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Abstract
This survey article was written for Prof. Alan Weinstein’s Symplectic Geometry

(Math 242) course at UC Berkeley in Fall 2005. We review different constructions
arising from the theory of pseudoholomorphic curves in symplectic manifolds and
results concerning their use in giving a firm mathematical description of mirror
symmetry. Specifically, we discuss the Homological Mirror Symmetry Conjecture.

1 Introduction

Mirror symmetry has arisen in the last decade and a half as an important subject in
symplectic, complex, and algebraic geometry. It postulates a connection between pairs
of Calabi-Yau manifolds and relates the complex geometry of one to the symplectic
geometry of the other (the name “mirror symmetry” comes from a graphical realization
of the relation between Hodge numbers of the mirror manifolds). These ideas first
arose from considerations in string theory, where it is shown that mirror manifolds give
rise to the same physical theory when used as the extra dimensions which are required
by string theories. This helps to address one major difficulty in string theory — the
fact that the theory cannot single out a unique manifold to model the “real world”.
If different manifolds give rise to the same physics, then this should not be too much
of a concern. Having been first proposed by physicists, mirror symmetry is difficult
to formulate mathematically. Current research in mirror symmetry seeks to give the
mirror relation a firm mathematical foundation.

Numerous constructions used in attempts to define mirror symmetry mathematically
are based on the theory of pseudoholomorphic curves. Pseudoholomorphic curves, intro-
duced into symplectic geometry by Gromov [10] in 1985, are the natural generalizations
of holomorphic curves to almost complex manifolds. Since their introduction, the study
of pseudoholomorphic curves has revolutionized the subject of symplectic geometry.

The aim of this paper is to review some of the constructions that arise from the theory
of pseudoholomorphic curves and discuss the progress that has been made in using these
constructions to define the mirror symmetry relationship. Specifically, we give a quick
review of Gromov-Witten invariants, quantum cohomology, and the Fukaya category
(coming from ideas in Floer theory). After reviewing these and some basic concepts
in mirror symmetry, we define the mirror symmetry relation in terms of Kontsevich’s
Homological Mirror Symmetry Conjecture and review progress that has been made in
attempting to prove it.
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2 Mirror Symmetry in Physics

To set up the context of mirror symmetry, we first recall some ideas from physics. In
string theory, one replaces the classical notion of a point particle with that of a 1-
dimensional vibrating string. Heuristic arguments show that, for this to lead to a solid
physical theory, one should require that the universe be 10-dimensional. Four of these
correspond to the usual dimensions we observe (three physical and one time), but the
other six are more mysterious. String theorists assume that the universe is modelled
by R4 ×M where M is some compact 6-dimensional manifold. This M is responsible
for the behaviour and properties of strings. Heuristic arguments then show that M
should actually be a Calabi-Yau manifold, i.e. a Kähler manifold with vanishing first
chern class. (A theorem of Yau says that Calabi-Yau manifolds can be equivalently
defined as Ricci-flat Kähler manifolds.) As alluded to in the introduction, it turns out
that there are many choices of Calabi-Yau manifolds that lead to reasonable physics,
and the current theory cannot single out the correct one. This difficulty and the idea
of doing computations on the mirror dual are perhaps where mirror symmetry is most
physically important.

It is believed that, to each Calabi-Yau manifold, one can associate two N = (2, 2)
superconformal field theories — the so called A and B models. We will not review these
constructions here, but refer instead to [28]. The symplectic geometry side of mirror
symmetry corresponds to the A-model and the complex geometry side corresponds to
the B-model. Mirror symmetry in this context can be roughly stated as follows:

Conjecture 2.1 (Mirror Symmetry Conjecture). If M and W are mirror Calabi-Yau
manifolds, then the A-model on M is equivalent to the B-model on W , and vice-versa.

Another formulation states that the moduli space of Kähler structures on one man-
ifold, considered as symplectic structures, should be equivalent to the moduli space of
complex structures on the mirror dual. Indeed, the dimensions of these spaces are equal
to the Hodge numbers which mirror symmetry says should be the same.

