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Chapter 1

About the course, and these notes

1.1. Aims and prerequisites

This course will develop some concepts and results which occur repeatedly
throughout the various areas of algebra, and sometimes in other fields of
mathematics, and which can provide valuable tools and perspectives to those
working in these fields. There will be a strong emphasis on motivation through
examples, and on instructive exercises.

I will assume only an elementary background in algebra, corresponding to
an honors undergraduate algebra course or one semester of graduate algebra,
plus a moderate level of mathematical sophistication. A student who has
seen the concept of free group introduced, but isn’t sure he or she thoroughly
understood it would be in a fine position to begin. On the other hand, anyone
conversant with fewer than three ways of proving the existence of free groups
has something to learn from Chapters 2-3.

As a general rule, we will pay attention to petty details when they first
come up, but take them for granted later on. So students who find the be-
ginning sections devoted too much to “trivia” should be patient!

In preparing this published version of my course notes, I have not removed
remarks about homework, course procedures etc., addressed to students who
take the course from me at Berkeley, which take up the next three and a half
pages, since there are some nonstandard aspects to the way I run the course,
which I thought would be of interest to others. Anyone else teaching from
this text should, of course, let his or her students know which, if any, of these
instructions apply to them. In any case, I hope readers elsewhere find these
pages more amusing than annoying.

1



2 1 About the course, and these notes

1.2. Approach

Since I took my first graduate course, it has seemed to me that there is
something wrong with our method of teaching. Why, for an hour at a time,
should an instructor write notes on a blackboard and students copy them
into their notebooks – often too busy with the copying to pay attention to
the content – when this work could be done just as well by a photocopying
machine? If this is all that happens in the classroom, why not assign a text
or distribute duplicated notes, and run most courses as reading courses?

One answer is that this is not all that happens in a classroom. Students
ask questions about confusing points and the instructor answers them. So-
lutions to exercises are discussed. Sometimes a result is developed by the
Socratic method through discussion with the class. Often an instructor gives
motivation, or explains an idea in an intuitive fashion he or she would not
put into a written text.

As for this last point, I think one should not be embarrassed to put mo-
tivation and intuitive discussion into a text, and I have included a great
deal of both in these notes. In particular, I often first approach general re-
sults through very particular cases. The other items – answering questions,
discussing solutions to exercises, etc. – which seem to me to contain the es-
sential human value of class contact, are what I would like classroom time
to be spent on in this course, while these notes will replace the mechanical
copying of notes from the board.

Such a system is not assured of success. Some students may be in the habit
of learning material through the process of copying it, and may not get the
same benefit by reading it. I advise such students to read these notes with a
pad of paper in their hands, and try to anticipate details, work out examples,
summarize essential points, etc., as they go. My approach also means that
students need to read each day’s material before the class when it will be
covered, which many students are not accustomed to doing.

1.3. A question a day

To help the system described above work effectively, I require every student
taking this course to hand in, on each day of class, one question concerning
the reading for that day. I strongly encourage you to get your question to me
by e-mail by at least an hour before class. If you do, I will try to work the
answer into what I say in class that day. If not, then hand it in at the start
of class, and I will generally answer it by e-mail if I feel I did not cover the
point in class.

The e-mail or sheet of paper with your question should begin with your
name, the point in these notes that your question refers to, and the classifying
word “urgent”, “important”, “unimportant” or “pro forma”. The first three
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choices of classifying word should be used to indicate how important it is
to you to have the question answered; use the last one if there was nothing
in the reading that you really felt needed clarification. In that case, your
“pro forma” question should be one that some reader might be puzzled by;
perhaps something that puzzled you at first, but that you then resolved. If
you give a “pro forma” question, you must give the answer along with it!

You may ask more than one question; you may ask, in addition to your
question on the current reading, questions relating to earlier readings, and
you are encouraged to ask questions in class as well. But you must always
submit in writing at least one question related to the reading assignment for
the day.

1.4. Homework

These notes contain a large number of exercises. I would like you to hand in
solutions to an average of one or two problems of medium difficulty per week,
or a correspondingly smaller number of harder problems, or a larger number
of easier problems. Choose problems that interest you. But please, look at all
the exercises, and at least think about how you would approach them. They
are interspersed through the text; you may prefer to think about some as you
come to them, and to come back to others after you finish the section. We
will discuss many of them in class. I recommend spending at least one to five
minutes thinking about each exercise, unless you see a solution immediately.

Grades will be based largely on homework. The amount of homework
suggested above, reasonably well done, will give an A. I will give partial credit
for partial results, as long as you show you realize that they are partial. I
would also welcome your bringing to the attention of the class interesting
related problems that you think of, or find in other sources.

It should hardly need saying that a solution to a homework exercise in
general requires a proof. If a problem asks you to find an object with a
certain property, it is not sufficient to give a description and say, “This is
the desired object”; you must prove that it has the property, unless this is
completely obvious. If a problem asks whether a calculation can be done
without a certain axiom, it is not enough to say, “No, the axiom is used in
the calculation”; you must prove that no calculation not using that axiom
can lead to the result in question. If a problem asks whether something is
true in all cases, and the answer is no, then to establish this you must, in
general, give a counterexample.

I am worried that the amount of “handwaving” (informal discussion) in
these notes may lead some students to think handwaving is an acceptable
substitute for proof. If you read these notes attentively, you will see that
handwaving does not replace proofs. I use it to guide us to proofs, to com-
municate my understanding of what is behind some proofs, and at times to
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abbreviate a proof which is similar to one we have already seen; but in cases
of the last sort there is a tacit challenge to you, to think through whether you
can indeed fill in the steps. Homework is meant to develop and demonstrate
your mastery of the material and methods, so it is not a place for you to
follow this model by challenging the instructor to fill in steps!

Of course, there is a limit to the amount of detail you can and should
show. Most nontrivial mathematical proofs would be unreadable if we tried
to give every substep of every step. So truly obvious steps can be skipped, and
familiar methods can be abbreviated. But more students err in the direction
of incomplete proofs than of excessive detail. If you have doubts whether to
abbreviate a step, think out (perhaps with the help of a scratch-pad) what
would be involved in a more complete argument. If you find that a step is
more complicated than you had thought, then it should not be omitted! But
bear in mind that “to show or not to show” a messy step may not be the
only alternatives – be on the lookout for a simpler argument, that will avoid
the messiness.

I will try to be informative in my comments on your homework. If you are
still in doubt as to how much detail to supply, come to my office and discuss
it. If possible, come with a specific proof in mind for which you have thought
out the details, but want to know how much should be written down.

There are occasional exceptions to the principle that every exercise requires
a proof. Sometimes I give problems containing instructions of a different sort,
such as “Write down precisely the definition of . . . ”, or “State the analogous
result in the case . . . ”, or “How would one motivate . . . ?” Sometimes, once an
object with a given property has been found, the verification of that property
is truly obvious. However, if direct verification of the property would involve
32 cases each comprising a 12-step calculation, you should, if at all possible,
find some argument that simplifies or unifies these calculations.

Exercises frequently consist of several successive parts, and you may hand
in some parts without doing others (though when one part is used in another,
you should if possible do the former if you are going to do the latter). The
parts of an exercise may or may not be of similar difficulty – one part may
be an easy verification, leading up to a more difficult part; or an exercise of
moderate difficulty may introduce an open question. (Open questions, when
included, are always noted as such.)

Homework should be legible and well-organized. If a solution you have
figured out is complicated, or your conception of it is still fuzzy, outline it
first on scratch paper, and revise the outline until it is clean and elegant before
writing up the version to hand in. And in homework as in other mathematical
writing, when an argument is not completely straightforward, you should help
the reader see where you are going, with comments like, “We shall now prove
. . . ”, “Let us first consider the case where . . . ”, etc..

If you hand in a proof that is incorrect, I will point this out, and it is up
to you whether to try to find and hand in a better proof. If, instead, I find
the proof poorly presented, I may require that you redo it.
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If you want to see the solution to an exercise that we haven’t gone over,
ask in class. I may postpone answering, or just give a hint, if other people
still want to work on it. In the case of an exercise that asks you to supply
details for the proof of a result in the text, if you cannot see how to do it you
should certainly ask to see it done.

You may also ask for a hint on a problem. If possible, do so in class rather
than in my office, so that everyone has the benefit of the hint.

If two or more of you solve a problem together and feel you have con-
tributed approximately equal amounts to the solution, you may hand it in as
joint work.

If you turn in a homework solution which is inspired by material you have
seen in another text or course, indicate this, so that credit can be adjusted
to match your contribution.

1.5. The name of the game

The general theory of algebraic structures has long been called Universal
Algebra, but in recent decades, many workers in the field have come to dislike
this term, feeling that “it promises too much”, and/or that it suggests an
emphasis on universal constructions. Universal constructions are a major
theme of this course, but they are not all that the field is about.

The most popular replacement term is General Algebra, and I have used it
in the title of these notes; but it has the disadvantage that in some contexts,
it may not be understood as referring to a specific area. Below, I mostly say
“General Algebra”, but occasionally refer to the older term.

1.6. Other reading

Aside from these notes, there is no recommended reading for the course, but
I will mention here some items in the list of references that you might like to
look at. The books [1], [6], [7], [12], [20] and [22] are other general texts in
General (a.k.a. Universal) Algebra. Of these, [12] is the most technical and
encyclopedic. [20] and [22] are both, like these notes, aimed at students not
necessarily having advanced prior mathematical background; however [22]
differs from this course in emphasizing partial algebras. [7] has in common
with this course the viewpoint that this subject is an important tool for
algebraists of all sorts, and it gives some interesting applications to groups,
division rings, etc..

[31] and [33] are standard texts for Berkeley’s basic graduate algebra
course. (Some subset of Chapters 2-7 of the present notes can, incidentally, be
useful supplementary reading for students taking such a course.) Though we
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will not assume the full material of such a course (let alone the full contents of
those books), you may find them useful references. [33] is more complete and
rigorous; [31] is sometimes better on motivation. [25]-[27] include similar ma-
terial. A presentation of the core material of such a course at approximately
an honors undergraduate level, with detailed explanations and examples, is
[28].

Each of [6], [7], [12], [20], [22] and [26] gives a little of the theory of lattices,
introduced in Chapter 6 of these notes. Extensive treatments of this subject
can be found in [4] and [13].

Chapter 7 of these notes introduces category theory. [8] is the paper that
created that discipline, and still very stimulating reading; [19] is a general
text on the subject. [10] deals with an important area of category theory
that our course leaves out. For the thought-provoking paper from which the
ideas we develop in Chapter 10 come, see [11].

An amusing parody of some of the material we shall be seeing in Chap-
ters 5-10 is [18].

1.7. Numeration; history; advice; web access; request
for corrections

These notes are divided into chapters, and each chapter into sections. In each
section, I use two numbering systems: one that embraces lemmas, theorems,
definitions, numbered displays, etc.; the other for exercises. The number of
each item begins with the chapter-and-section numbers. This is followed by
a “.” and the number of the result, display, etc., or a “:” and the num-
ber of the exercise. For instance, in section m.n, i.e., section n of Chap-
ter m, we might have display (m.n.1), followed by Definition m.n.2, followed
by Theorem m.n.3, and interspersed among these, Exercises m.n :1, m.n :2,
m.n :3, etc.. The reason for using a common numbering system for results,
definitions, and displays is that it is easier to find Proposition 3.2.9 if it is
between Lemma 3.2.8 and display (3.2.10) than it would be if it were Propo-
sition 3.2.3, located between Lemma 3.2.5 and display (3.2.1). The exercises
form a separate system. There is a List of Exercises at the end of these notes,
with telegraphic descriptions of their subjects.

These notes began around 1971, as mimeographed outlines of my lectures,
which I handed out to the class, and gradually improved in successive teach-
ings of the course. With the advent of computer word-processing, such im-
provements became much easier to make, and the outline evolved into a
readable development of the material. In Spring and Summer 1995 they were
published by the short-lived Berkeley Lecture Notes series, and for several
years after that, by my late colleague Henry Helson. I have continued to revise
them each time I taught the course; I never stop finding points that call for
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improvement. But hopefully, they are now in a state that justifies publication
in book form.

In recent decades, I have kept the notes available online, as an alternative
to buying a paper copy. Though this will not be feasible for the final published
version, I intend to keep the version that I submit to the Springer editorial
staff available via my website http://math.berkeley.edu/~gbergman .

To other instructors who may teach from these notes (and myself, in case I
forget), I recommend moving quite fast through the easy early material, and
much more slowly toward the end, where there are more concepts new to the
students, and more nontrivial proofs. Roughly speaking, the hard material
begins with Chapter 8. A finer description of the hard parts would be: §§7.9-
7.11, 8.3, 8.9-8.12, 9.9-9.10, and Chapter 10. However, this judgement is based
on teaching the course to students most of whom have relatively advanced
backgrounds. For students who have not seen ordinals or categories before
(the kind I had in mind in writing these notes), the latter halves of Chapters 5
and 7 would also be places to move slowly.

The last two sections of each of Chapters 7, 8 and 9 are sketchy (to varying
degrees), so students should be expected either to read them mainly for the
ideas, or to put in extra effort to work out details.

After many years of editing, reworking, and extending these notes, I know
one reason why the copy-from-the-blackboard system has not been generally
replaced by the distribution of material in written form: A good set of notes
takes an enormous amount of time to develop. But I think that it is worth
the effort.

Comments and suggestions on any aspect of these notes – organizational,
mathematical or other, including indications of typographical errors – are
welcome at gbergman@math.berkeley.edu .

1.8. Acknowledgements

Though I had picked up some category theory here and there, the first ex-
tensive development of it that I read was Mac Lane [19], and much of the
material on categories in these notes ultimately derives from that book. I can
no longer reconstruct which category-theoretic topics I knew before reading
[19], but my debt to that work is considerable. Cohn’s book [7] was simi-
larly my first exposure to a systematic development of General Algebra; and
Freyd’s fascinating paper [11] is the source of the beautiful result of §10.4,
which I consider the climax of the course. I am also indebted to more people
than I can name for help with specific questions in areas where my back-
ground had gaps.

For the development and maintenance of the locally enhanced version of
the text-formatting program troff, in which I prepared earlier versions of
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these notes, I am indebted to Ed Moy, to Fran Rizzardi, and to D. Mark
Abrahams, and for help with the conversion to LATEX, to George Grätzer,
Paul Vojta, and, especially, Arturo Magidin.

Finally, I am grateful to the many students who have pointed out cor-
rections to these notes over the years – in particular, to Arturo Magidin,
David Wasserman, Mark Davis, Joseph Flenner, Boris Bukh, Chris Culter,
and Lynn Scow.



Part I. Motivation and examples.

In the next three chapters, we shall look at particular cases of algebraic
structures and universal constructions involving them, so as to get some sense
of the general results we will want to prove in the chapters that follow.

The construction of free groups will be our first example. We prepare for
it in Chapter 2 by making precise some concepts such as that of a group-
theoretic expression in a set of symbols; then, in Chapter 3, we construct
free groups by several mutually complementary approaches. In Chapter 4,
we look at a large number of other constructions – from group theory, semi-
group theory, ring theory, etc. – which have, to greater or lesser degrees, the
same spirit as the free group construction, and also, for variety, at two such
constructions from topology.

9



Chapter 2

Making some things precise

2.1. Generalities

Most notation will be explained as it is introduced. I will assume familiarity
with basic set-theoretic and logical notation: ∀ for “for all” (universal quan-
tification), ∃ for “there exists” (existential quantification), ∧ for “and”, and
∨ for “or”. Functions will be indicated by arrows →, while their behavior
on elements will be shown by flat-tailed arrows, 7→ . That is, if a function
X → Y carries an element x to an element y, this may be symbolized
x 7→ y (“x goes to y ”). If S is a set and ∼ an equivalence relation on S,
the set of equivalence classes under this relation will be denoted S/∼.

We will (with rare exceptions, which will be noted) write functions on the
left of their arguments, i.e., f(x) rather than xf, and understand composite
functions fg to be defined so that (fg)(x) = f(g(x)).

2.2. What is a group?

Loosely speaking, a group is a set G given with a composition (or multipli-
cation, or group operation) µ : G×G→ G, an inverse operation ι : G→ G,
and a neutral element e ∈ G, satisfying certain well-known laws. (We will say
“neutral element” rather than “identity element” to avoid confusion with the
other important meaning of the word “identity”, namely an equation that
holds identically.)

The most convenient way to make precise this idea of a set “given with”
three operations is to define the group to be, not the set G, but the 4-tuple
(G, µ, ι, e). In fact, from now on, a letter such as G representing a group
will stand for such a 4-tuple, and the first component, called the underlying
set of the group, will be written |G|. Thus

G = (|G|, µ, ι, e).

