. They apply Fact 2.7 to show that this structure has
no injective Borel presentation.
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While not very complicated, this example had to be built for the proof; it is
not a structure that appears naturally in mathematics. Such a structure would be
obtained by answering the following question in the negative.

Question 3.2. Does the Boolean algebra P(N) modulo finite differences have an
injective Borel presentation?

4. Borel dimension

To say that two Borel presentations are equivalent, it is not enough to use the
classical notion of isomorphism. We need Borel isomorphism.

Definition 4.1. Two Borel presentations (X,E; ...), (Y, F ; ...) are said to be Borel
isomorphic if there is an isomorphism Φ : X/E → Y/F such that the preimage
on X × Y

Φ̂ = {〈x, y〉 : Φ([x]E) = [y]F }
is Borel.

Borel isomorphism is easily verified to be an equivalence relation on Borel pre-
sentations; for transitivity, one uses the Lusin separation theorem to show that the
composition of two isomorphisms with Borel preimage also has a Borel preimage.

We could also introduce a slightly stronger notion of Borel isomorphism where
we require in 4.1 that both Φ and its inverse are induced by Borel functions on
the domains. In many examples of Borel presentations the equivalence relation
has only countable classes. In this case, the two definitions are equivalent by the
Lusin-Novikov uniformization theorem (see [Kec95]).

A Borel structure M is Borel categorical if any two Borel presentation of it are
Borel isomorphic. More generally, one can define the Borel dimension of a Borel
structureM to be the number of equivalence classes modulo Borel isomorphism on
the set of Borel presentations ofM. This is analogous to the notion of computable
dimension in the area of recursive model theory. It was suggested by Bakhadyr
Khoussainov.

Note thatM is Borel categorical if and only if it has Borel dimension 1. Examples
of Borel categorical structures are:

(1) The linearly ordered set (R,≤).
(2) The Boolean algebra (P(N),⊆).
(3) The field (R,+,×).

In fact, for these examples, each isomorphism between two Borel presentations of
the structure has a Borel graph.

An example of a non-Borel categorical structure is the group (R,+), as shown
in [HKMN08]. In [HN11] the stronger result was obtained that its Borel dimension
is 2ℵ0 . To see this, for a real p > 1 recall the Banach space

`p = {~x ∈ RN :
∑
n

|xn|p <∞},

where the norm is |~x|p = (
∑
n |xn|p)1/p. Let Gp be (the canonical injective Borel

presentation of) the abelian group underlying `p. Clearly, as abstract groups these
are isomorphic for all p, being vector spaces of dimension 2ℵ0 over Q. However, they
are not Borel isomorphic. For, any isomorphism between the group structure of two
Polish groups that is Borel must be a homeomorphism. (See for instance [BK96,
Section 1.2] or [Kec95, Thm. 9.10]; note that each Borel map is Baire measurable.)
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Hence it would be linear. But for 1 < p < q there is no continuous linear bijection
between `p and `q. See [LZ96, top of pg. 54].

A further example of a non-Borel categorical structure is given by the following
result of Nies and Shore.

Theorem 4.2. The field (C; +,×) is not Borel categorical even for injective Borel
presentations.

Proof. Let T = ACF0 be the theory of algebraically closed fields of characteristic 0.
Then T is ω1-categorical, so every model of size 2ℵ0 is classically isomorphic to the
field C.

By Corollary 2.3, T has an injective Borel model of size 2ℵ0 with 2ℵ0 many
Borel automorphisms. On the other hand, any Borel automorphism of C with the
natural presentation is continuous by the result mentioned in the foregoing proof.
The only continuous automorphisms of C are conjugation and identity. Hence the
two injective Borel presentations are not Borel isomorphic. �

Nies and Shore actually gave a direct construction of an injective Borel model
of ACF0, of size 2ℵ0 , and with 2ℵ0 many Borel automorphisms. Let B be an
uncountable closed set of algebraically independent reals. Then the real closure of
B in R is Borel. The first step is adding the roots of odd-degree polynomials with
coefficients in B. One can identify the elements with the polynomials and their
roots in order; the roots are computable in the coefficients. Now one iterates the
process. The real closed subfield of R constructed in this way has an injective Borel
presentation. Finally one adjoins a solution toX2 = −1 to obtain the required Borel
model of ACF0. There are 2ℵ0 many Borel automorphisms for this presentation.
They are induced by the Borel permutations of B.