One consequence of the physical formulation of mirror symmetry is a relation be-
tween the number of rational curves in a Calabi-Yau manifold and the variation of
Hodge structures on its mirror manifold. The number of rational curves is given by
correlation functions. Later we will see that mathematically these correlation functions
are given exactly by Gromov-Witten invariants. A first major achievement of mirror
symmetry was a prediction for the number of rational curves on certain manifolds given
in [3]. This prediction has since proved to be accurate [8].

In the physics literature, mirror symmetry is most commonly stated solely as a rela-
tion between Calabi-Yau manifolds. However, even in this context, the mirror symmetry
relation depends only on the symplectic structure of one manifold and the complex struc-
ture of the other. Hence it makes sense to try to define the mirror symmetry relationship
more generally as a relation between symplectic and complex manifolds.

For an explicit, relatively simple example of mirror symmetry we refer the reader to
the case of the quintic threefold summarized in [17]. A further introduction to mirror
symmetry can be found in [19].
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3 Pseudoholomorphic Curves

Recall that an almost complex structure on a smooth manifold M is a smooth (1, 1)-
tensor J such that the vector bundle isomorphism J : TM → TM satisfies J2 = − Id.
In other words, J gives a smooth family of complex structures on the tangent spaces of
M . A smooth manifold with an almost complex structure is called an almost complex
manifold.

Definition 3.1. An almost complex structure J on (M,ω) is said to be ω-tamed if
ω(u, Jv) is a positive definite bilinear form. Equivalently, J is ω-tamed if 1

2(ω(u, Jv) +
ω(v, Ju)) is a Riemannian metric. J is said to be ω-compatible if ω(u, Jv) is a Rieman-
nian metric.

Definition 3.2. Let (M,J) be an almost complex manifold. A map f : Σ → M from a
Riemann surface (Σ, j) into M is called a pseudoholomorphic (or J-holomorphic) curve
if f satisfies the Cauchy-Riemann equation ∂̄Jf = 0 where ∂̄Jf = 1

2(df + J ◦ df ◦ j).

The condition ∂̄Jf = 0 just says that df is complex linear. More generally, in
the course of finding the invariants described below, one considers perturbed Cauchy-
Riemann equations ∂̄Jf = g.

Let (M,ω) be a symplectic manifold and let J be a tamed almost complex structure
on M , which always exists (since in particular an ω-compatible almost complex structure
always exists [23].) Let α ∈ H2(M) be a homology class in M and fix a nonnegative
integer g. We let Mg,k(α, J) denote the moduli space of pseudoholormophic curves from
Riemann surfaces (Σ, j) to M with k marked points representing the class α. This space
can be compactified to give a space Mg,k(α, J) which in general will be an orbifold (a
space which is locally homeomorphic to Rn mod the action of some finite group) —
in the genus 0 case we actually get a smooth manifold. A nice exposition is given
in [18]. The compactification was described by Gromov [10] in a special case, and also
by Ruan [22]. The general notion of compactification uses the notion of stable maps.

Pseudoholomorphic curves arise in string theory in the following way. In string
theory, a string sweeps out a 2-dimensional surface (the worldsheet) as it moves. One
then wishes to compute path integrals over the space of such surfaces, which is difficult
if not impossible to do since the spaces are infinite dimensional. However, in the A-
model, the surfaces in question can be parameterized by pseudoholomorphic curves, and
the path integrals become integrals over moduli spaces of these curves, which are finite
dimensional. These latter integrals are then easier to compute and give information
about the original objective.

We will also need the definition of a semipositive symplectic manifold, which we get
from [21]. This is a 2n-dimensional symplectic manifold (M,ω) such that for any tamed
almost complex structure J on M there is no pseudoholomorphic curve C satisfying

3− n ≤
∫

C
c1(M) < 0.