10



2.2 What is a group? 11

For simplicity, many mathematicians ignore this formal distinction, and
use a letter such as G to represent both a group and its underlying set,
writing x ∈ G, for instance, where they mean x ∈ |G|. This is okay, as
long as one always understands what precise statement such a shorthand
statement stands for. Note that to be entirely precise, if G and H are two
groups, we should use different symbols, say µG and µH , ιG and ιH , eG
and eH , for the operations of G and H. How precise and formal one needs
to be depends on the situation. Since the aim of this course is to abstract
the concept of algebraic structure and study what makes these things tick,
we shall be somewhat more precise here than in an ordinary algebra course.

(Many workers in General Algebra use a special type-font, e.g., boldface, to
represent algebraic objects, and regular type for their underlying sets. Thus,
where we will write G = (|G|, µ, ι, e), they might write G = (G, µ, ι, e).)

Perhaps the easiest exercise in the course is:

Exercise 2.2:1. Give a precise definition of a homomorphism from a group
G to a group H, distinguishing between the operations of G and the
operations of H.

We will often refer to a homomorphism f : G→ H as a “map” from G to
H. That is, unless the contrary is mentioned, “maps” between mathematical
objects mean maps between their underlying sets which respect their struc-
ture. Note that if we wish to refer to a set map not assumed to respect the
group operations, we can call this “a map from |G| to |H| ”.

The use of letters (µ and ι) for the operations of a group, and the func-
tional notation µ(x, y), ι(z) which this entails, are desirable for stating
results in a form which will generalize to a wide class of other sorts of struc-
tures. But when actually working with elements of a group, we will generally
use conventional notation, writing x · y (or xy, or sometimes, in abelian
groups, x+ y) for µ(x, y), and z−1 (or −z) for ι(z). When we do this, we
may either continue to write G = (|G|, µ, ι, e), or write G = (|G|, ·, −1, e).

Let us now recall the conditions which must be satisfied by a 4-tuple
G = (|G|, ·, −1, e), where |G| is a set, “ · ” is a map |G| × |G| → |G|, “−1 ”
is a map |G| → |G|, and e is an element of |G|, for G to be called a group:

(2.2.1)
(∀x, y, z ∈ |G|) (x · y) · z = x · (y · z),

(∀x ∈ |G|) e · x = x = x · e,
(∀x ∈ |G|) x−1 · x = e = x · x−1.

There is another definition of group that you have probably also seen: In
effect, a group is defined to be a pair (|G|, ·), such that |G| is a set, and ·
is a map |G| × |G| → |G| satisfying
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(2.2.2)

(∀x, y, z ∈ |G|) (x · y) · z = x · (y · z),
(∃ e ∈ |G|) ((∀x ∈ |G|) e · x = x = x · e) ∧

((∀x ∈ |G|) (∃ y ∈ |G|) y · x = e = x · y).

It is easy to show that given (|G|, ·) satisfying (2.2.2), there exist a unique
operation −1 and a unique element e such that (|G|, ·, −1, e) satisfies (2.2.1)
– remember the standard results saying that neutral elements and 2-sided in-
verses are unique when they exist. Thus, the versions (2.2.1) and (2.2.2) of
the concept of a group provide equivalent information. Our description of
groups as 4-tuples may therefore seem “uneconomical” compared with one
using pairs, but we will stick with it. We shall eventually see that, more
important than the number of terms in the tuple, is the fact that condi-
tion (2.2.1) consists of identities, i.e., universally quantified equations, while
(2.2.2) does not. But we will at times acknowledge the idea of the second
definition; for instance, when we ask (imprecisely) whether some semigroup
“is a group”.

Exercise 2.2:2. (i) If G is a group, let us define an operation δG on |G|
by δG(x, y) = x · y−1. Does the pair G′ = (|G|, δG) determine the group
(|G|, ·, −1, e) ? (I.e., if G1 and G2 yield the same pair, G′1 = G′2, must
G1 = G2 ? Some students have asked whether by “ = ” I here mean “∼= ”.
No, I mean “ = ”.)
(ii) Suppose |X| is any set and δ : |X| × |X| → |X| any map. Can you
write down a set of axioms for the pair X = (|X|, δ), which will be neces-
sary and sufficient for it to arise from a group G in the manner described
above? (That is, assuming |X| and δ given, try to find convenient neces-
sary and sufficient conditions for there to exist a group G such that G′,
defined as in (i), is precisely (|X|, δ).)

If you get such a set of axioms, then try to see how brief and simple
you can make it.

I don’t know the full answers to the following variant question:

Exercise 2.2:3. Again let G be a group, and now define σG(x, y) = x ·
y−1 · x. Consider the same questions for (|G|, σG) that were raised for
(|G|, δG) in the preceding exercise.

My point in discussing the distinction between a group and its underlying
set, and between groups described using (2.2.1) and using (2.2.2), was not to
be petty, but to make us conscious of the various ways we use mathematical
language – so that we can use it without its leading us astray. At times we will
bow to convenience rather than trying to be consistent. For instance, since
we distinguish between a group and its underlying set, we should logically
distinguish between the set of integers, the additive group of integers, the
multiplicative semigroup of integers, the ring of integers, etc.; but we shall
in fact write all of these Z unless there is a real danger of ambiguity, or a
need to emphasize a distinction. When there is such a need, we can write
(Z, +, −, 0) = Zadd, (Z, ·, 1) = Zmult, (Z, +, ·, −, 0, 1) = Zring, etc.. We
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may likewise use “ready made” symbols for some other objects, such as {e}
for the trivial subgroup of a group G, rather than interrupting a discussion
to set up a notation that distinguishes this subgroup from its underlying set.

The approach of regarding sets with operations as tuples, whose first mem-
ber is the set and whose other members are the operations, applies, as we
have just noted, to other algebraic structures than groups – to semigroups,
rings, lattices, and the more exotic beasties we will meet on our travels. To be
able to discuss the general case, we must make sure we are clear about what
we mean by such concepts as “n-tuple of elements” and “n-ary operation”.
We shall review these in the next two sections.

2.3. Indexed sets

If I and X are sets, an I-tuple of elements of X, or a family of elements
of X indexed by I will be defined formally as a function from I to X, but
we shall write it (xi)i∈I rather than f : I → X. The difference is one of
viewpoint. We think of such families as arrays of elements of X, which we
keep track of with the help of an index set I, while when we write f : A→ B,
we are most often interested in some properties relating an element of A
and its image in B. But the distinction is not sharp. Sometimes there is
an interesting functional relation between the indices i and the values xi;
sometimes typographical or other reasons dictate the use of x(i) rather than
xi.

There will be a minor formal exception to the above definition when we
speak of an n-tuple of elements of X (n ≥ 0). In these beginning chapters, I
will take this to mean a function from {1, . . . , n} to X, written (x1, . . . , xn)
or (xi)i=1,..., n, despite the fact that set theorists define the natural number
n recursively to be the set {0, . . . , n−1}. Most set theorists, for consistency
with that definition, write their n-tuples (x0, . . . , xn−1); and we shall switch
to that notation after reviewing the set theorist’s approach to the natural
numbers in Chapter 5.

If I and X are sets, then the set of all functions from I to X, equiv-
alently, of all I-tuples of members of X, is written XI . Likewise, Xn will
denote the set of n-tuples of elements of X, defined as above for the time
being.

2.4. Arity

An n-ary operation on a set S means a map f : Sn → S. For n = 1, 2, 3 the
words are unary, binary, and ternary respectively. If f is an n-ary operation,
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we call n the arity of f. More generally, given any set I, an I-ary operation
on S is defined as a map SI → S.

Thus, the definition of a group involves one binary operation, one unary
operation, and one distinguished element, or “constant”, e. Likewise, a ring
can be described as a 6-tuple R = (|R|, +, ·, −, 0, 1), where + and · are bi-
nary operations on |R|, “− ” is a unary operation, and 0, 1 are distinguished
elements, satisfying certain identities.

One may make these descriptions more homogeneous in form by treating
“distinguished elements” as 0-ary operations of our algebraic structures. In-
deed, since an n-ary operation on S is something that turns out a value in
S when we feed in n arguments in S, it makes sense that a 0-ary operation
should be something that gives a value in S without our feeding it anything.
Or, looking at it formally, S0 is the set of all maps from the empty set to S,
of which there is exactly one; so S0 is a one-element set, so a map S0 → S
determines, and is determined by, a single element of S.

We note also that distinguished elements show the right numerical behav-
ior to be called “zeroary operations”. Indeed, if f and g are an m-ary and an
n-ary operation on S, and i a positive integer ≤ m, then on inserting g in
the i-th place of f, we get an operation f(−, . . . ,−, g(−, . . . , −),−, . . . ,−)
of arity m+n − 1. Now if, instead, g is an element of S, then when we put
it into the i-th place of f we get f(−, . . . ,−, g, −, . . . ,−), an (m − 1)-ary
operation, as we should if g is thought of as an operation of arity n = 0.

Strictly speaking, elements and zeroary operations are in one-to-one cor-
respondence rather than being the same thing: one must distinguish between
a map S0 → S, and its (unique) value in S. But since they give equivalent
information, we can choose between them in setting up our definitions.

So we shall henceforth treat “distinguished elements” in the definition of
groups, rings, etc., as zeroary operations, and we will find that they can be
handled essentially like the other operations. I say “essentially” because there
are some minor ways in which zeroary operations differ from operations of
positive arity. Most notably, on the empty set X = ∅, there is a unique
n-ary operation for each positive n, but no zeroary operation. Sometimes
this trivial fact will make a difference in an argument.

2.5. Group-theoretic terms

One is often interested in talking about what relations hold among the mem-
bers of one or another tuple of elements of a group or other algebraic struc-
ture. For example, every pair of elements (ξ, η) of a group satisfies the rela-
tion (ξ · η)−1 = η−1 · ξ−1. Some particular pair (ξ, η) of elements of some
group may satisfy the relation ξ · η = η · ξ2.

In general, a “group-theoretic relation” in a family of elements (ξi)I of a
group G means an equation p(ξi) = q(ξi) holding in G, where p and q are
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expressions formed from an I-tuple of symbols using formal group operations
·, −1 and e. So to study relations in groups, we need to define the set of all
“formal expressions” in the elements of a set X under symbolic operations
of multiplication, inverse and neutral element.

The technical word for such a formal expression is a “term”. Intuitively,
a group-theoretic term is a set of instructions on how to apply the group
operations to a family of elements. E.g., starting with a set of three symbols,
X = {x, y, z}, an example of a group-theoretic term in X is the symbol
(y · x) · (y−1); or we might write it µ(µ(y, x), ι(y)). Whichever way we
write it, the idea is: “apply the operation µ to the pair (y, x), apply the
operation ι to the element y, and then apply the operation µ to the pair of
elements so obtained, taken in that order”. The idea can be “realized” when
we are given a map f of the set X into the underlying set |G| of a group
G = (|G|, µG, ιG, eG), say x 7→ ξ, y 7→ η, z 7→ ζ (ξ, η, ζ ∈ |G|). We can
then define the result of “evaluating the term µ(µ(y, x), ι(y)) using the map
f ” as the element µG(µG(η, ξ), ιG(η)) ∈ |G|, that is, (η · ξ) · (η−1).

Let us try to make the concept of group-theoretic term precise. “The set
of all terms in the elements of X, under formal operations ·, −1 and e ”
should be a set T = TX, ·,−1, e with the following properties:

(aX) For every x ∈ X, T contains a symbol representing x.

(a.) For every s, t ∈ T, T contains a “symbolic combination of s and t
under · ”.

(a−1) For every s ∈ T, T contains an element gotten by “symbolic appli-
cation of −1 to s ”.

(ae) T contains an element symbolizing e.

(b) Each element of T can be written in one and only one way as one and
only one of the following:

(bX) The symbol representing an element of X.

(b.) The symbolic combination of two members of T under ·.
(b−1) The symbol representing the result of applying −1 to an element

of T.

(be) The symbol representing e.

(c) Every element of T can be obtained from the elements of X via
the given symbolic operations. That is, T has no proper subset satisfying
(aX)–(ae).

In functional language, (aX) says that we are to be given a function X → T
(the “symbol for x ” function); (a.) says we have another function, which we
call “formal product”, from T × T to T ; (a−1) gives a function T → T,
the “formal inverse”, and (ae) a distinguished element of T. Translating our
definition into this language, we get

Definition 2.5.1. By “the set of all terms in the elements of X under the
formal group operations µ, ι, e” we shall mean a set T which is:
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(a) given with functions

symbT : X → T, µT : T 2 → T, ιT : T → T, and eT : T 0 → T,

such that

(b) each of these maps is one-to-one, their images are disjoint, and T is the
union of those images, and

(c) T is generated by symbT (X) under the operations µT , ιT , and eT ;
i.e., it has no proper subset which contains symbT (X) and is closed under
those operations.

The next exercise justifies the use of the word “the” in the above definition.

Exercise 2.5:1. Assuming T and T ′ are two sets given with functions that
satisfy Definition 2.5.1, establish a natural one-to-one correspondence be-
tween the elements of T and T ′. (You must, of course, show that the
correspondence you set up is well-defined, and is a bijection. Suggestion:
Let Y = { (symbT (x), symbT ′(x)) | x ∈ X} ⊆ T × T ′, and let F be
the closure of Y under componentwise application of µ, ι and e. Show
that F is the graph of a bijection. What properties will characterize this
bijection?)

Exercise 2.5:2. Is condition (c) of Definition 2.5.1 a consequence of (a)
and (b)?

How can we obtain a set T with the properties of the above definition?
One approach is to construct elements of T as finite strings of symbols from
some alphabet which contains symbols representing the elements of X, ad-
ditional symbols µ (or · ), ι (or −1 ), and e, and perhaps some symbols of
punctuation. But we need to be careful. For instance, if we defined µT to
take a string of symbols s and a string of symbols t to the string of symbols
s · t, and ιT to take a string of symbols s to the string of symbols s−1,
then condition (b) would not be satisfied! For a string of symbols of the form
x ·y ·z (where x, y, z ∈ X) could be obtained by formal multiplication either
of x and y ·z, or of x ·y and z. In other words, µT takes the pairs (x, y ·z)
and (x ·y, z) to the same string of symbols, so it is not one-to-one. Likewise,
the expression x ·y−1 could be obtained either as µT (x, y−1) or as ιT (x ·y),
so the images of µT and ιT are not disjoint. (It happens that in the first
case, the two interpretations of x · y · z come to the same thing in any group,
because of the associative law, while in the second, the two interpretations do
not: ξ · (η−1) and (ξ ·η)−1 are generally distinct for elements ξ, η of a group
G. But the point is that in both cases condition (b) fails, making these ex-
pressions ambiguous as instructions for applying group operations. Note that
a notational system in which “x · y · z ” was ambiguous in the above way
could never be used in writing down the associative law; and writing down
identities is one of the uses we will want to make of these expressions.)

On the other hand, it is not hard to show that by introducing parentheses
among our symbols, and letting µT (s, t) be the string of symbols (s · t), and
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ιT (s) the string of symbols (s−1), we can get a set of expressions satisfying
the conditions of our definition.

Exercise 2.5:3. Verify the above assertion. (How, precisely, will you define
T ? What assumptions must you make on the set of symbols representing
elements of X ? Do you allow some elements symbT (x) to be strings of
other symbols?)

Another symbolism that will work is to define the value of µT at s and
t to be the string of symbols µ(s, t), and the value of ιT at s to be the
string of symbols ι(s).

Exercise 2.5:4. Assuming the elements symbT (x) are distinct single char-
acters, and that µ, ι and e are distinct characters distinct from the
characters symbT (x), let us define the value of µT on elements s and t
to be the symbol µst, and the value of ιT on s to be the symbol ιs. Will
the resulting set of strings of symbols satisfy Definition 2.5.1?

Though the strings-of-symbols approach can be extended to other kinds of
algebras with finitary operations, such as rings, lattices, etc., a disadvantage
of that method is that one cannot, in any obvious way, use it for algebras with
operations of infinite arities. Even if one allows infinite strings of symbols,
indexed by the natural numbers or the integers, one cannot string two or more
such infinite strings together to get another string of the same sort. One can,
however, for an infinite set I, create I-tuples which have I-tuples among
their members, and this leads to the more versatile set-theoretic approach.
Let us show it for the case of group-theoretic terms.

Choose any set of four elements, which will be denoted ∗, ·, −1 and e.
For each x ∈ X, define symbT (x) to be the ordered pair (∗, x); for s, t ∈ T,
define µT (s, t) to be the ordered 3-tuple (·, s, t); for s ∈ T define ιT (s) to
be the ordered pair (−1, s), and finally, define eT to be the 1-tuple (e). Let
T be the smallest set closed under the above operations.