If one chooses B as in the proof of Theorem 5.2 below (namely, reals whose binary
presentations are the paths on a perfect tree T such that the effective disjoint union
of finitely many paths is arithmetically generic), then by an argument similar to
the one given below, the field one obtains is actually Borel as a subfield of C.

The following question remains open.

Question 4.3. Is there a Borel structure of Borel dimension strictly between 1
and 2ℵ0?

5. Borel models of Peano arithmetic

Recall that a set S ⊆ 2ω is a Scott set if S is closed downwards under Turing
reducibility, closed under joins, and each infinite binary tree T ∈ S has an infinite
path in S. Scott sets occur for instance in reverse mathematics as the ω-models of
WKL0.

Let M be a model of PA. The standard system of M consists of the standard
parts of M -definable sets. Thus, the standard system is the class

{D ∩ ω : D ⊆M is parameter definable in M}
(here we think of M as extending ω).

For n ∈ N let pn denote the n-th prime. Let M be a nonstandard model of
PA. It is well-known [Kay91] that each set in the standard system has the form
{n ∈ N : pn | a} for some a ∈M .

Scott (see [Kay91, Section 13.1]) showed that the countable Scott sets are pre-
cisely the standard systems of countable models of Peano arithmetic. Knight and
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Nadel [KN82] proved the analoguous result for the size ω1. For the size 2ω, the
analogous statement is open. Motivated by this, H. Woodin asked the following
effective version of this question.

Question 5.1. If a Scott set is Borel, is it already the standard system of a Borel
model of Peano arithmetic?

For an upper bound on the complexity, note that the standard system of any
Borel model of PA is analytic.

A jump ideal is an ideal K in the Turing degrees that is closed under the jump.
Note that the sets with degree in K form a Scott set. Thus the following yields an
uncountable non-trivial Scott set that is Borel.

Theorem 5.2 (Slaman, 2010). There is a proper uncountable jump ideal K in the
Turing degrees that is Borel.

Proof. K is the jump ideal generated by the degrees of paths on a perfect tree T
such that the effective disjoint union of finitely many paths is arithmetically generic.
This jump ideal is proper because it does not contain the degree of ∅(ω).

We sketch the argument why K is Borel. For a simple case, consider whether X
is recursive in some path G in T via the Turing functional Φ. Let G ∈ [T ]. For each
n, the value of Φ(n,G) is determined by a finite initial segment of G, including the
value “undefined” since G is generic.

So the set of G ∈ [T ] such that Φ(G) = X is a Π0
1(X ⊕ T ) subset of [T ]. By

the compactness of Cantor space, whether this set is nonempty is arithmetic in T
and X. The definition of this set only depends on Φ and T . Thus, the set of X
such that X is recursive in a path through T by functional Φ is arithmetic in T .

Note that G(n) ≡T G ⊕ ∅(n) for each arithmetically generic G. Similar to the
argument above, one can show that it is arithmetic in T whether X is recursive
in a sequence of paths of a fixed length and 0(n) by functional Φ. The jump ideal
generated by [T ] is the countable union of these sets, so it is Borel, too. �

A recent preprint of Ali Enayat focuses on Borel models of PA. In particular,
he has probed the “Borel content” of a result of Schmerl [KS06, Theorem 6.4.3] to
show that Theorem 5.2 above can be strengthened: there is a proper uncountable
Borel jump ideal K in the Turing degrees that can be realized as the standard
system of some model of PA.

It would be interesting to determine which Borel upper semilattices with least el-
ement and the countable predecessor property are isomorphic to Borel (or analytic)
ideals of the Turing degrees.
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