As we will see, pseudoholomorphic curves are vital in the formulation of homological
mirror symmetry. Counting pseudoholomorphic curves gives rise to new invariants,
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differentials used in different homology theories, and maps used in the construction of
the Fukaya category.

4 Gromov-Witten Invariants

Invariants of symplectic manifolds arising from pseudoholomorphic curves were con-
sidered by Gromov in his fundamental paper [10]. More sophisticated invariants were
introduced by Witten in [27] and then Ruan in [22], leading to the general notion of
Gromov-Witten invariants. Intuitively, these invariants count the number of pseudo-
holomorphic curves in a symplectic manifold.

For our purposes, we will state a simple definition of Gromov-Witten invariants
given in [16]. Recall that Mg,k(α, J) denotes the compactified moduli space of pseuo-
holomorphic curves in M from genus g surfaces with k marked points representing the
class α. Then there is a natural evaluation map ev : Mg,k(α, J) → Mk and a projection
π : Mg,k(α, J) →Mg,k to the moduli space of stable curves of genus g with k marked
points.

Definition 4.1. The Gromov-Witten invariants are maps

GWM
g,k,α : H∗(M ; Q)⊗

k ⊗H∗(Mg,k; Q) → Q

defined by

GWM
g,k,α(a1, . . . , ak;β) =

∫
Mg,k(α,J)

ev∗1a1 ^ · · · ^ ev∗kak ^ π∗PDβ.

where PDβ denotes the Poincaré dual of β.

The integrals involved in these definitions resemble the definitions of correlation
functions that come up in physics. For example, the invariant Φ̃ introduced in [22] is
exactly Witten’s k-point correlation function [27]. The extrema of the action functional
in Witten’s topological sigma model [27] turn out to be pseudoholomorphic maps and
this is the source of the connection between Gromov-Witten invariants and correlation
functions.

An axiomatic approach to these invariants is given in [13], and we refer to Ruan’s
original paper [22] for his definition in the semipositive genus zero case. For a further
development of Gromov-Witten invariants, we refer to [25] and [16].

5 Quantum Cohomology

Quantum cohomology was first introduced in physics by Vafa [26]. A mathematical
theory later followed which uses Gromov-Witten invariants to define a new product in
cohomology, giving rise to the quantum cohomology of a symplectic manifold [16],[21].
In the mirror conjecture, quantum cohomology helps to give a mathematical description
of the A-model, and comes up in explaining the relation among Hodge numbers between
mirror manifolds.
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To define the new quantum product, we first need the notion of a quantum coefficient
ring, taken from [16].

Definition 5.1. Let (M,ω) be a compact symplectic manifold and R a commutative
ring with unit. A quantum coefficient ring over R for (M,ω) is a triple (Λ, φ, ι), where
Λ is a 2Z-graded commutative ring with unit and also an R-module, φ : Γ(M,ω) → Λ
is a ring homomorphism that preserves the R-module structure and the grading, and
ι : Λ → R is an R-module homomorphism that vanishes on elements of nonzero degree
and satisfies ι(φ(λ)) = λ(0).

Also, we need the notion of the effective cone.

Definition 5.2. The effective cone Keff(M) of a symplectic manifold (M,ω) with ω-
tame almost complex structure J is

Keff(M) = {A ∈ H2(M) | there exists a pseudoholomorphic curve in class A}.

Definition 5.3. Let (M,ω) be a closed semipositive symplectic manifold and let H∗(M)
denote the quotient of H∗(M, Z) by its torsion. Define the quantum cohomology of M
with coefficients in Λ to be QH∗(M,Λ) = H∗(M)⊗Z Λ.

We define a product ∗ on QH∗(M,Λ) as follows. First a piece of notation: for
A ∈ Keff , let eA denote the image under φ of the characteristic function of A. For each
a, b ∈ H∗(M) and A ∈ Keff , let (a ∗ b)A denote the element such that∫

M
(a ∗ b)A ^ c = GWM

0,3,A(a, b, c)

for all c ∈ H∗(M) where ^ denotes the ordinary cup product. We define the quantum
cup product a ∗ b by

a ∗ b =
∑

A∈Keff

(a ∗ b)A ⊗ eA.