Now it is a basic lemma of set theory that no element can be written as
an n-tuple in more than one way; i.e., if (x1, . . . , xn) = (x′1, . . . , x

′
n′), then

n′ = n and xi = x′i (i = 1, . . . , n). It is easy to deduce from this that the
above construction will satisfy the conditions of Definition 2.5.1.

Exercise 2.5:5. Would there have been anything wrong with defining
symbT (x) = x instead of (∗, x) ? If so, can you find a way to modify
the definitions of µT etc., so that the definition symbT (x) = x can always
be used?

I leave it to you to decide (or not to decide) which construction for group-
theoretic terms you prefer to assume during these introductory chapters. We
shall only need the properties given in Definition 2.5.1. From now on, we
shall often use conventional notation for such terms, e.g., (x · y) · (x−1). In
particular, we shall often identify X with its image symbT (X) ⊆ TX,·,−1, e.
We will use the more formal notation of Definition 2.5.1 mainly when we
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want to emphasize particular distinctions, such as that between the formal
operations µT etc., and the operations µG etc. of a particular group.

2.6. Evaluation

Now suppose G is a group, and f : X → |G| a set map, in other words, an
X-tuple of elements of G. Given a term in an X-tuple of symbols,

s ∈ T = TX,·,−1, e

we wish to say how to evaluate s at this family f of elements, so as to get a
value sf ∈ |G|. We shall do this inductively (or more precisely, “recursively”;
we will learn the distinction in §5.3).

If s = symbT (x) for some x ∈ X we define sf = f(x). If s = µT (t, u),
then assuming inductively that we have already defined tf , uf ∈ |G|, we
define sf = µG(tf , uf ). Likewise, if s = ιT (t), we assume inductively that
tf is defined, and define sf = ιG(tf ). Finally, for s = eT we define sf = eG.
Since every element s ∈ T is obtained from symbT (X) by the operations
µT , ιT , eT , and in a unique manner, this construction gives one and only
one value sf for each s.

We have not discussed the general principles that allow one to make re-
cursive definitions like the above. We shall develop these in Chapter 5, in
preparation for Chapter 9 where we will do rigorously and in full general-
ity what we are sketching here. Some students might want to look into this
question for themselves at this point, so I will make this:

Exercise 2.6:1. Show rigorously that the procedure loosely described above
yields a unique well-defined map T → |G|. (Suggestion: Adapt the method
suggested for Exercise 2.5:1.)

In the above discussion of evaluation, we fixed f ∈ |G|X , and got a func-
tion T → |G|, taking each s ∈ T to sf ∈ |G|. If we vary f as well as T,
we get a two-variable evaluation map,

(TX,·,−1, e)× |G|X −→ |G|,

taking each pair (s, f) to sf . Finally, we might fix an s ∈ T, and define
a map sG : |G|X → |G| by sG(f) = sf (f ∈ |G|X); this represents “sub-
stitution into s.” For example, suppose X = {x, y, z}, let us identify |G|X
with |G|3, and let s be the term (y · x) · (y−1) ∈ T. Then for each group
G, sG is the operation taking each 3-tuple (ξ, η, ζ) of elements of G to the
element (η ξ) η−1 ∈ G. Such operations will be of importance to us, so we
give them a name.
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Definition 2.6.1. Let G be a group and n a nonnegative integer. Let T =
Tn,−1, ·, e denote the set of group-theoretic terms in n symbols. Then for
each s ∈ T, we will let sG : |G|n → |G| denote the map taking each n-tuple
f ∈ |G|n to the element sf ∈ |G|. The n-ary operations sG obtained in
this way from terms s ∈ T will be called the derived n-ary operations of G.
(Some authors call these term operations.)

Note that distinct terms can induce the same derived operation. E.g., the
associative law for groups says that for any group G, the derived ternary
operations induced by the terms (x · y) · z and x · (y · z) are the same. As
another example, in the particular group S3 (the symmetric group on three
elements), the derived binary operations induced by the terms (x · x) · (y · y)
and (y · y) · (x · x) are the same, though this is not true in all groups. (It is
true in all dihedral groups.)

Some other examples of derived operations on groups are the binary op-
eration of conjugation, commonly written ξη = η−1ξ η (induced by the term
y−1 · (x · y)), the binary commutator operation, [ξ, η] = ξ−1η−1ξ η, the
unary operation of squaring, ξ2 = ξ · ξ, and the two binary operations δ
and σ of Exercises 2.2:2 and 2.2:3. Some trivial examples are also important:
the primitive group operations – group multiplication, inverse, and neutral
element – are by definition also derived operations; and finally, one has very
trivial derived operations such as the ternary “second component” function,
p3, 2(ξ, η, ζ) = η, induced by y ∈ T{x, y, z},−1, ·, e. (Here p3, 2 stands for
“projection of 3-tuples to their second component”.)

2.7. Terms in other families of operations

The above approach can be applied to more general sorts of algebraic struc-
tures. Let Ω be an ordered pair (|Ω|, ari), where |Ω| is a set of symbols
(thought of as representing operations), and ari is a function associating to
each α ∈ |Ω| a nonnegative integer ari(α), the intended arity of α (§2.4).
(For instance, in the group case which we have been considering, we have effec-
tively taken |Ω| = {µ, ι, e}, ari(µ) = 2, ari(ι) = 1, ari(e) = 0. Incidentally,
the commonest symbol, among specialists, for the arity of an operation α is
n(α), but I will use ari(α) to avoid confusion with other uses of the letter
n.) Then an Ω-algebra will mean a system A = (|A|, (αA)α∈|Ω|), where |A|
is a set, and for each α ∈ |Ω|, αA is some ari(α)-ary operation on |A| :

αA : |A|ari(α) −→ |A|.

For any set X, we can now mimic the preceding development to get a set
T = TX,Ω, the set of “terms in elements of X under the operations of Ω ”;
and given any Ω-algebra A, we can get substitution and evaluation maps as
before, and so define derived operations of A.
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The long-range goal of this course is to study algebras A in this general
sense. In order to discover what kinds of results we want to prove about them,
we shall devote Chapters 3 and 4 to looking at specific situations involving
familiar sorts of algebras. But let me give here a few exercises concerning
these general concepts.

Exercise 2.7:1. On the set {0, 1}, let M3 denote the ternary “major-
ity vote” operation; i.e., for a, b, c ∈ {0, 1}, let M3(a, b, c) be 0 if
two or more of a, b and c are 0, or 1 if two or more of them
are 1. One can form various terms in a symbolic operation M3 (e.g.,
p(w, x, y, z) = M3(x, M3(z, w, y), z)) and then evaluate these in the al-
gebra ({0, 1}, M3) to get operations on {0, 1} derived from M3.

General problem: Determine which operations (of arbitrary arity) on
{0, 1} can be expressed as derived operations of this algebra.

As steps toward answering this question, you might try to determine
whether each of the following can or cannot be so expressed:

(a) The 5-ary majority vote function M5 : {0, 1}5 → {0, 1}, defined in
the obvious manner.
(b) The binary operation sup . (I.e., sup(a, b) = 0 if a = b = 0; otherwise
sup(a, b) = 1.)
(c) The unary “reversal” operation r, defined by r(0) = 1, r(1) = 0.
(d) The 4-ary operation N4, described as “the majority vote function,
where the first voter has extra tie-breaking power”; i.e., N4(a, b, c, d) =
the majority value among a, b, c, d if there is one, while if a+ b+ c+d = 2
we set N4(a, b, c, d) = a.

Advice: (i) If you succeed in proving that some operation s is not
derivable from M3, try to abstract your argument by establishing a general
property that all operations derived from M3 must have, but which s
clearly does not have. (ii) A mistake some students make is to think that
a formula such as s(ξ, η) = M3(0, ξ, η) defines a derived operation. But
since our system ({0, 1}, M3) does not include the zeroary operation 0
(nor 1), “M3(0, x, y) ” is not a term.

Exercise 2.7:2. (Question raised by Jan Mycielski, letter of Jan. 17, 1983.)
Let C denote the set of complex numbers, and exp the exponential func-
tion exp(x) = ex, a unary operation on C.
(i) Does the algebra (C, +, ·, exp) have any automorphisms other than
the identity and complex conjugation? (An automorphism means a bijec-
tion of the underlying set with itself, which respects the operations.) I don’t
know the answer to this question.

It is not hard to prove using the theory of transcendence bases of fields
([31, §VI.1], [33, §VIII.1]) that the automorphism group of (C, +, ·) is
infinite (cf. [31, Exercise VI.6(b)], [33, Exercise VIII.1]). A couple of easy
results in the opposite direction, which you may prove and hand in, are
(ii) The algebra (C, +, ·) has no continuous automorphisms other than
the two mentioned in (i).
(iii) If we write “ cj ” for the unary operation of complex conjugation, then
the algebra (C, +, ·, cj) has no automorphisms other than id and cj.
(iv) A map C→ C is an automorphism of (C, +, ·, exp) if and only if it
is an automorphism of (C, +, exp).
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Exercise 2.7:3. Given operations α1, . . . , αr (of various finite arities) on
a finite set S, and another operation β on S, describe a test that will
determine in a finite number of steps whether β is a derived operation of
α1, . . . , αr.

The arities considered so far have been finite; the next exercise will deal
with terms in operations of possibly infinite arities. To make this reasonable,
let us note some naturally arising examples of operations of countably infinite
arity on familiar sets:

On the real unit interval [0, 1] :

(a) the operation lim sup (“limit superior”), defined by

lim supi xi = limi→∞ supj≥i xj ,

(b) the operation defined by s(a1, a2, . . . ) =
∑

2−iai.

On the set of real numbers ≥ 1 :

(c) the continued fraction operation, c(a1, a2, . . . ) = a1 + 1/(a2 + 1/(. . . )).

On the class of subsets of the set of integers:

(d) the operation
⋃
ai,

(e) the operation
⋂
ai.

Exercise 2.7:4. Suppose Ω is a pair (|Ω|, ari), where |Ω| is again a set
of operation symbols, but where the arities ari(α) may now be finite or
infinite cardinals; and let X be a set of variable-symbols. Suppose we
can form a set T of terms satisfying the analogs of conditions (a)-(c)
of Definition 2.5.1. For s, t ∈ T, let us write s�H t if t is “immediately
involved” in s, that is, if s has the form α(u1, u2, . . . ) where α ∈ |Ω|,
and ui = t for some i.

(i) Show that if all the arities ari(α) are finite, then for each term s we
can find a finite bound B(s) on the lengths n of sequences s1, . . . , sn ∈ T
such that s = s1 �

H . . . �H sn.
(ii) If not all ari(α) are finite, and X is nonempty, show that there exist
terms s for which no such finite bound exists.
(iii) In the situation of (ii), is it possible to have a right-infinite chain
s = s1 �

H . . . �H sn �H . . . in T ?
(iv) Show that one cannot have a “cycle” s1 �

H . . . �H sn �H s1 in T.

Until we come to Chapter 9, we shall rarely use the word “algebra” in the
general sense of this section. But the reader consulting the index should keep
this sense in mind, since it is used there with reference to general concepts
of which we will be considering specific cases in the intervening chapters.



Chapter 3

Free groups

In this chapter, we introduce the idea of universal constructions through the
particular case of free groups. We shall first motivate the free group concept,
then develop three ways of constructing such groups.

3.1. Motivation

Suppose G is a group and we take (say) three elements a, b, c ∈ |G|, and
consider what group-theoretic relations these satisfy. That is, letting T be
the set of all group-theoretic terms in three symbols x, y and z, we look at
pairs of elements p(x, y, z), q(x, y, z) ∈ T, and if pG(a, b, c) = qG(a, b, c)
in |G|, we say that (a, b, c) satisfies the relation p = q. We note:

Lemma 3.1.1. Suppose F and G are groups, such that F is generated by
three elements a, b, c ∈ |F |, while α, β, γ are any three elements of G.
Then the following conditions are equivalent:

(a) Every group-theoretic relation p = q satisfied by (a, b, c) in F is also
satisfied by (α, β, γ) in G.

(b) There exists a group homomorphism h : F → G under which a 7→ α,
b 7→ β, c 7→ γ.

Further, when these conditions hold, the homomorphism h of (b) is
unique.

If the assumption that a, b and c generate F is dropped, one still has
(b) =⇒ (a).

Proof. Not yet assuming that a, b and c generate F, suppose h is a ho-
momorphism as in (b). Then I claim that for all p ∈ T,

h(pF (a, b, c)) = pG(α, β, γ).

22
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Indeed, the set of p ∈ T for which the above equation holds is easily seen to
contain x, y and z, and to be closed under the operations of T, hence it
is all of T. Statement (a) follows, giving the final assertion of the lemma. If,
further, a, b and c generate F, then every element of |F | can be written
pF (a, b, c) for some p, so the above formula shows that given such a, b
and c, the homomorphism h is determined by α, β and γ, yielding the
next-to-last assertion.

Finally, suppose a, b and c generate F and (a) holds. For each g =
pF (a, b, c) ∈ |F |, define h(g) = pG(α, β, γ). To show that this gives a well-
defined map from |F | to |G|, note that if we have two ways of writing an
element g ∈ |F |, say pF (a, b, c) = g = qF (a, b, c), then the relation p = q
is satisfied by (a, b, c) in F, hence by (a), it is satisfied by (α, β, γ) in G,
hence the two values our definition prescribes for h(g), namely pG(α, β, γ)
and qG(α, β, γ), are the same.

That this set map is a homomorphism follows from the way evalua-
tion of group-theoretic terms is defined. For instance, given g ∈ |F |, sup-
pose we want to show that h(g−1) = h(g)−1. We write g = pF (a, b, c).
Then (ιT (p))F (a, b, c) = g−1, so our definition of h gives h(g−1) =
(ιT (p))G(α, β, γ) = pG(α, β, γ)−1 = h(g)−1. The same reasoning applies
to products and to the neutral element. ut

Exercise 3.1:1. Show by example that if {a, b, c} does not generate F,
then condition (a) of the above lemma can hold and (b) fail, and also
that (b) can hold but h not be unique. (You may replace (a, b, c) with a
smaller family, (a, b) or (a), if you like.)

Lemma 3.1.1 leads one to wonder: Among all groups F given with gener-
ating 3-tuples of elements (a, b, c), is there one in which these three elements
satisfy the smallest possible set of relations? We note what the above lemma
would imply for such a group:

Corollary 3.1.2. Let F be a group, and a, b, c ∈ |F |. Then the following
conditions are equivalent:

(a) a, b, c generate F, and the only relations satisfied by a, b, c in F are
those relations satisfied by every 3-tuple (α, β, γ) of elements in every group
G.

(b) For every group G, and every 3-tuple of elements (α, β, γ) in G, there
exists a unique homomorphism h : F → G such that h(a) = α, h(b) = β,
h(c) = γ. ut

Only one point in the deduction of this corollary from Lemma 3.1.1 is not
completely obvious; I will make it an exercise:

Exercise 3.1:2. In the situation of the above corollary, show that (b) implies
that a, b and c generate F. (Hint: Let G be the subgroup of F generated
by those three elements.)
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I’ve been speaking of 3-tuples of elements for concreteness; the same obser-
vations are valid for n-tuples for any n, and generally, for X-tuples for any
set X. An X-tuple of elements of F means a set map X → |F |, so in this
general context, condition (b) above takes the form given by the next defi-
nition. (But making this definition does not answer the question of whether
such objects exist!)

Definition 3.1.3. Let X be a set. By a free group F on the set X, we shall
mean a pair (F, u), where F is a group, and u a set map X → |F |, having
the following universal property:

For every group G, and every set map v : X → |G|, there exists a unique
homomorphism h : F → G such that v = hu; i.e., making the diagram below
commute.

X - |F |u

Q
Q
Q
Q
QQs

∀ v
?
|G|

F

?

∃1h

G

(In the above diagram, the first vertical arrow also represents the homo-
morphism h, regarded as a map on the underlying sets of the groups.)

Corollary 3.1.2 (as generalized to X-tuples) says that (F, u) is a free group
on X if and only if the elements u(x) (x ∈ X) generate F, and satisfy no
relations except those that hold for every X-tuple of elements in every group.
In this situation, one says that these elements “freely” generate F, hence
the term free group. Note that if such an F exists, then by definition, any
X-tuple of members of any group G can be obtained, in a unique way, as
the image, under a group homomorphism F → G, of the particular X-tuple
u. Hence that X-tuple can be thought of as a “universal X-tuple of group
elements”, so the property characterizing it is called a universal property.

