Math 53M Review for Midterm 1 Written by Matt

Problem 1 Decide if the following are true or false.
(a) If $\vec{a} \neq 0$ then $\vec{a} \cdot \vec{b}=0$ implies $\vec{b}=0$.
(b) The cross product of any two nonzero vectors is nonzero.
(c) $(\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{c} \times \vec{a}) \cdot \vec{b}=(\vec{b} \times \vec{c}) \cdot \vec{a}$.
(d) $c \vec{a} \times \vec{b}=\vec{a} \times c \vec{b}$.
(e) $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$.
(f) $|\vec{a}|>|\vec{b}|$ if and only if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})>0$.

Problem 2 Let O be the origin and consider the points $P(1,1,0), Q(0,1,1)$, $R(1,2,1), S(1,0,1), T(2,1,1), U(1,1,2)$, and $V(2,2,2)$. Find (noting that the vertices are not listed in "geometric" order)
(a) the area of the parallelogram $O P Q R$.
(b) the volume of the parallelepiped $O P Q R S T U V$.
(c) the volume of the tetrahedron $O P Q S$.

Problem 3 What is the angle between
(a) the plane $y=0$ and the line $x-7=y-1=\frac{z}{\sqrt{2}}$?
(b) the two planes $x+y+z=10$ and $\left(1+\frac{1}{\sqrt{6}}\right) x+\left(1+\frac{1}{\sqrt{6}}\right) y+\left(1-\frac{2}{\sqrt{6}}\right) z=$ 0 ?

Problem 4 For points $P(1,2,0), Q(0,1,-1)$, and $R(1,1,1)$ find
(a) symmetric and parametric equations of the line $P Q$.
(b) the distance from this line to the point R.
(c) the area of $\triangle P Q R$.

Problem 5 Give symmetric equations for the line of intersection of the plane $x+3 y+7 z=9$ with
(a) the yz-plane.
(b) the plane $x+y+z=1$.

Problem 6 Give the equation of the plane containing the line with parametric equations

$$
x=3-t \quad y=1+2 t \quad z=5
$$

and parallel to the line with symmetric equations

$$
x=\frac{y-1}{4}=2 z .
$$

Problem 7 Make a detailed graph of the curve whose equation in polar coordinates is $r=1+\cos \left(\theta-\frac{\pi}{3}\right)$.

Problem 8 Identify the surface
(a) whose equation in spherical coordinates is $\rho=\cos \phi$.
(b) whose equation in spherical coordinates is $\sin \phi(\cos \theta+2 \sin \theta)-\cos \phi=0$.
(c) whose equation in cylindrical coordinates is $z^{2}-r^{2}=4$.
(d) whose equation in rectangular coordinates is $\operatorname{proj}_{\vec{a}}(\langle x, y, z\rangle)=5 \vec{a}$.
(e) whose equation in rectangular coordinates is $x^{2}+y^{2}=3 z^{2}$.
(f) whose equation in rectangular coordinates is $z=x^{2}-x y$.
(Hint: First do the substitution $s=x$ and $t=x-y$. Then do the substitution $s=u+v$ and $t=u-v$.)

Problem 9 Consider the cone $2 x^{2}+y^{2}=z^{2}$.
(a) Describe the intersection of the cone with the xy-plane.
(b) Give the equation of a plane containing the point $(-1,0, \sqrt{2})$ and parallel to the plane $z=\sqrt{2} x$, a "cylinder" over one of the lines in the previous part.
(c) The plane and the cone intersect in a curve. We can tell what kind of curve this is by considering its projection to the xy-plane. What is the equation for this projection? What type of curve is it?

Problem 10 (Rotated axes) Consider the cone $z^{2}=2 u^{2}+2 v^{2}$.
(a) Describe the intersection of the cone with the plane $u=v$.
(b) Give the equation of a plane containing the point $(1,-1,2)$ and parallel to the plane $z=u+v$.
(c) The plane and the cone intersect in a curve. What is the equation of the projection of the curve to the uv-plane? What type of curve is it?