Note that Ruan and Tian [21] define the quantum product using Witten’s k-point
correlation function. Examples of quantum cohomology rings, such as QH∗(CPn) =
Z[p, q]/〈pn+1 − q〉 can be found in [16].

One way in which this product arises in mirror symmetry is the following. For
h ∈ H2(M), we have the following formula [16]:∫

H
h ∗ h = 5 +

∞∑
d=1

Ndd
3 qd

1− qd

where q = eA and Nd is the number of rational curves of degree d in the class A. This
formula is equivalent to

∞∑
d=1

1
d3

GWM
d,3,A(h, h, h)qd =

∞∑
d=1

Nd
qd

1− qd
.
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Using mirror symmetry we can compute the left hand sides based on variations of Hodge
structures and hence gain information about the numbers Nd. In general, one tries to
compute the quantum cohomology ring in this manner since computations on the mirror
manifold (the B-model) are usually simpler.

In physics, topoligical field theories, such as the A and B-modles, can be defined
using the notion of a supercommutative Frobenius algebra. In particular, the algebra
corresponding to the A-model on a Calabi-Yau manifold turns out to be the quantum
cohomology ring of the manifold. For further discussion we refer to [12] and the refer-
ences therein. It is in this way that quantum cohomology can be used to formulate the
symplectic side of the mirror symmetry conjecture.

6 The Fukaya Category

Floer homology can be viewed as an infinite dimensional analog of Morse theory. In this
paper we consider specifically the intersection Floer theory of two lagrangian subman-
ifolds, whose study began with Floer’s paper [5]. The chain complex of this homology
theory is generated by intersection points of the lagrangian submanifolds in question,
and the differential counts pseudoholomorphic discs with the two boundary arcs lying
in the different submanifolds.

We do not give an account of Floer theory here, as we are mainly concerned with
how it is used to define the Fukaya category. For a further development of Floer theory,
we refer to [4] and [16].

It turns out that one can regard the lagrangian submanifolds of a symplectic manifold
as the objects of a category and the Floer homology of two lagrangian submanifolds as
the morphisms. Fukaya realized that what this defines is not actually a category, but
what is known as an A∞-category. We use the definition given in [20].

Definition 6.1. An A∞-category is a collection of objects together with a Z-graded
space of morphisms Hom(X, Y ) for each pair of objects X and Y and composition maps

mk : Hom(X1, X2)⊗ · · · ⊗Hom(Xk, Xk+1) → Hom(X1, Xk+1)

of degree 2− k satisfying

n∑
r=1

n−r+1∑
s=1

(−1)εmn−r+1(a1 ⊗ · · · as−1 ⊗mr(as ⊗ · · · ⊗ as+r−1)⊗ as+r ⊗ · · · ⊗ an) = 0

for all n ≥ 1 where ε = (r + 1)s + r(n +
∑s−1

j=1 deg(aj)).

An A∞-category is not a category in the usual sense since it does not necessarily
satisfy the required associativity conditions, but instead satisfies the higher associativity
laws given by the final condition in the definition. For the reader familiar with the notion
of an A∞-algebra, we note that an A∞ algebra is just an A∞-category with one object.

The Fukaya category of M is an A∞-category F (M) whose objects are pairs (L, E)
consisting of a Lagrangian submanifold L ⊂ M and a flat complex line bundle E over
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L, and whose morphisms are defined, only if L1 and L2 intersect transversally, by Floer
homology: Mor(L1, L2) = HF∗(L1, L2). The A∞-structure comes from summing over
pseudoholomorphic discs, as explained in [6]. More precisely, the map

mk : Hom(L0, L1)⊗ · · · ⊗Hom(Lk−1, Lk) → Hom(L0, Lk)

is defined by counting pseudoholormophic curves from a disk mapping marked points
to intersection points:

mk(p1, . . . , pk) :=
∑

φ:D2→M, q∈L1∩Lk+1

± exp
(
−

∫
D2

φ∗ω

)
q.