We note a few elementary facts and conventions about such objects. If
(F, u) is a free group on X, then the map u : X → |F | is one-to-one.
(This is easy to prove from the universal property, plus the well-known fact
that there exist groups with more than one element. The student who has
not seen free groups developed before should think this argument through.)
Hence given a free group, it is easy to get from it one such that the map
u is actually an inclusion X ⊆ |F |. Hence for notational convenience, one
frequently assumes that this is so; or, what is approximately the same thing,
one often uses the same symbol for an element of X and its image in |F |.

If (F, u) and (F ′, u′) are both free groups on the same set X, there is a
unique isomorphism between them as free groups, i.e., respecting the maps
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u and u′. (Cf. diagram below.)

X
�
�
�
�
�
�3

u

Q
Q
Q
Q
Q
Qs

u′

|F |

|F ′|
?

6

F

F ′
?

6

(If you haven’t seen this result before, again see whether you can work
out the details. For the technique you might look ahead to the proof of
Proposition 4.3.3.) As any two free groups on X are thus “essentially” the
same, one sometimes speaks of the free group on X.

One also often says that a group F “is free” to mean “there exists some
set X and some map u : X → |F | such that (F, u) is a free group on X. ”
When this holds, X can always be taken to be a subset of |F |, and u the
inclusion map.

But it is time we proved that free groups exist. We will show three different
ways of constructing them in the next three sections.

Exercise 3.1:3. Suppose one replaces the word “group” by “finite group”
throughout Definition 3.1.3. Show that for any nonempty set X, no finite
group exists having the stated universal property.

3.2. The logician’s approach: construction from
group-theoretic terms

We know from Corollary 3.1.2 that if a free group F on three genera-
tors a, b, c exists, then each of its elements can be written pF (a, b, c) for
some group-theoretic term p, and that two such elements, pF (a, b, c) and
qF (a, b, c), are equal if and only if the equation “ p = q ” is satisfied by ev-
ery three elements of every group, i.e., follows from the group axioms. This
suggests that we may be able to construct such a group by taking the set
of all group-theoretic terms in three variables, constructing an equivalence
relation “ p ∼ q ” on this set which means “the equality of p and q is a
consequence of the group axioms”, taking for |F | the quotient of our set of
terms by this relation, and defining operations ·, −1 and e on |F | in some
natural manner. This we shall now do!

Let X be any set, and T = TX, ·,−1, e the set of all group-theoretic terms
in the elements of X. What conditions must a relation “∼ ” satisfy for p ∼ q
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to be the condition “ pv = qv ” for some map v of X into some group G ?
Well, the group axioms tell us that it must satisfy

(∀ p, q, r ∈ T ) (p · q) · r ∼ p · (q · r),(3.2.1)

(∀ p ∈ T ) (p · e ∼ p) ∧ (e · p ∼ p),(3.2.2)

(∀ p ∈ T ) (p · p−1 ∼ e) ∧ (p−1 · p ∼ e).(3.2.3)

Also, just the well-definedness of the operations of G tells us that

(∀ p, p′, q ∈ T ) (p ∼ p′) =⇒ ((p · q ∼ p′ · q) ∧ (q · p ∼ q · p′)),(3.2.4)

(∀ p, p′ ∈ T ) (p ∼ p′) =⇒ (p−1 ∼ p′−1).(3.2.5)

Finally, of course, ∼ must be an equivalence relation:

(∀ p ∈ T ) p ∼ p,(3.2.6)

(∀ p, q ∈ T ) (p ∼ q) =⇒ (q ∼ p),(3.2.7)

(∀ p, q, r ∈ T ) ((p ∼ q) ∧ (q ∼ r)) =⇒ (p ∼ r).(3.2.8)

So let us take for “∼ ” the least binary relation on T satisfying conditions
(3.2.1)-(3.2.8).

Let us note what this means, and why it exists: Recall that a binary
relation on a set T is formally a subset R ⊆ T × T ; when we write p ∼ q,
this is understood to be an abbreviation for (p, q) ∈ R. “Least” means
smallest with respect to set-theoretic inclusion. Our conditions (3.2.1)-(3.2.8)
are in the nature of closure conditions, and, as with all sets defined by closure
conditions, the existence of a least set satisfying them can be established in
two ways:

We may capture this set “from above” by forming the intersection of all
binary relations on T satisfying (3.2.1)-(3.2.8) – the set-theoretic intersection
of these relations as subsets of T ×T. (Note, incidentally, that if we think of
such relations as predicates rather than as sets, this intersection

⋂
becomes

a (generally infinite) conjunction
∧
.) The key point to observe is that each

of these conditions is such that an intersection of relations satisfying it again
satisfies it. Hence the intersection of all relations satisfying (3.2.1)-(3.2.8) will
be the least such relation.

Or we can “build it up from below”. Let R0 denote the empty relation
∅ ⊆ T ×T, and recursively construct the i+1-st relation Ri+1 from the i-th,
by adding to Ri those elements that conditions (3.2.1)-(3.2.8) say must also
be in R, given that the elements of Ri are there. Precisely, we let

Ri+1 = Ri (el’ts already constructed)

∪ {((p · q) · r, p · (q · r)) | p, q, r ∈ T} (el’ts arising by (3.2.1))

∪ . . . . . .

∪ {(p, r) | (∃ q) (p, q) ∈ Ri ∧ (q, r) ∈ Ri}. (el’ts arising by (3.2.8))
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We now define R =
⋃
iRi. It is straightforward to show that R satisfies

(3.2.1)-(3.2.8), and that any subset of T × T satisfying (3.2.1)-(3.2.8) must
contain R; so R, looked at as a binary relation ∼ on T, is the desired least
relation.

By (3.2.6)-(3.2.8), ∼ is an equivalence relation; so let |F | = T/∼, the
set of equivalence classes of this relation; i.e., writing [p] for the equivalence
class of p ∈ T, |F | = {[p] | p ∈ T}. We map X into |F | by the function

u(x) = [x]

(or, if we do not identify symbT (x) with x in our construction of T, by
u(x) = [symbT (x)]). We now define operations ·, −1 and e on |F | by

[p] · [q] = [p · q],(3.2.9)

[p]−1 = [p−1],(3.2.10)

e = [e].(3.2.11)

That the first two of these are well-defined follows respectively from prop-
erties (3.2.4) and (3.2.5) of ∼ ! (With the third there is no problem.) From
properties (3.2.1)-(3.2.3) of ∼, it follows that (|F |, ·, −1, e) satisfies the
group axioms. E.g., given [p], [q], [r] ∈ |F |, if we evaluate ([p] · [q]) · [r] and
[p] · ([q] · [r]) in |F |, we get [(p · q) · r] and [p · (q · r)] respectively, which
are equal by (3.2.1). Writing F for the group (|F |, ·, −1, e), it is clear from
our construction of ∼ that every relation satisfied by the images in F of the
elements of X is a consequence of the group axioms; so by Corollary 3.1.2 (or
rather, the generalization of that corollary with X-tuples in place of 3-tuples),
F has the desired universal property.

To see this universal property more directly, suppose v is any map X →
|G|, where G is a group. Write p ∼v q to mean pv = qv in G. Clearly
the relation ∼v satisfies conditions (3.2.1)-(3.2.8), hence it contains the least
such relation, our ∼ . So a well-defined map h : |F | → |G| is given by
h([p]) = pv ∈ |G|, and it follows from the way the operations of F, and
the evaluation of terms in G at the X-tuple v, are defined, that h is a
homomorphism, and is the unique homomorphism such that hu = v. Thus
we have

Proposition 3.2.12. (F, u), constructed as above, is a free group on the
given set X. ut

So a free group on every set X does indeed exist!

Remark 3.2.13. There is a viewpoint that goes along with this construction,
which will be helpful in thinking about universal constructions in general.
Suppose that we are given a set X, and that we know that G is a group,
with a map v : X → |G|. How much can we “say about” G from this fact
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alone? We can name certain elements of G, namely the v(x) (x ∈ X), and
all the elements that can be obtained from these by the group operations of
G (e.g., (v(x) ·v(y))−1 · ((v(y)−1 ·e)−1 · v(z)) if x, y, z ∈ X). A particular G
may contain more elements than those obtained in such ways, but we have no
way of getting our hands on them from the given information. We can also
derive from the identities for groups certain relations that these elements
satisfy, (e.g., (v(x) · v(y))−1 = v(y)−1 · v(x)−1). The elements v(x) may, in
particular cases, satisfy more relations than these, but again we have no way
of deducing these additional relations. If we now gather together this limited
“data” that we have about such a group G – the quotient of a set of labels
for certain elements by a set of identifications among these – we find that
this collection of “data” itself forms a group with a map of X into it; and
is, in fact, a universal such group!

Remark 3.2.14. At the beginning of this section, I motivated our construction
by saying that “∼ ” should mean “equality that follows from the group ax-
ioms”. I then wrote down a series of eight rules, (3.2.1)-(3.2.8), all of which are
clearly valid procedures for deducing equations which hold in all groups. What
was not obvious was whether they would be sufficient to yield all such equa-
tions. But they were – the proof of the pudding being that (T/∼, ·, −1, e)
was shown to be a group.

This is an example of a very general type of situation in mathematics:
Some class, in this case, a class of pairs of group-theoretic terms, is described
“from above”, i.e., is defined as the class of all elements satisfying certain
restrictions (in this case, those pairs (p, q) ∈ T × T such that the relation
p = q holds on all X-tuples of elements of all groups). We seek a way of
describing it “from below”, i.e., of constructing or generating all members of
the class. Some procedure which produces members of the set is found, and
one seeks to show that this procedure yields the whole set – or, if it does not,
one seeks to extend it to a procedure that does.

The inverse situation is equally important, where we are given a construc-
tion which “builds up” a set, and we seek a convenient way of characterizing
the elements that result. Exercise 2.7:1 was of that form. You will see more
examples of both situations throughout this course, and, in fact, in most
every mathematics course you take.

Exercise 3.2:1. Prove directly from (3.2.1)-(3.2.8) that for x, y ∈ X, (x ·
y)−1 ∼ y−1 · x−1. (Your solution should show explicitly each application
you make of each of those conditions.)

Exercise 3.2:2. Does the relation of the preceding exercise follow from
(3.2.1)-(3.2.3) and (3.2.6)-(3.2.8) alone?

Note that in our recursive construction of the set R (that is, the relation
∼), repeated application of (3.2.1)-(3.2.3) was really unnecessary; these con-
ditions give the same elements of R each time they are applied, so we might
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as well just have applied them the first time, and only applied (3.2.4)-(3.2.8)
after that. Less obvious is the answer to:

Exercise 3.2:3. (A. Tourubaroff) Can the construction of R be done in
three stages: First take the set P of elements given by (3.2.1)-(3.2.3),
then form the closure Q of this set under applications of (3.2.4)-(3.2.5)
(as before, by recursion or as an intersection), and finally, obtain R as
the closure of Q under applications of (3.2.6)-(3.2.8) (another recursion or
intersection)? This procedure will yield some subset of T× T ; the question
is whether it is the R we want.

What if we do things in a different order – first (3.2.1)-(3.2.3), then
(3.2.6)-(3.2.8), then (3.2.4)-(3.2.5)?

3.3. Free groups as subgroups of big enough direct
products

Another way of getting a group in which some X-tuple of elements satisfies
the smallest possible set of relations is suggested by the following observation.
Let G1 and G2 be two groups, and suppose we are given elements

α1, β1, γ1 ∈ |G1|, α2, β2, γ2 ∈ |G2|.

Then in the direct product group G = G1 × G2 we have the elements

a = (α1, α2), b = (β1, β2), c = (γ1, γ2),

and we find that the set of relations satisfied by a, b, c in G is precisely the
intersection of the set of relations satisfied by α1, β1, γ1 in G1 and the set
of relations satisfied by α2, β2, γ2 in G2. This may be seen from the fact
that for any s ∈ T,

sG(a, b, c) = (sG1
(α1, β1, γ1), sG2

(α2, β2, γ2)),

as is easily verified by induction.
More generally, if we take an arbitrary family of groups (Gi)i∈I , and in

each Gi three elements αi, βi, γi, then in the product group G = Gi, we
can define the elements

a = (αi)i∈I , b = (βi)i∈I , c = (γi)i∈I ,

and the relations that these satisfy will be just those relations satisfied si-
multaneously by our 3-tuples in all of these groups.

This suggests that by using a large enough such family, we could arrive at
a group with three elements a, b, c which satisfy a smallest possible set of
relations.
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How large a family (Gi, αi, βi, γi) should we use?
Well, we could be sure of getting the least set of relations if we could use

the class of all groups and all 3-tuples of elements of these. But taking the
direct product of such a family would give us set-theoretic indigestion.

We can cut down this surfeit of groups a bit by noting that for any group
Gi and three elements αi, βi, γi, if we let Hi denote the subgroup of Gi
generated by these three elements, it will suffice for our product to involve the
group Hi, rather than the whole group Gi, since the relations satisfied by
αi, βi and γi in the whole group Gi and in the subgroup Hi are the same.
Now a finitely generated group is countable (meaning finite or countably
infinite), so we see that it would be enough to let (Gi, αi, βi, γi) range over
all countable groups, and all 3-tuples of elements thereof.

However, the class of all countable groups is still not a set. Indeed, even
the class of one-element groups is not a set, because we get a different (in
the strict set-theoretic sense) group for each choice of that one element. (For
those not familiar with such considerations: In set theory, every element of
a set is a set. If we had a set of all one-element groups, then we could form
from this the set of all members of their underlying sets, which would be the
set of all sets; and one knows that this does not exist.) But this is clearly
just a quibble – obviously, if we choose any one-element set {x}, and take
the unique group with this underlying set, it will serve as well as any other
one-element group so far as honest group-theoretic purposes are concerned.
In the same way, I claim we can find a genuine set of countable groups that
up to isomorphism contains all the countable groups. Namely, let S be a
fixed countably infinite set. Then we can form the set of all groups G whose
underlying sets |G| are subsets of S. Or, to hit more precisely what we want,
let

(3.3.1) {(Gi, αi, βi, γi) | i ∈ I}

be the set of all 4-tuples such that Gi is a group with |Gi| ⊆ S, and αi,
βi and γi are members of |Gi|. Now for any countable group H and three
elements α, β, γ ∈ |H|, we can clearly find an isomorphism θ from one of
these groups, say Gj (j ∈ I), to H, such that θ(αj) = α, θ(βj) = β,
θ(γj) = γ; so (3.3.1) is “big enough” for our purpose.

So taking (3.3.1) as above, let P be the direct product group
I
Gi, let

a, b, c be the I-tuples (αi), (βi), (γi) ∈ |P |, and let F be the subgroup of
P generated by a, b and c. I claim that F is a free group on a, b and c.

We could prove this by considering the set of relations satisfied by a, b,
c in F as suggested above, but let us instead verify directly that F satisfies
the universal property characterizing free groups (Definition 3.1.3). Let G
be any group, and α, β, γ three elements of G. We want to prove that
there exists a unique homomorphism h : F → G carrying a, b, c ∈ |F | to
α, β, γ ∈ |G| respectively. Uniqueness will be no problem – by construction
F is generated by a, b and c, so if such a homomorphism exists it is unique.
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To show the existence of h, note that the subgroup H of G generated by
α, β, γ is countable, hence as we have noted, there exists for some j ∈ I
an isomorphism θ : Gj ∼= H carrying αj , βj , γj ∈ |Gj | to α, β, γ ∈ |H|.
Now the projection map pj of the product group P = Gi onto its j-th
coordinate takes a, b and c to αj , βj , γj , hence composing this projection
with θ, we get a homomorphism h : F → G having the desired effect on
a, b, c, as shown in the diagram below.

F a, b, c ∈ |F |� �
?

� �
?

P = Gi a, b, c ∈ |Gi|

? ?

pj

Gj αj , βj , γj ∈ |Gj |

θ

H α, β, γ ∈ |H|� �
?

� �
?

G α, β, γ ∈ |G|

For a useful way to picture this construction, think of P as the group of
all functions on the base-space I, taking at each point i ∈ I a value in Gi :

q q q q q q q q q q q q

Gj

j
qq q q q q q q q q

groups Gi
JĴ

I

elements@I

of P =
I
Gi

�	

Then F is the subgroup of functions generated by a, b and c. Now given
α, β, γ in any group G, identify the subgroup of G that they generate with
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an appropriate Gj (j ∈ I). Then the homomorphism h that we constructed
above may be thought of as taking each element of F to its value at the
point j. We have chosen our space I and values for a, b and c sufficiently
eclectically so that it is possible to choose points at which a, b and c take on
(up to isomorphism) any 3-tuple of values in any group. Thus, the functions
a, b and c are a “universal” 3-tuple of group-elements.

The same argument works if we replace “3-tuple” by “X-tuple”, where X
is any countable set. Here we use the observation that a group generated by
a countable family of elements is countable. For X of arbitrary cardinality,
one can easily show that a group H generated by an X-tuple of elements
has cardinality ≤ max(card(X), ℵ0). Hence we get:

Proposition 3.3.2. Let X be any set. Take a set S of cardinality
max(card(X), ℵ0), and let {(Gi, ui) | i ∈ I} be the set of all pairs such
that Gi is a group with |Gi| ⊆ S, and ui is a map X → |Gi| (i.e., an
X-tuple of elements of Gi). Let P =

I
Gi, and map X into P by defin-

ing u(x) (x ∈ X) to be the element with component ui(x) at each i. Let
F be the subgroup of P generated by {u(x) | x ∈ X}.

Then the pair (F, u) is a free group on the set X. ut

Digression: Let S3 be the symmetric group on three letters. Suppose we
had begun the above investigation with a less ambitious goal: merely to find
a group J with three elements a, b, c such that

(3.3.3)

For every choice of three elements α, β,
γ ∈ |S3|, there exists a unique homo-
morphism h : J → S3 taking a, b, c to
α, β, γ, respectively.

J a, b, c ∈ |J |

? ?
h

S3 α, β, γ ∈ |S3|

Then we could have performed the above construction just using 4-tuples

(S3, α, β, γ) (α, β, γ ∈ |S3|) as our (Gi, αi, βi, γi). There are 63 = 216
such 4-tuples, so P would be the direct product of 216 copies of S3, and
a, b, c would be elements of this product which, as one runs over the 216
coordinates, take on all possible combinations of values in S3. The subgroup
J they generate would indeed satisfy (3.3.3). This leads to:

Exercise 3.3:1. Does condition (3.3.3) characterize (J, a, b, c) up to iso-
morphism? If not, is there some additional condition that (J, a, b, c) sat-
isfies which together with (3.3.3) determines it up to isomorphism?

Exercise 3.3:2. Investigate the structure of the group J, and more gener-
ally, of the analogous groups constructed from S3 using different numbers
of generators. To make the problem concrete, try to determine, or estimate
as well as possible, the orders of these groups, for 1, 2, 3 and generally,
for n generators.

The methods by which we have constructed free groups in this and the
preceding section go over essentially word-for-word with “group” replaced
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by “ring”, “lattice”, or a great many other types of mathematical objects.
The determination of just what classes of algebraic structures admit this and
related sorts of universal constructions is one of the themes of this course.
The next exercise concerns a negative example.

Exercise 3.3:3. State what would be meant by a “free field on a set X ”,
and show that no such object exists for any set X. If one attempts to apply
the two methods of this and the preceding section to prove the existence
of free fields, where does each of them fail?

Exercise 3.3:4. Let Z[x1, . . . , xn] be the polynomial ring in n indetermi-
nates over the integers ( = the free commutative ring on n generators –
cf. §4.12 below). Its field of fractions Q(x1, . . . , xn), the field of “rational
functions in n indeterminates over the rationals”, looks in some ways like
a “free field on n generators”. E.g., one often speaks of evaluating a ra-
tional function at some set of values of the variables. Can some concept
of “free field” be set up, perhaps based on a modified universal property,
or on some concept of comparing relations in the field operations satisfied
by n-tuples of elements in two fields, in terms of which Q(x1, . . . , xn) is
indeed the free field on n generators?

Exercise 3.3:5. A division ring (or skew field or sfield) is a ring (associative
but not necessarily commutative) in which every nonzero element is invert-
ible. If you find a satisfactory answer to the preceding exercise, you might
consider the question of whether there exists in the same sense a free divi-
sion ring on n generators. (This was a longstanding open question, which
was finally answered in 1966, and then again, by a very different approach,
about five years later. I can refer interested students to papers in this area.)

There are many hybrids and variants of the two constructions we have
given for free groups. For instance, we might start with the set T of terms
in X, and define p ∼ q (for p, q ∈ T ) to mean that for every map v of X
into a group G, one has pv = qv in G. Now for each pair (p, q) ∈ T × T
such that p ∼ q fails to hold, we can choose a map up, q of X into a
group Gp, q such that pup, q 6= qup, q . We can then form the direct product
group P = Gp, q, take the induced map u : X → |P |, and check that the
subgroup F generated by the image of this map will satisfy condition (a)
of Corollary 3.1.2. Interestingly, for X countable, this construction uses a
product of fewer groups Gp, q than we used in the version given above.

Finally, consider the following construction, which suffers from severe set-
theoretic difficulties, but is still interesting. (I won’t try to resolve these dif-
ficulties here, but will talk sloppily, as though they did not occur.)

Define a “generalized group-theoretic operation in three variables” as any
function p which associates to every group G and three elements α, β, γ ∈
|G| an element p(G, α, β, γ) ∈ |G|. We can “multiply” two such operations
p and q by defining

(p · q)(G,α, β, γ) = p(G, α, β, γ) · q(G, α, β, γ) ∈ |G|.
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for all groups G and elements α, β, γ ∈ |G|. We can similarly define the
multiplicative inverse of such an operation p, and the constant operation e.
We see that the class of generalized group-theoretic operations will satisfy
the group axioms under the above three operations. Now consider the three
generalized group-theoretic operations a, b and c defined by

a(G, α, β, γ) = α, b(G, α, β, γ) = β, c(G, α, β, γ) = γ.

Let us define a “derived generalized group-theoretic operation” as one ob-
tainable from a, b and c by the operations of product, inverse, and neutral
element defined above. Then the set of derived generalized group-theoretic
operations will form a free group on the generators a, b and c. (This is
really just a disguised form of our naive “direct product of all groups” idea.)

Exercise 3.3:6. Call a generalized group-theoretic operation p functorial if
for every homomorphism of groups f : G→ H, one has f(p(G, α, β, γ)) =
p(H, f(α), f(β), f(γ)) (α, β, γ ∈ |G|). (We will see the reason for this
name in Chapter 7.) Show that all derived group-theoretic operations are
functorial. Is the converse true?

Exercise 3.3:7. Same question for functorial generalized operations on the
class of all finite groups.

3.4. The classical construction: free groups as groups of
words

The constructions discussed above have the disadvantage of not giving very
explicit descriptions of free groups. We know that every element of a free
group F on the set X arises from a term in the elements of X and the
group operations, but we don’t know how to tell whether two such terms
– say (b(a−1b)−1)(a−1b) and e – yield the same element; in other words,
whether (β(α−1β)−1)(α−1β) = e is true for all elements α, β of all groups.
If it is, then by the results of §3.2 one can obtain this fact somehow by the
procedures corresponding to conditions (3.2.1)-(3.2.8); if it is not, then the
ideas of §3.3 suggest that we should try to prove this by looking for some
particular elements for which it fails, in some particular group in which we
know how to calculate. But these approaches are hit-and-miss.

In this section, we shall construct the free group on X in a much more
explicit way. We will then be able to answer such questions by calculating in
the free group.

We first recall an important consequence of the associative identity: that
“products can be written without parentheses”. For example, given elements
a, b, c of a group, the elements a(c(ab)), a((ca)b), (ac)(ab), (a(ca))b and
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((ac)a)b are all equal. It is conventional, and usually convenient, to say, “Let
us therefore write their common value as a c a b. ” However, we will soon want
to relate these expressions to group-theoretic terms; so instead of dropping
parentheses, let us agree to take a(c(ab)) as the common form to which
we shall reduce the above five expressions, and generally, let us note that
any product of elements can be reduced by the associative law to one with
parentheses clustered to the right: xn (xn−1(. . . (x2 x1) . . . )).

In particular, given two elements written in this form, we can write down
their product and reduce it to this form by repeatedly applying the associative
law:

(3.4.1)
(xn (. . . (x2 x1) . . . )) · (ym (. . . (y2 y1) . . . ))

= xn (. . . (x2 (x1 (ym (. . . (y2 y1) . . . )))) . . . ).

If we want to find the inverse of an element written in this form, we may
use the formula (x y)−1 = y−1 x−1, another consequence of the group laws.
By induction this gives (xn( . . . (x2x1) . . . ))−1 = ( . . . (x−1

1 x−1
2 ) . . . )x−1

n ,
which we may reduce, again by associativity, to x−1

1 ( . . . (x−1
n−1x

−1
n ) . . . ).

More generally, if we started with an expression of the form

x±1
n ( . . . (x±1

2 x±1
1 ) . . . ),

where each factor is either xi or x−1
i , and the exponents are indepen-

dent, then the above method together with the fact (x−1)−1 = x (an-
other consequence of the group axioms) allows us to write its inverse as
x∓1

1 ( . . . (x∓1
n−1 x

∓1
n ) . . . ), which is of the same form as the expression we

started with; just as (3.4.1) shows that the product of two expressions of the
above form reduces to an expression of the same form.

Note further that if two successive factors x±1
i and x±1

i+1 are respectively
x and x−1 for some element x, or are respectively x−1 and x for some x,
then by the group axioms on inverses and the neutral element (and again,
associativity), we can drop this pair of factors – unless they are the only
factors in the product, in which case we can rewrite the product as e.

Finally, easy consequences of the group axioms tell us what the inverse of e
is (namely e), and how to multiply anything by e. Putting these observations
together, we conclude that given any set X of elements of a group G, the
set of elements of G that can be written in one of the forms

(3.4.2)

e or x±1
n (. . . (x±1

2 x±1
1 ) . . . ),

where n ≥ 1, each xi ∈ X, and no two successive factors
are an element of X and the inverse of the same element, in
either order,
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is closed under products and inverses. So this set must be the whole subgroup
of G generated by X. In other words, any member of the subgroup generated
by X can be reduced by the group operations to an expression (3.4.2).

In the preceding paragraph, X was a subset of a group. Now let X be an
arbitrary set, and as in §3.2, let T be the set of all group-theoretic terms in
elements of X (Definition 2.5.1). For convenience, let us assume T chosen
so as to contain X, with symbT being the inclusion map. (If you prefer
not to make this assumption, then in the argument to follow, you should
insert “ symbT ” at appropriate points.) Let Tred ⊆ T (“red” standing for
“reduced”) denote the set of terms of the form (3.4.2). If s, t ∈ Tred, we
can form their product s · t in T, and then, as we have just seen, rearrange
parentheses to get an element of Tred which is equivalent to s · t so far as
evaluation at X-tuples of elements of groups is concerned. Let us call this
element s�t. Thus, s�t has the properties that it belongs to Tred, and that
for any map v : X → |G| (G a group) one has (s · t)v = (s� t)v. In the same
way, given s ∈ Tred, we can obtain from s−1 ∈ T an element we shall call
s(−) ∈ Tred, such that for any map v : X → |G|, one has (s−1)v = (s(−))v.

Are any further reductions possible? For a particular X-tuple of elements
of a particular group there may be equalities among the values of different
expressions of the form (3.4.2); but we are only interested in reductions that
can be done in all groups. No more are obvious; but can we be sure that some
sneaky application of the group axioms wouldn’t allow us to prove some two
distinct terms (3.4.2) to have the same evaluations at all X-tuples of elements
of all groups? (In such a case, we should not lose hope, but should introduce
further reductions that would always replace one of these expressions by the
other.)

Let us formalize the consequences of the preceding observations, and in-
dicate the significance of the question we have asked.

Lemma 3.4.3. For each s ∈ T, there exists an s′ ∈ Tred (i.e., an element
of T of one of the forms shown in (3.4.2)) such that

(3.4.4) for every map v of X into any group G, sv = s′v in |G|.

Moreover, if one of the following statements is true, all are:

(a) For each s ∈ T, there exists a unique s′ ∈ Tred satisfying (3.4.4).

(b) If s, t are distinct elements of Tred, then “ s = t ” is not an identity
for groups; that is, for some G and some v : X → |G|, sv 6= tv.

(c) The 4-tuple F = (Tred, �, (−), eT ) is a group.

(d) The 4-tuple F = (Tred, �, (−), eT ) is a free group on X.

Proof. We get the first sentence of the lemma by an induction, which I will
sketch briefly. The assertion holds for elements x ∈ X: we simply take x′ = x.
Now suppose it true for two terms s, t ∈ T. To establish it for s · t ∈ T,

define (s · t)′ = s′ � t′. One likewise gets it for s−1 using s′
(−)
, and it is
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clear for e. It follows from condition (c) of the definition of “group-theoretic
term” (Definition 2.5.1) that it is true for all elements of T.

The equivalence of (a) and (b) is straightforward. Assuming these con-
ditions, let us verify that the 4-tuple F defined in (c) is a group. Take
p, q, r ∈ Tred. Then p � (q � r) and (p � q) � r are two elements of Tred,
call them s and t. For any v : X → |G|, sv = tv by the associative law for
G. Hence by (b), s = t, proving that � is associative. The other group laws
for F are deduced in the same way.

Conversely, assuming (c), we claim that for distinct elements s, t ∈ Tred,
we can prove, as required for (b), that the equation “ s = t ” is not an identity
by getting a counterexample to that equation in this very group F. Indeed,
if we let v be the inclusion X → Tred = |F |, we can check by induction on
n in (3.4.2) that for all s ∈ Tred, sv = s. Hence s 6= t implies sv 6= tv, as
desired.

Since (d) certainly entails (c), our proof will be complete if we can show,
assuming (c), that F has the universal property of a free group. Given any
group G and map v : X → |G|, we map |F | = Tred to |G| by s 7→ sv.
From the properties of � and (−), we know that this is a homomorphism h
such that h|X (the restriction of h to X) is v; and since X generates F,
h is the unique homomorphism with this property, as desired. ut

Well – are statements (a)-(d) true, or not??

The usual way to answer this question is to test condition (c) by writing
down precisely how the operations � and (−) are performed, and checking
the group axioms on them. Since a term of the form (3.4.2) is uniquely de-
termined by the integer n (which we take to be 0 for the term e) and the
n-tuple of elements of X and their inverses, (x±1

n , . . . , x±1
1 ), one describes

� and (−) as operations on such n-tuples. E.g., one multiplies two tuples
(w, . . . , x) and (y, . . . , z) (where each of w, . . . , z is an element of X or a
symbolic inverse of such an element) by uniting them as (w, . . . , x, y, . . . , z),
then dropping pairs of factors that may now cancel (e.g., x and y above if
y is x−1); and repeating this last step until no such cancelling pairs remain.

But checking the associative law for this recursively defined operation turns
out to be very tedious, involving a number of different cases. (E.g., you might
try checking associativity for (v, w, x) · (x−1, w−1, y−1) · (y, w, z), and for
(v, w, x) · (x−1, z−1, y−1) · (y, w, z), where w, x, y and z are four distinct
elements of X. Both cases work, but they are different computations.)

But there is an elegant trick, not as well known as it ought to be, which
rescues us from the toils of this calculation. We construct a certain G which
we know to be a group, using which we can verify condition (b) – rather than
condition (c) – of the above lemma.

To see how to construct this G, let us go back to basics and recall where
the group identities, which we need to verify, “come from”. They are identi-
ties which are satisfied by permutations of any set A, under the operations
of composing permutations, inverting permutations, and taking the identity
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permutation. So let us try to describe a set A on which the group we want to
construct should act by permutations in as “free” a way as possible, specifying
the permutation of A that should represent the image of each x ∈ X.

To start our construction, let a be any symbol not in {x±1 | x ∈ X}.
Now define A to be the set of all strings of symbols of the form:

(3.4.5)
x±1
n x±1

n−1 . . . x
±1
1 a

where n ≥ 0, each xi ∈ X, and no two successive factors
x±1
i and x±1

i+1 are an element of X and the inverse of that
same element, in either order.

In particular, taking n = 0, we see that a ∈ A.
Let G be the group of all permutations of A. Define for each x ∈ X an

element v(x) ∈ |G| as follows. Given b ∈ A,

if b does not begin with the symbol x−1, let v(x) take b to
the symbol x b, formed by placing an x at the beginning of
the symbol b;

if b does begin with x−1, say b = x−1c, let v(x) take b to
the symbol c, formed by removing x−1 from the beginning
of b.

It is immediate from the definition of A that v(x)(b) belongs to A in each
case. To check that v(x) is invertible, consider the map which sends a symbol
x b to b, and a symbol c not beginning with x to the symbol x−1 c; we
find that this is a 2-sided inverse to v(x).