The Fukaya category plays a critical role in the definition of homological mirror
symmetry in that it describes the A-model of a Calabi-Yau manifold. The definition is
slightly altered for each example we will discuss below, but the general idea remains the
same.

7 Homological Mirror Symmetry

The first serious attempt at a mathematical foundation of mirror symmetry was the
Homological Mirror Symmetry conjecture introduced by Kontsevich [14] in 1994. This
conjecture roughly conjectures an equivalence between coherent analytic sheaves on a
Calabi-Yau manifold (the complex side) and lagrangian submanifolds of its mirror (the
symplectic side).

Remark 7.1. A coherent analytic sheaf on a complex manifold X is a holomorphic sheaf
F that is the cokernel of some sheaf morphism Os

X → Or
X . Every holomorphic vector

bundle gives rise to such a sheaf by taking sections over open sets, but not every sheaf
arises in this way. However, one can go a long way by just thinking of coherent analytic
sheaves as holomorphic vector bundles.

Before stating the conjecture, we recall that the derived category of a category C is
constructed using complexes in C. We refer to books on homological algebra for more
details.

Conjecture 7.1 (Homological Mirror Symmetry Conjecture). Let (M,ω) be a symplec-
tic manifold with vanishing first Chern class, and let W be a complex manifold which is
mirror dual to M . Then the derived category constructed from the Fukaya category of
M is equivalent to the bounded derived category of coherent analytic sheaves on W .

The connection between this homological conjecture and the physical intuition given
above comes from considering the homological objects as the D-branes of theory — the
objects on which ends of open strings are allowed to move. Namely, a pair (L, E) where
L is a lagrangian submanifold and E is a flat complex line bundle is a D-brane of
the A-model (an A-brane) and a coherent analytic sheaf is a D-brane of the B-model
(a B-brane). For more precise explanations of the relation between branes and these
homological objects, we refer to [28], [12], and the references therein.
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It should be noted that Kontsevich proposed this framework before D-branes were
studied seriously in string theory — the interpretation of the categories as D-branes
came later. In [11] it is argued that in fact not all A-branes arise from lagrangian
submanifolds, but this is beyond our current discussion. Homological Mirror Symmetry
was first shown to be true for the case of elliptic curves in [20]; we discuss this in more
detail later.

We note what the conjecture says for the Floer theory of lagrangian submanifolds,
which is further developed in [7]. The equivalence described in the conjecture states
that for pairs (L, E) where L is a lagrangian submanifold and E is a flat complex line
bundle over L, mirror symmetry induces an isomorphism

HF ((L1, E1), (L2, E2)) ' Ext(F1,F2)

between Floer homology on the left and Ext homology of the sheaves F1 and F2 corre-
sponding to L1 and L2 resepectively under the mirror map.

Part of the difficulty in the homological mirror symmetry conjecture is that there
is no explicit construction given for the complex mirror dual W . A basic idea for the
construction is described in [15]. Following that exposition, let (M,ω) be a symplectic
manifold with a submersion pM : M → U whose fibers are lagrangian tori. Then
M can be identified with T ∗U/H where H is a lagrangian sublattice in T ∗U . Let
Ht = Hom(H, Z). Then Y = TU/Ht should be the mirror dual of M . We note, as
explained in [15], that Y no longer has a symplectic structure but now has a complex
structure coming from the flat affine structure on U — which we expect from mirror
symmetry.

In addition to homological mirror symmetry, there is another mathematical formu-
lation of mirror symmetry due to Strominger, Yau, and Zaslow [24] that builds on the
above idea. Here, Calabi-Yau manifolds are described in terms of torus fibrations, and
mirror symmetry becomes the action of T -duality on each fiber. This has the advantage
of giving a more geometric construction of the mirror dual of a manifold.