So we now have a map v : X → |G|. As usual, this induces an evaluation
map s 7→ sv taking the set T of terms in X into |G|. Now consider any
s = x±1

n (. . . (x±1
2 x±1

1 ) . . . ) ∈ Tred. It is easy to verify by induction on n that
the permutation sv ∈ |G| takes our “base” symbol a ∈ A to the symbol
x±1
n . . . x±1

1 a (or if s = e, to a itself). It follows that if s and t are distinct
elements of Tred, then sv(a) and tv(a) are distinct elements of A, so sv 6= tv
in G, establishing (b) of Lemma 3.4.3. By that lemma we now have

Proposition 3.4.6. F = (Tred, �, (−), e) is a group; in fact, letting u de-
note the inclusion X → Tred, the pair (F, u) is a free group on X.

Using parenthesis-free notation for products, and identifying each element
of X with its image in F, this says that every element of the free group on
X can be written uniquely as

e, or x±1
n . . . x±1

2 x±1
1 ,

where in the latter case, n ≥ 1, each xi ∈ X, and no two successive factors
x±1
i and x±1

i+1 are an element of X and the inverse of that same element,
in either order. ut
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What we have just obtained is called a normal form for elements of a
free group on X – a set of expressions which contains a unique expression
for each member of the group, such that we can algorithmically reduce any
expression to one in this set. This indeed allows us to calculate explicitly in
the free group. For example, you should find it straightforward to do

Exercise 3.4:1. Determine whether each of the following equations holds
for all elements x, y, z of all groups:
(i) (x−1y x)−1(x−1z x)(x−1y x) = (yx)−1z (yx).

(ii) (x−1y−1xy)2 = x−2y−1x2y.

In the next exercise, we will use the group theorists’ abbreviations

xy = y−1x y and [x, y] = x−1y−1x y

for the conjugate of an element x by an element y in a group G, respectively
the commutator of two elements x and y. If H1, H2 are subgroups of
G, then [H1, H2] denotes the subgroup of G generated by all commutators
[h1, h2] (h1 ∈ H1, h2 ∈ H2).

Exercise 3.4:2. (i) Show that the commutator operation is not associa-
tive; i.e., that it is not true that for all elements a, b, c of every group G
one has [a, [b, c]] = [[a, b], c].
(ii) Prove a group identity of the form

[[x±1, y±1], z±1]y
±1

[[y±1, z±1], x±1]z
±1

[[z±1, x±1], y±1]x
±1

= e,

for some choice of the exponents ±1. (There is a certain amount of lee-
way in these exponents; you might try to adjust your choices so as to get
maximum symmetry. The result is known as the Hall-Witt identity; how-
ever its form may vary with the text; in particular, we get different iden-
tities depending on whether the above definition of [x, y], preferred by
most contemporary group theorists, is used, or the less common definition
x y x−1 y−1.)
(iii) Deduce that if A, B and C are subgroups of a group G such that
two of [[A, B], C], [[B, C], A], [[C, A], B] are trivial, then so is the third.
(The “three subgroups theorem”.)

(As noted above, [A, B] means the subgroup of G generated by ele-
ments [a, b] with a ∈ A, b ∈ B. Thus, [[A, B], C] means the subgroup
generated by elements [g, c] with c ∈ C, and g in the subgroup generated
as above. You will need to think about the relation between the condition
[[A, B], C] = {e} and the condition that [[a, b], c] = e for all a ∈ A ,
b ∈ B, c ∈ C.)
(iv) Deduce that if A and B are two subgroups of G, and [A, [A, B]] is
trivial, then so is [[A, A], B]. Is the converse true?

Incidentally, group theorists often abbreviate [[x, y], z] to [x, y, z]. If
I worked with commutators every day, I might do the same, but as an
occasional visitor to the subject, I prefer to stick with more transparent
notation.
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The idea of finding normal forms, or other explicit descriptions, of objects
defined by universal properties is a recurring one in algebra. The form we
have found is specific to free groups. It might appear at first glance that
corresponding forms could be obtained mechanically from any finite system
of operations and identities; e.g., those defining rings, lattices, etc.; and thus
that the results of this section should generalize painlessly (as those of the
two preceding sections indeed do!) to very general classes of structures. But
this is not so. An example we shall soon see (§4.5) is that of the Burnside
problem, where a sweet and reasonable set of axioms obstinately refuses to
yield a normal form. Other nontrivial cases are free Lie algebras [85] (cf.
§9.7 below) and free lattices [4, §VI.8], for which normal forms are known,
but complicated; free modular lattices, for which it has been proved that
the word problem is undecidable (no recursive normal form can exist); and
groups defined by particular families of generators and relations (§4.3 below),
for which the word problem has been proved undecidable in general, though
nice normal forms exist in many cases. In general, normal form questions
must be tackled case by case, but for certain large families of cases there are
interesting general methods [45].

The trick that we used to show that the set of terms Tred constitutes a
normal form for the elements of the free group is due to van der Waerden,
who introduced it in [142] to handle the more difficult case of coproducts of
groups (§4.6 below). Though the result we proved is, as we have said, specific
to groups, the idea behind the proof is a versatile one: If you can reduce
all expressions for elements of some universal structure F to members of a
set Tred, and wish to show that this gives a normal form, then look for a
“representation” of F (in whatever sense is appropriate to the structure in
question – in the group-theoretic context this was “an action of the group F
on a set A ”) which distinguishes the elements of Tred. A nice twist which
often occurs, as in the above case, is that the object on which we “represent”
F may be the set Tred itself, or some closely related object.

My development of Proposition 3.4.6 was full of motivations, remarks, etc..
You might find it instructive to write out for yourself a concise, direct, self-
contained proof that the set of terms indicated in Proposition 3.4.6, under the
operations described, forms a group, and that this has the universal property
of the free group on X.

Exercise 3.4:3. If X is a set, and s 6= t are two reduced group-theoretic
terms in the elements of X (as in Lemma 3.4.3(b)), will there in general
exist a finite group G, and a map v : X → |G|, such that sv 6= tv ?
(In other words, are the only identities satisfied by all finite groups those
holding in all groups?)

If you succeed in answering the above question, you might try the more
difficult ones in the next exercise.
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Exercise 3.4:4. (i) If X is a set, F the free group on X, H a subgroup
of F, and s an element of F such that s /∈ |H|, will there in general exist a
finite group G and a homomorphism f : F → G such that f(s) /∈ f(|H|) ?
(ii) Same question, under the assumption that the subgroup H is finitely
generated.

Free groups can also be represented by matrices:

Exercise 3.4:5. Let SL(2, Z) denote the group of all 2 × 2 matrices of
integers with determinant 1, and let H be the subgroup thereof generated

by the two matrices x =

(
1 3
0 1

)
and y =

(
1 0
3 1

)
. Show that H is free on

{x, y}. (Hint: Let c be the column vector

(
1
1

)
. Examine the form of the

column vector obtained by applying an arbitrary reduced group-theoretic
word in x and y to c.)

If you do the above, you might like to think further about what pairs of
(possibly distinct) integers, or for that matter, what pairs of real or complex
numbers can replace the two “ 3 ”s in the above matrices. For integers the
answer is known; for rational, real and complex numbers, there are many
partial results (see [76]), but nothing close to a complete answer at present.



Chapter 4

A Cook’s tour of
other universal constructions

We shall now examine a number of other constructions having many similar-
ities to that of free groups. In each case, the construction can be motivated
by a question of the form, “Suppose we have a structure about which we
know only that it satisfies such and such conditions. How much can we say
about it based on this information alone?” In favorable cases, we shall find
that if we collect the “data” we can deduce about such an object, this data
itself can be made into an object F, which satisfies the given conditions, and
satisfies no relations not implied by them (cf. Remark 3.2.13). This F is then
a “universal” example of these conditions, and that fact can be translated
into a “universal mapping property” for F.

Although the original question, “What can we say about such an object?”,
and the “least set of relations” property, are valuable as motivation and
intuition, the universal mapping property gives the characterization of these
constructions that is most useful in applications. So though I will sometimes,
but not always, refer to those motivating ideas, I will always characterize our
constructions by universal properties.

The existence of these universal objects can in most cases be proved from
scratch by either of the methods of §§3.2 and 3.3: construction from below,
as sets of terms modulo necessary identifications, or construction from above,
as subobjects of big direct products. But often, as a third alternative, we will
be able to combine previously described universal constructions to get our
new one.

Where possible, we will get explicit information on the structure of the
new object – a normal form or other such description. It is a mark of the
skilled algebraist, when working with objects defined by universal properties,
to know when to use the universal property, and when to turn to an explicit
description.

As we move through this chapter, I shall more and more often leave stan-
dard details for the reader to fill in: the precise meaning of an object “uni-
versal for” a certain property, the verification that such an object exists, etc..
In the later sections, commutative diagrams illustrating universal properties

42
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will often be inserted without explanation. These diagrams are not substi-
tutes for assertions, but aids to the reader in visualizing the situation of the
assertion he or she needs to formulate.

Constructions of groups will receive more than their rightful share of at-
tention here because they offer a wide range of interesting examples, and are
more familiar to many students than lattices, noncommutative rings (my own
love), Lie algebras, etc..

Let us begin by noting how some familiar elementary group-theoretic con-
structions can be characterized by universal properties.

4.1. The subgroup and normal subgroup of G generated
by S ⊆ |G|

Suppose we are explicitly given a group G, and a subset S of |G|.
Consider a subgroup A of G about which we are told only that it contains

all elements of the set S. How much can we say about A ?
Clearly A contains all elements of G that can be obtained from the

elements of S by repeated formation of products and inverses, and also
contains the neutral element. This is all we can deduce, for it is easy to see
that the set of elements which can be so obtained will form the underlying set
of a subgroup of G, namely the subgroup S generated by the set S. This
description builds S up “from below”. We can also obtain it “from above”,
as the intersection of all subgroups of G containing S. Whichever way we
obtain it, the defining universal property of S is that it is a subgroup which
contains S, and is contained in every subgroup A of G that contains S :

S ⊆ | S |
⊆ ⊆

|A|

S

⊆

A

(In the second part of the above display, we symbolize the group homo-
morphism given by an inclusion map of underlying sets by an inclusion sign
between the symbols for the groups; a slight abuse of notation.)

We know a somewhat better description of the elements of S than the
one I just gave: Each such element is either e or the product of a sequence
of elements of S and their inverses. A related observation is that S is the
image of the map into G of the free group F on S induced by the inclusion-
map S → |G|. In particular cases one may get still better descriptions. For
instance, if S = {a, b, c} and a, b and c commute, then S consists of all
elements am bn cp; if G is the additive group of integers, then the subgroup
generated by {1492, 1974} is the subgroup of all even integers; if G is a
symmetric group Sn (n ≥ 2), and S consists of the two permutations (12)
and (12 . . . n), then S is all of G.
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There is likewise a least normal subgroup of G containing S. This is
called “the normal subgroup of G generated by S ”, and has the correspond-
ing universal property, with the word “normal” everywhere inserted before
“subgroup”.

Exercise 4.1:1. Show that the normal subgroup N ⊆ G generated by S is
the subgroup of G generated by {g s g−1 | g ∈ |G|, s ∈ S}.

Can |N | also be described as {g h g−1 | g ∈ |G|, h ∈ | S |} ?

Exercise 4.1:2. Let G be the free group on two generators x and y, and
n a positive integer. Show that the normal subgroup of G generated by
xn and y is generated as a subgroup by xn and {xi y x−i | 0 ≤ i < n},
and is in fact a free group on this (n + 1)-element set. Also describe the
normal subgroup we get if we let n = 0.

4.2. Imposing relations on a group. Quotient groups

Suppose next that we are given a group G, and are interested in homomor-
phisms of G into other groups, f : G → H, which make certain specified
pairs of elements fall together. That is, let us be given a family of pairs of
elements {(xi, yi) | i ∈ I} ⊆ |G| × |G| (perhaps only one pair, (x, y)) and
consider homomorphisms f from G into other groups, which satisfy

(4.2.1) (∀ i ∈ I) f(xi) = f(yi).

Note that given one homomorphism f : G → H with this property, we
can get more such homomorphisms G → K by forming composites g f of
f with arbitrary homomorphisms g : H → K. It would be nice to know
whether there exists one pair (H, f) which satisfies (4.2.1) and is universal
for this condition, in the sense that given any other pair (K, h) satisfying
it, there is a unique homomorphism g : H → K making the diagram below
commute. (In that diagram, “ ∀h . . . ” is short for, “For all homomorphisms
h : G → K such that (∀ i ∈ I) h(xi) = h(yi) ”, while “∃1 ” is a common
abbreviation for “there exists a unique”.)

G - H
f

Q
Q
Q
Q
Q
QQs

∃1 g∀h . . .

?

K

It is not hard to prove the existence of such a universal pair directly, either
by a “group-theoretic terms modulo an equivalence relation” construction,
as in §3.2, or by an “image in a big direct product” construction, analogous
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to that of §3.3. But let us look at the problem another way. Condition (4.2.1)
is clearly equivalent to

(4.2.2) (∀ i ∈ I) f(xi y
−1
i ) = e.

So we are looking for a universal homomorphism which annihilates (sends
to e) a certain family of elements of |G|. We know that the set of elements
annihilated by a group homomorphism is always a normal subgroup, so this
is equivalent to saying that f should annihilate the normal subgroup of
G generated by {xi y−1

i | i ∈ I}, referred to at the end of the preceding
section. And in fact, the pair (G/N, q), where N is this normal subgroup,
G/N is the quotient group, and q : G → G/N is the quotient map, has
precisely the universal property we want:

G - G/N
q

Q
Q
Q
Q
Q
QQs

∃1 g∀h . . .

?

K

So this quotient group is the solution to our problem.
If we had never seen the construction of the quotient of a group by a

normal subgroup, an approach like the above would lead to a motivation
of that construction. We would ask, “What do we know about a group H,
given that it has a homomorphism of G into it satisfying (4.2.1)?” We would
observe that H contains an image f(a) of each a ∈ G, and that two such
images are equal if they belong to the same coset of the normal subgroup
generated by the xi y

−1
i ’s. We would discover how the group operations must

act on these images-of-cosets, and conclude that this set of cosets, under these
operations, was a universal example of this situation.

Let us assume even a little more naiveté in

Exercise 4.2:1. Suppose in the above situation that we had not been so
astute, and had only noted that f(a) = f(b) must hold in H whenever
a b−1 lies in the subgroup generated by {xiy−1

i }. Attempt to describe the
group operations on the set of equivalence classes under this relation, show
where this description fails to be well-defined, and show how this “failure”
could lead us to discover the normality condition needed.

The construction we have described is called imposing the relations xi = yi
(i ∈ I) on G. We can abbreviate the resulting group by G/(xi = yi | i ∈ I).

For the next exercise, recall that if G is a group, then a G-set means a
pair S = (|S|, m), where |S| is a set and m : |G| × |S| → |S| is a map,
which we shall abbreviate by writing m(g, s) = g s, satisfying
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(4.2.3)
(∀ s ∈ |S|, g, g′ ∈ |G|) g (g′s) = (g g′) s,

(∀ s ∈ |S|) e s = s;

in other words, a set on which G acts by permutations [33, §I.5], [31, §II.4]
[28, §1.7]. (We remark that this structure on the set |S| can be described in
two other ways: as a homomorphism from G to the group of permutations
of |S|, and alternatively, as a system of unary operations tg on |S|, one for
each g ∈ |G|, satisfying identities corresponding to all the relations holding
in G.)

A homomorphism S → S′ of G-sets (for a fixed group G) means a map
a : |S| → |S′| satisfying

(4.2.4) (∀ s ∈ |S|, g ∈ |G|) a (g s) = g a (s).

If H is a subgroup of the group G, let |G/H| denote the set of left cosets
of H in G. We shall write a typical left coset as [g] = gH. Then |G/H| can
be made the underlying set of a left G-set G/H, by defining g [g′] = [g g′].

Exercise 4.2:2. Let H be any subgroup of G. Find a universal property
characterizing the pair (G/H, [e]). In particular, what form does this uni-
versal mapping property take in the case where H = x−1

i yi | i ∈ I for
some set {(xi, yi) | i ∈ I} ⊆ |G| × |G| ?

With the concept of imposing relations on a group under our belts, we are
ready to consider

4.3. Groups presented by generators and relations

To start with a concrete example, suppose we are curious about groups G
containing two elements a and b satisfying the relation

(4.3.1) a b = b2a.

One may investigate the consequences of this equation with the help of the
group laws. What we would be investigating is, I claim, the structure of the
group with a universal pair of elements satisfying (4.3.1).