Remark 7.2. For the reader who is not familiar with T -duality, we recall the basic idea
here. T -duality is a certain symmetry between string theories on spaces of differing
radius. The idea is that replacing the radius R by 1/R and exchanging momentum and
winding number does not change the physical theory. More details can be found in [19].

8 Examples of Homological Mirror Symmetry

8.1 Elliptic Curves

As mentioned above, the case of elliptic curves (i.e. 1-dimensional complex manifolds,
or tori) was the first example where homological mirror symmetry was shown to be
true. Here we discuss some details of this example, following [20]. The mirror dual of
an elliptic curve (complex manifold) is a 2-torus (symplectic manifold). Note that as
1-dimensional complex manifolds, elliptic curves and tori are basically the same objects,
but we make the distinction here to emphasize that we are only considering the complex
structure of the elliptic curve and the symplectic structure of the torus.
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Let M be a 2-torus with Kähler form ω. The objects of the Fukaya category here,
special lagrangian submanifolds with flat bundles which we denote by Ui = (Li, Ei),
are simply geodesics since any 1-dimensional submanifold is trivially lagrangian and
the minimality condition implies that the submanifolds must then be geodesics. The
morphisms are given by Hom(Ui, Uj) = C|Li∩Lj | ⊗ Hom(Ei, Ej). To define the A∞-
structure, we denote elements of Hom(Uj , Uj+1) by (aj , tj). Then the map mk is defined
by

mk(u1 ⊗ · · · ⊗ uk) =
∑

ak+1∈L1∩Lk+1

(ak+1, C(u1, . . . , uk, ak+1))

where
C(u1, . . . , uk, ak+1) =

∑
φ

±e2πi
R

φ∗ω · e
R

φ∗β

and β is the connection of the flat bundle. The sum is over all pseudoholomorphic
(holomorphic in this case) maps φ : D2 → M with conditions on the boundary.

Now, suppose that W is the mirror elliptic curve. Then we can write

W = C/(Z⊕ τZ)

where τ defines the complex structure of W . If ρ =
∫
M ω, then the map which gives rises

to mirror symmetry exchanges ρ and τ . The Homological Mirror Symmetry equivalence
is constructed by first giving the map between line bundles on W and geodesics on M ,
and then using this to define the equivalence between the derived categories. We refer
to [20] for the details.

8.2 Fano Varieties

Homological mirror symmetry was shown to be true for certain Fano varieties in [1],
building on work of Givental [9], and for Del Pezzo surfaces in [2]. Here, the B-model
is described by sigma models with target spaces Fano varieties and the A-model is
described by what are known as Landau-Ginzburg models. For further information
about these models, the reader can consult [1] and the references therein. The definition
of the Fukaya category in this setting is altered to consider so called lagrangian vanishing
cycles.

The main result of [1] is that Homological Mirror Symmetry holds for the mirror
pair consisting of the weighted projective plane W = CP 2(a, b, c) and the hypersurface
M = {xaybzc = 1} ⊂ (C∗)3. Building on this, the same authors then prove Homological
Mirror Symmetry for certain Del Pezzo surfaces and blowups of CP 2 in [2]. These
examples show that the mirror symmetry phenomenom can hold in situations other
than the case of Calabi-Yau manifolds.

9 Conclusion

As we have seen, mirror symmetry is an exciting area of study in symplectic and com-
plex geometry. Defining it mathematically requires a study of many different topics,
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especially the theory of pseudoholomorphic curves. While we have in no way given a
full treatment of the concept of mirror symmetry, we hope that we have given enough
of an introduction to motivate further study. We hope the reader will consult the refer-
ences mentioned to learn more about Gromov-Witten invariants, quantum cohomology,
Floer theory, and their use in mirror symmetry. Homological Mirror Symmetry, and the
Strominger-Yau-Zaslow conjecture [24], seem to be the most fruitful attempts at giv-
ing mirror symmetry a rigorous mathematical foundation; we hope that future research
makes further gains in these areas.
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