More generally, let X be a set of symbols (in the above example, X =
{a, b}), and let T be the set of all group-theoretic terms in the elements
of X. Then formal group-theoretic relations in the elements of X mean
formulae “ s = t ”, where s, t ∈ T. Thus, given any set R ⊆ T × T of
pairs (s, t) of terms, we may consider groups H with X-tuples of elements
v : X → |H| satisfying the corresponding set of relations

(4.3.2) (∀ (s, t) ∈ R) sv = tv.
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(So (4.3.1) is the case of (4.3.2) where X = {a, b} and R is the singleton
{(a b, b2a)}.) In this situation, we have

Proposition 4.3.3. Let X be a set, T the set of all group-theoretic terms in
X, and R a subset of T×T. Then there exists a universal example of a group
with an X-tuple of elements satisfying the relations “ s = t ” ((s, t) ∈ R).
I.e., there exists a pair (G, u), where G is a group, and u a map X → |G|
such that

(∀ (s, t) ∈ R) su = tu,

and such that for any group H, and any X-tuple v of elements of H sat-
isfying (4.3.2), there exists a unique homomorphism f : G → H satisfying
v = f u (in other words, having the property that the X-tuple v of elements
of H is the image under f of the X-tuple u of elements of G).

X - |G|u

Q
Q
Q
Q
QQs

∀ v . . .
?
|H|

G

?

∃1 f

H

Further, the pair (G, u) is determined up to canonical isomorphism by
these properties, and the group G is generated by u(X).

Three Methods of Proof. Clearly, two methods that we may use are the con-
structions of §3.2 and §3.3, applied essentially word-for-word, with the further
condition (4.3.2) added to the group axioms throughout. (Note that unlike
(3.2.1)-(3.2.8), the set of equations (4.3.2) involves no universal quantifica-
tion over T ; we only require the relations in R to hold for the particular
X-tuple v of elements of each group H.)

However, we can now, alternatively, get the pair (G, u) with less work.
Let (F, uF ) be the free group on X, let N be the normal subgroup of F
generated by {suF t−1

uF | (s, t) ∈ R}, i.e., by the set of elements of F that we
want to annihilate. Let G = F/N, let q : F → F/N be the canonical map,
and let u = q uF . That (G, u) has the desired universal property follows
immediately from the universal properties of free groups and quotient groups.

X -

-

∀ v . . .

uF |F | -

@
@
@@R

q
|G|

?
|H|

F -

@
@
@
@R

q
G

?

∃1 f

H

Having constructed (G, u) by any of these three methods, let us now
prove the final sentence of the proposition. If (G′, u′) is another pair with the
same universal property, then by the universal property of G there exists a
homomorphism i : G→ G′ such that iu = u′, and by the universal property
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of G′, an i′ : G′ → G such that i′u′ = u. These are inverses of one another;
indeed, note that i′i u = i′u′ = u, hence by the uniqueness condition in
the universal property of G, i′i equals the identity map of G; by a like
argument, ii′ is the identity of G′, so i is invertible, yielding the asserted
isomorphism.

That G is generated by u(X) can be seen directly from each of our
constructions, but let us also show from the universal property that this
must be so. Consider the subgroup u(X) of G generated by u(X). The
universal property of G gives a homomorphism j : G → u(X) which is
the identity on elements of u(X). Following it by the inclusion of u(X)
in G yields an endomorphism of G which agrees with the identity map on
u(X), and so, by the uniqueness assertion in the universal property, is the
identity. So the inclusion of u(X) in G is surjective, as desired. ut

Though we implied above that the advantage of getting our construction
by combining two known constructions was that this was less work than
constructing it from scratch, another general advantage of that approach,
which we shall see in later sections, is that we can apply results about the
known constructions to the new one.

The group G of the preceding proposition is called the group presented
by the generators X and relations R. A common notation for this is

(4.3.4) G = X | R .

For example, the universal group with a pair of elements satisfying (4.3.1)
would be written

a, b | ab = b2a .

In a group presented by generators and relations (4.3.4), one often uses the
same symbols for the elements of X and their images in |G|, even if the map
u is not one-to-one. For instance, from the well-known lemma saying that if
an element η of a group (or monoid) has both a left inverse ξ and a right
inverse ζ, then ξ = ζ, it follows that in the group x, y, z | x y = e = y z ,
one has u(x) = u(z). Unless there is a special need to be more precise, we
may express this by saying “in x, y, z | x y = e = y z , one has x = z. ”

Given a group G, one can find a family of generators for G, and then
take a family of relations which imply all the group-theoretic relations sat-
isfied in G by those generators; in other words, an expression for G in the
form (4.3.4). This is called a presentation of the group G.

Recall that the concept of group-theoretic term was introduced both for
the consideration of what relations hold among all families of elements of all
groups, and to write specific relations that hold among particular families of
elements in particular groups. For the purpose of discussing identities hold-
ing in all groups, it was necessary to distinguish between expressions such as
(x y)−1 and y−1x−1, between (x y) z and x (y z), etc.. But in considering
relations in particular groups we can generally take for granted the group
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identities, i.e., not distinguish pairs of expressions that have the same eval-
uations in all groups. For example, in (4.3.1), the right hand side could be
replaced by b (b a) without changing the effect of the condition. Hence in
considering groups presented by generators and relations, one often consid-
ers the relations to be given by pairs, not of terms, but of their equivalence
classes under the relation of having equal values in all groups – in other words
pairs (s, t) ∈ |F | × |F |, where F is the free group on X. For such (s, t),
an X-tuple v of elements of a group G is considered to “satisfy s = t ” if
h(s) = h(t), for h the homomorphism F → G induced by v as in Defini-
tion 3.1.3.

Whether s and t are group-theoretic terms as in Proposition 4.3.3, or
elements of a free group as in the above paragraph, we should note that
there is a certain abuse of language in saying that a family v of elements of
a group G “satisfies the relation s = t ”, and in writing equations “ s = t ”
in presentations of groups. What we mean in such cases is that a certain
equation obtained from the pair (s, t) and the X-tuple v holds in G; but
the equality s = t between terms or free group elements is itself generally
false! As with other convenient but imprecise usages, once we are conscious of
its impreciseness, we may use it, but should be ready to frame more precise
statements when imprecision could lead to confusion (for instance, if we also
want to discuss which of certain terms, or elements of a free group, are really
equal).

We have noted that a relation (s, t) is satisfied by an X-tuple v of el-
ements of a group G if and only if (s t−1)v = e in G; in other words, if
and only if the relation (s t−1, e) is satisfied by v. Thus, every presenta-
tion of a group can be reduced to one in which the relations occurring all
have the form (r, e) for terms (or free-group elements) r. The elements r
are then called the relators in the presentation, and in expressing the group,
one may list relators rather than relations. E.g., the group we wrote earlier
as a, b | ab = b2a would, in this notation, be written a, b | aba−1b−2 .
However, I will stick to equational notation in these notes.

Exercise 4.3:1. Show that the three groups described below are isomorphic
(as groups, ignoring the maps “X → |G| ” etc. coming from the presenta-
tions of the first two).

(a) G = a, b | a2 = e, ab = b−1a .

(b) H = s, t | s2 = t2 = e .
(c) D = {distance-preserving permutations of the set Z}, i.e., the group
consisting of all translation-maps n 7→ n + c (c ∈ Z) and all reflection-
maps n 7→ −n+ d (d ∈ Z).

The universal property of a group presented by generators and relations
is extremely useful in considerations such as that of

Exercise 4.3:2. Find all endomorphisms of the group of the preceding ex-
ercise. Describe the structure of the monoid of these endomorphisms.
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Returning to the example with which we started this section –

Exercise 4.3:3. Find a normal form or other convenient description for the
group presented by two generators a, b and the one relation (4.3.1): a b =
b2a.

The following question, suggested by a member of the class some years
ago, is harder, but has a nice solution:

Exercise 4.3:4. (D. Hickerson.) Do the same for a, b | a b = b2a2 .

Any group G can be presented by some system of generators and relations.
E.g., take |G| itself for generating set, and the multiplication table of G as
a set of relations. But it is often of interest to find concise presentations for
given groups. Note that the free group on a set X may be presented by the
generating set X and the empty set of relations!

Exercise 4.3:5. Suppose f(x, y) and g(y) are group-theoretic terms in two
and one variables respectively. What can you prove about the group with
presentation

w, x, y | w = f(x, y), x = g(y) ?

Generalize if you can.

Exercise 4.3:6. Consider the set Z×Z of “lattice points” in the plane. Let
G be the group of “symmetries” of this set, i.e., maps Z × Z → Z × Z
which preserve distances between points.
(i) Find a simple description of G. (Cf. the description of the group of
symmetries of the set Z in terms of translations and reflections in Exer-
cise 4.3:1(c).)
(ii) Find a simple presentation for G, and a normal form for elements of
G in terms of the generators in your presentation.

Exercise 4.3:7. Suppose G is a group of n elements. Then the observation
made above, on how to present any group by generators and relations,
yields upper bounds on the minimum numbers of generators and relations
needed to present G. Write down these bounds; then see to what extent
you can improve on them.

The above exercise shows that every finite group is finitely presented, i.e.,
has a presentation in terms of finitely many generators and finitely many
relations. Of course, there are also finitely presented groups which are infinite.
The next two exercises concern the property of finite presentability. (The first
is not difficult; the second requires some ingenuity, or experience with infinite
groups.)

Exercise 4.3:8. Show that if G is a group which has some finite presenta-
tion, and if x1, . . . , xn | R is any presentation of G using finitely many
generators, then there is a finite subset R0 ⊆ R such that x1, . . . , xn |
R0 is also a presentation of G.
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Exercise 4.3:9. Find a finitely generated group that is not finitely pre-
sented.

Another kind of question one can ask is typified by

Exercise 4.3:10. Is the group

x, y | x y x−1 = y2, y x y−1 = x2

trivial (= {e}) ? What about

x, y | x y x−1 = y2, y x y−1 = x3 ?

(If you prove either or both of these groups trivial, you should present
your calculation in a way that makes it clear, at each stage, which defining
relation you are applying, and to what part of what expression.)

For the group-theory buff, here are two harder, but still tractable examples.
In part (ii) below, note that Z is a common notation in group theory for the
infinite cyclic group. (The similarity to Z as a symbol for the integers is a
coincidence: The latter is based on German Zahl, meaning “number” while the
group-theoretic symbol is based on on zyklisch, meaning “cyclic”. Although
the additive group of integers is an infinite cyclic group, a group denoted Z
can either be written additively, or multiplicatively, e.g. as {xi | i ∈ Z}.)
The finite cyclic group of order n is likewise denoted Zn.

Exercise 4.3:11. (J. Simon [116].)

(i) Is either of the groups a, b | (b−1a)4 a−3 = e = b10 (b−1a)−3 , or
a, b | (b a−1)−3a−2 = e = b9 (b a−1)4 trivial?

(ii) In the group a, b | b a−4 b a b−1a = e , is the subgroup generated by
b a (b−1a)2 and a3 b−1 isomorphic to Z × Z ?

Suppose G is a group with presentation X | R . An interesting conse-
quence of the universal property characterizing G in Proposition 4.3.3 is that
for any group H, the set of homomorphisms Hom(G, H) is in natural one-
to-one correspondence with the set of X-tuples of elements of H satisfying
the relations R.

For instance, if n is a positive integer, and we write Zn = x | xn = e
for the cyclic group of order n, then we see that for any group H, we have
a natural bijection between Hom(Zn, H) and {a ∈ |H| | an = e}, each a in
the latter set corresponding to the unique homomorphism Zn → H carrying
x to a. (Terminological note: a group element a ∈ |H| which satisfies an = e
is said to have exponent n. This is equivalent to its having order dividing
n.)

Similarly, one finds that x, y | x y = y x is isomorphic to Z ×Z, hence
Hom(Z × Z, H) corresponds to the set of all ordered pairs of commuting
elements of H.

Thus, presentations of groups by generators and relations provide a bridge
between the internal structure of groups, and their “external” behavior under
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homomorphisms. This will be particularly valuable when we turn to category
theory, which treats mathematical objects in terms of the homomorphisms
among them.

The last exercise of this section describes a very interesting group, though
most of its striking properties cannot be given here.

Exercise 4.3:12. Let G = x, y | y−1x2y = x−2, x−1y2x = y−2 .
(i) Find a normal form or other convenient description for elements of G.
Verify from this description that G has no nonidentity elements of finite
order.
(ii) Calling the group characterized in several ways in Exercise 4.3:1 “D ”,
show that G has exactly three normal subgroups N such that G/N ∼= D,
and that the intersection of these three subgroups is {e}.
(iii) It follows from (ii) above that G can be identified with a subgroup
of D×D×D. Give a criterion for an element of D×D×D to lie in this
subgroup, and prove directly from this criterion that no element of this
subgroup has finite order.

The study of groups presented by generators and relations is called Com-
binatorial Group Theory, and there are several books with that title. An
interesting text which assumes only an undergraduate background, but goes
deep into the techniques of the subject, is [32]. There is also a web-page on
the area, [149], including a list of open questions.

Though group presentations often yield groups for which a normal form
can be found, it has been proved by Novikov, Boone and Britton that there
exist finitely presented groups G such that no algorithm can decide whether
an arbitrary pair of terms of G represent the same element. A proof of this
result is given in the last chapter of [34].

4.4. Abelian groups, free abelian groups, and
abelianizations

An abelian group is a group A satisfying the further identity

(∀x, y ∈ |A|) x y = y x.

The discussion of §3.1 carries over without essential change and gives us
the concept of a free abelian group (F, u) on a set X; the method of §3.2
establishes the existence of such groups by constructing them as quotients
of sets T of terms by appropriate equivalence relations, and the method
of §3.3 yields an alternative construction as subgroups of direct products of
large enough families of abelian groups. We may clearly also obtain the free
abelian group on a set X as the group presented by the generating set X
and the relations s t = t s, where s and t range over all elements of T.
This big set of relations is easily shown to be equivalent, for any X-tuple of
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elements of any group, to the smaller family x y = y x (x, y ∈ X); so the
free abelian group on X may be presented as

X | x y = y x (x, y ∈ X) .

To investigate the structure of free abelian groups, let us consider, say,
three elements a, b, c of an arbitrary abelian group A, and look at elements
g ∈ A that can be obtained from these by group-theoretic operations. We
know from §3.4 that any such g may be written either as e, or as a product of
the elements a, a−1, b, b−1, c, c−1. We can now use the commutativity of A
to rearrange this product so that it begins with all factors a (if any), followed
by all factors a−1 (if any), then all factors b (if any), etc.. Now performing
cancellations if both a and a−1 occur, or both b and b−1 occur, or both c
and c−1 occur, we can reduce g to an expression ai bj ck, where i, j and
k are integers (positive, negative, or 0; exponentiation by negative integers
and by 0 being defined by the usual conventions). Let us call the set of such
expressions Tab-red, and define composition, inverse, and an identity element
on this set by

(ai bj ck)� (ai
′
bj
′
ck
′
) = ai+i

′
bj+j

′
ck+k′ ,(4.4.1)

(ai bj ck)(−) = a−ib−jc−k,(4.4.2)

e = a0 b0 c0.(4.4.3)

Note that � and (−) are here different operations from those represented

by the same symbols in §3.4, but that the idea is as in that section; in
particular, it is clear that for any map v of {a, b, c} into an abelian group,
one has (s · t)v = (s � t)v and (s−1)v = (s(−))v. It is now easy to verify
that under these operations, Tab-red itself forms an abelian group F. This
verification does not require any analog of “van der Waerden’s trick” (§3.4);
rather, the result follows from the known fact that the integers (which appear
as exponents) do form an abelian group under +, −, and 0.

It follows, as in §3.4, that this F is the free abelian group on {a, b, c},
and thus that the set Tab-red of terms ai bj ck is a normal form for elements
of the free abelian group on three generators.

The above normal form is certainly simpler than that of the free group on
{a, b, c}. Yet there is a curious way in which it is more complicated: It is
based on our choice to use alphabetic order on the generating set {a, b, c}.
Using different orderings, we get different normal forms, e.g., bj ck ai, etc.. If
we want to generalize our normal form to the free abelian group on a finite
set X without any particular structure, we must begin by ordering X, say
writing X = {x1, x2, . . . , xn}. Only then can we speak of “the set of all
expressions xi11 . . . xinn ”. If we want a normal form in the free abelian group
on an infinite set X, we must again choose a total ordering of X, and then
either talk about “formally infinite products with all but finitely many factors
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equal to e ”, or modify the normal form, say to “ e or xi(x) yi(y) . . . zi(z)

where x < y < · · · < z ∈ X, and all exponents shown are nonzero” (the last
two conditions to ensure uniqueness!)

We may be satisfied with one of these approaches, or we may prefer to
go to a slightly different kind of representation for F, which we discover as
follows: Note that if g is a member of the free abelian group F on X, then
for each x ∈ X, the exponent i(x) to which x appears in our normal forms
for g is the same for these various forms; only the position in which xi(x)

is written (and if i(x) = 0, whether it is written) changes from one normal
form to another. Clearly, any of our normal forms for g, and hence the ele-
ment g itself, is determined by the X-tuple of exponents (i(x))x∈X . So let
us “represent” g by this X-tuple; that is, identify F with a certain set of
integer-valued functions on X. It is easy to see that the group operations of
F correspond to componentwise addition of such X-tuples, componentwise
additive inverse, and the constant X-tuple 0; and that the X-tuple corre-
sponding to each generator x ∈ X is the function δx having value 1 at x
and 0 at all other elements y ∈ X. The X-tuples that correspond to mem-
bers of F are those which are nonzero at only finitely many components.
Thus we get the familiar description of the free abelian group on X as the
subgroup of ZX consisting of all functions having finite support in X. (The
support of a function f means {x | f(x) 6= 0}.)

Exercise 4.4:1. If X is infinite, it is clear that the whole group ZX is not
a free abelian group on X under the map x 7→ δx, since it is not generated
by the δx. Show that ZX is in fact not a free abelian group on any set of
generators. You may assume X countable if you wish.

(For further results on ZX and its subgroups when X is countably
infinite, see Specker [133]. Among other things, it is shown there that the
uncountable group ZX has only countably many homomorphisms into Z,
though its countable subgroup F clearly has uncountably many! It is also
shown that the subgroup of bounded functions on X is free abelian, on
uncountably many generators. This fact was generalized to not necessarily
countable X by Nöbeling [120]. For a simpler proof of this result, using
ring theory, see [44, §1].)

The concept of the abelian group presented by a system of generators and
relations may be formulated exactly like that of a group presented by gener-
ators and relations. It may also be constructed analogously: as the quotient
of the free abelian group on the given generators by the subgroup generated
by the relators s t−1 (we don’t have to say “normal subgroup” because nor-
mality is automatic for subgroups of abelian groups); or alternatively, as the
group presented by the given generators and relations, together with the ad-
ditional relations saying that all the generators commute with one another.

Suppose now that we start with an arbitrary group G, and impose rela-
tions saying that for all x, y ∈ |G|, x and y commute: x y = y x. That
is, we form the quotient of G by the normal subgroup generated by the el-
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ements (y x)−1(x y) = x−1y−1x y. As noted in the paragraph introducing
Exercise 3.4:2, these elements are called commutators, and often written

x−1y−1x y = [x, y].

(Another common notation is (x, y), but we will not use this, to avoid confu-
sion with ordered pairs.) The normal subgroup that these generate is called
the commutator subgroup, or derived subgroup of G, written [G, G], and
often abbreviated by group theorists to G′. The quotient group, Gab =
G/[G, G], is an abelian group with a homomorphism q of the given group
G into it which is universal among homomorphisms of G into abelian groups
A, the diagram for the universal property being

G - Gabq

Q
Q
Q
Q
Q
QQs

∃1 f∀ v

?
A .

This group Gab (or more precisely, the pair (Gab, q), or any isomorphic
pair) is called the abelianization or commutator factor group of G.

Suppose now that we write down any system of generators and relations
for a group, and compare the group G and the abelian group H that these
same generators and relations define. By the universal property of G, there
will exist a unique homomorphism r : G → H taking the generators of G
to the corresponding generators of H. It is easy to check that (H, r) has
the universal property characterizing the abelianization of G. So this gives
another way of describing abelianization. Note, as a consequence, that given
an arbitrary system of generators and group-theoretic relations, the group
these present will determine, up to natural isomorphism, the abelian group
that they present (but not vice versa).

Exercise 4.4:2. Find the structures of the abelianizations of the groups
presented in Exercises 4.3:1, 4.3:3, 4.3:4, 4.3:10, and 4.3:11(i). (This is
easier than determining the structures of the groups themselves, hence I
am giving as one exercise the abelianized versions of those many earlier
exercises.)

Exercise 4.4:3. Show that any group homomorphism f : G → H induces
a homomorphism of abelian groups fab: Gab → Hab. State precisely the
condition relating f and fab. Show that for a composite of group ho-
momorphisms, one has (f g)ab = fabgab. Deduce that for any group G,
there is a natural homomorphism of monoids, End(G) → End(Gab), and
a natural homomorphism of automorphism groups, Aut(G) → Aut(Gab).
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(Here End(G) denotes the set of endomorphisms of G, regarded as a
monoid under composition, while Aut(G) denotes the group of automor-
phisms of G, i.e., the group of invertible elements of End(G).)

Exercise 4.4:4. For G as in Exercises 4.3:1 and 4.3:2, is the natural homo-
morphism Aut(G)→ Aut(Gab) of the above exercise one-to-one?

Exercise 4.4:5. If H is a subgroup of G, what can be said about the
relation between Hab and Gab ? Same question if H is a homomorphic
image of G.

Exercise 4.4:6. Let K be a field, n a positive integer, and GL(n, K) the
group of invertible n×n matrices over K. Determine as much as you can
about the structure of GL(n, K)ab.

Exercise 4.4:7. If G is a group, will there exist a universal homomorphism
of G into a solvable group, G→ G solv ? What if G is assumed finite?

Does there exist a “free solvable group” on a set X, or some similar
construction?

Exercise 4.4:8. Show that the free abelian group on n generators cannot be
presented as a group by fewer than n generators and n(n−1)/2 relations.

4.5. The Burnside problem

In 1902, W. Burnside [64] asked whether a finitely generated group, all of
whose elements have finite order, must be finite. This problem was hard to
approach because, with nothing assumed about the values of the finite orders
of the elements, one had no place to begin a calculation. So Burnside also
posed this question under the stronger hypothesis that there be a common
finite bound on the orders of all elements of G.

The original question with no bound on the orders was suddenly answered
negatively in 1964, with a counterexample arising from the Golod-Shafarevich
construction [83]; there is a short and fairly self-contained presentation of this
material in the last chapter of [30]. In the opposite direction, Burnside himself
proved that if G is a finitely generated group of matrices over a field, and
all elements of G have finite order, then G is finite [65]. On the other hand,
his question is still open for finitely presented groups [150].

Turning to the question for a general group G with a common bound on
the orders of its elements, note that if m is such a bound, then m! is a
common exponent for these elements; while if n is a common exponent, it is
also a bound on their orders. So “there is a common bound on the orders of
all elements” is equivalent to “all elements have a common exponent”. The
latter condition is more convenient to study, since the statement that x has
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exponent n has the form of an equation. So for any positive integer n, one
defines the Burnside problem for exponent n to be the question of whether
every finitely generated group satisfying the identity

(4.5.1) (∀x) xn = e

is finite.
For n = 1, the answer is trivially yes, for n = 2 the same result is an easy

exercise, for n = 3 it is not very hard to show, and it has also been proved for
n = 4 and n = 6. On the other hand, it has been shown in recent decades
that the answer is negative for all odd n ≥ 665 [36], and for all n > 8000
[111] (cf. [94]). This leaves a large but finite set of cases still open: all odd
values from 5 to 663, and all even values from 8 to 8000. We won’t go
into these hard group-theoretic problems here. But the concept of universal
constructions does allow us to understand the nature of the question better.
Call a group G an n-Burnside group if it satisfies (4.5.1). One may define
the free n-Burnside group on any set X by the obvious universal property,
and it will exist for the usual reasons. In particular, it can be presented, as a
group, by the generating set X, and the infinite family of relations equating
the n-th powers of all terms in the generators to e. I leave it to you to think
through the following relationships:

Exercise 4.5:1. Let n and r be positive integers.
(i) What implications can you prove among the following statements?

(a) Every n-Burnside group which can be generated by r elements is
finite.
(b) The free n-Burnside group on r generators is finite.
(c) The group x1, . . . , xr | xn1 = · · · = xnr = e is finite.
(d) There exists a finite r-generator group having a finite presentation
(a presentation by those r generators and finitely many relations) in
which all relators are n-th powers, x1, . . . , xr | wn1 = · · · = wns = e
(where each wi is a term in x1, . . . , xr. Cf. Exercises 4.3:7 and 4.3:8.)
(e) There exists an integer N such that all n-Burnside groups gener-
ated by r elements have order ≤ N.
(f) There exists an integer N such that all finite n-Burnside groups
generated by r elements have order ≤ N (“the restricted Burnside
problem”).

(ii) What implications can you prove among cases of statement (a) above
involving the same value of n but different values of r ? involving the same
value of r but different values of n ?
(iii) I described [111] above as proving a negative answer to the Burnside
problem for all n > 8000. Actually, the result proved there only applies to
those n > 8000 which are multiples of 16. Show, however, that this result,
and the corresponding result for odd n ≥ 665 proved in [36], together imply
the asserted result for all n > 8000.

Note that if for a given n and r we could find a normal form for the free
n-Burnside group on r generators, we would know whether (b) was true!
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But except when n or r is very small, such normal forms are not known.
For further discussion of these questions, see [37], [29, Chapter 18]. Recent
results, including a solution to the restricted Burnside problem ((f) above),
some negative results on the word problem for free Burnside groups, and the
result that for p > 1075 there exist infinite groups of exponent p all of whose
proper subgroups are cyclic (“Tarski Monsters”), can be found in [74], [101],
[117], [121], [140], [141], and references given in those works.

A group G is called residually finite if for any two elements x 6= y ∈ |G|,
there exists a homomorphism f of G into a finite group such that f(x) 6=
f(y).

Exercise 4.5:2. Investigate implications involving conditions (a)-(f) of the
preceding exercise, together with
(g) The free n-Burnside group on r generators is residually finite.

Exercise 4.5:3. (i) Restate Exercise 3.4:3 as a question about residual
finiteness (showing, of course, that your restatement is equivalent to the
original question).

(ii) If G is a group, does there exist a universal homomorphism G→ Grf ,
of G into a residually finite group?

4.6. Products and coproducts of groups

Let G and H be groups. Consider the following two situations:

(a) a group P given with a homomorphism pG : P → G and a homomor-
phism pH : P → H, and

(b) a group Q given with a homomorphism qG : G → Q, and a homomor-
phism qH : H → Q.

(Diagrams below.)

Note that if in situation (a) we choose a homomorphism a of any other
group P ′ into P, then P ′ also acquires homomorphisms into G and H,
namely pG a and pH a. Similarly, if in situation (b) we choose any homo-
morphism b of Q into a group Q′, then Q′ acquires homomorphisms b qG
and b qH of G and H into it:

P ′ -a P �
���

�:pG G

XXXXXzpH H

Q′-bQ

XXXXXz
qGG

��
���:
qHH

So we may ask whether there exists a universal example of a P with maps
into G and H, that is, a 3-tuple (P, pG, pH) such that for any group P ′,
every pair of maps p′G : P ′ → G and p′H : P ′ → H arises by composition of
pG and pH with a unique homomorphism a : P ′ → P ; and, dually, whether
there exists a universal example of a group Q with maps of G and H into it.
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In both cases, the answer is yes. The universal P is simply the direct
product group G × H, with its projection maps pG and pH onto the two
factors; the universal property is easy to verify. The universal Q, on the
other hand, can be constructed by generators and relations. It has to have
for each g ∈ |G| an element qG(g) – let us abbreviate this to g – and for

each h ∈ |H| an element qH(h) – call this h̃. So let us take for generators
a set of symbols

(4.6.1) {g, h̃ | g ∈ |G|, h ∈ |H|}.

The relations these must satisfy are those saying that qG and qH are homo-
morphisms:

(4.6.2) g g′ = gg′ (g, g′ ∈ |G|), h̃h̃′ = h̃h′ (h, h′ ∈ |H|).

It is immediate that the group presented by generators (4.6.1) and relations
(4.6.2) has the desired universal mapping property. (We might have supple-
mented (4.6.2) with the further relations eG = e, ẽH = e, g−1 = g −1,

h̃−1 = h̃−1. But these are implied by the relations listed, since, as is well
known, any set map between groups which preserves products also preserves
neutral elements and inverses.) More generally, if G is a group which can be
presented as X | R , and if, similarly, H = Y | S , then we may take for
generators of Q a disjoint union X t Y, and for relations the union of R
and S. For instance, if

G = Z3 = x | x3 = e and H = Z2 = x | x2 = e ,

then Q may be presented as

x, x′ | x3 = e, x′ 2 = e ,

with qG and qH determined by the conditions x 7→ x and x 7→ x′, respec-
tively. You should be able to verify the universal property of Q from this
presentation.

(If you are not familiar with the concept of a “disjoint union” X t Y
of two sets X and Y, I hope that the above context suggests the mean-
ing. Explicitly, it means the union of a bijective copy of X and a bijective
copy of Y, chosen to be disjoint. So, if X = {a, b, c}, Y = {b, c, d, e}
where a, b, c, d, e are all distinct, then their ordinary set-theoretic union
is the 5-element set X ∪ Y = {a, b, c, d, e}, but an example of a “disjoint
union” would be any set of the form X t Y = {a, b, c, b′, c′, d, e} where
a, b, c, b′, c′, d, e are distinct, given with the obvious maps taking X to the
3-element subset {a, b, c} of this set and Y to the disjoint 4-element subset
{b′, c′, d, e}. Though there is not a unique way of choosing a disjoint union of
two sets, the construction is unique in the ways we care about. E.g., note that
in the above example, any disjoint union of X and Y will have |X|+|Y | = 7
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elements. Hence one often speaks of “the” disjoint union. We will see, a few
sections from now, that disjoint union of sets is itself a universal construction
of set theory.)

To see for general G and H what the group determined by the above
universal property “looks like”, let us again think about an arbitrary group
Q with homomorphisms of G and H into it, abbreviated g 7→ g and h 7→ h̃.
The elements of Q which we can name in this situation are, of course, the
products

(4.6.3) x±1
n x±1

n−1 . . . x
±1
1 with xi ∈ {g, h̃ | g ∈ |G|, h ∈ |H|}, and

n ≥ 0.

(Notational remark: In §3.4, I generally kept n ≥ 1, and introduced “ e ” as
a separate kind of expression. Here I shall adopt the convenient convention
that the product of the empty (length 0) sequence of factors is e, so that the
case “ e ” may be absorbed in the general case.)

Now for any g ∈ |G| or h ∈ |H| we have noted that g −1 = g−1 and

h̃−1 = h̃−1 in Q; hence the inverse of any member of the generating set
{g, h̃ | g ∈ |G|, h ∈ |H|} is another member of that set. So we may simplify
any product (4.6.3) to one in which all exponents are +1, and so write it
without showing these exponents. We also know that e = ẽ = e, so wherever
instances of e or ẽ occur in such a product, we may drop them. Finally, if
two factors belonging to {g | g ∈ |G|} occur in immediate succession, the
relations (4.6.2) allow us to replace these by a single such factor, and, likewise,

we may do the same if there are two adjacent factors from {h̃ | h ∈ |H|}. So
the elements of Q that we can construct can all be reduced to the form

(4.6.4)

x1 . . . xn

where n ≥ 0, xi ∈ {g | g ∈ |G| − {e}} ∪ {h̃ | h ∈ |H| − {e}},
and no two successive x ’s come from the same set, {g | g ∈
|G| − {e}} or {h̃ | h ∈ |H| − {e}}.

We can express the product of two elements (4.6.4) as another such element,
by putting the sequences of factors together, and reducing the resulting ex-
pression to the above form as described above; likewise it is clear how to find
expressions of that form for inverses of elements (4.6.4), and for the element
e. In any particular group Q with homomorphisms of G and H into it,
there may be other elements than those expressed by (4.6.4), and there may
be some equalities among such products. But as far as we can see, there don’t
seem to be any cases left of two expressions (4.6.4) that must represent the
same element in every such group Q. If in fact there are none, then, as in
§3.4, the expressions (4.6.4) will correspond to the distinct elements of the
universal Q we are trying to describe, and thus will give a normal form for
the elements of this group.
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To show that there are no undiscovered necessary equalities, we can use
the same stratagem as in §3.4 – it was for this situation that van der Waerden
devised it!

Proposition 4.6.5 (van der Waerden [142]). Let G, H be groups, and
Q the group with a universal pair of homomorphisms G → Q, H → Q,
written g 7→ g, h 7→ h̃. Then every element of Q can be written uniquely in
the form (4.6.4).

Proof. Let us, as before, introduce an additional symbol a, and now denote
by A the set of all symbols

(4.6.6)
xn . . . x1 a, where x1, . . . , xn are as in (4.6.4) (the n = 0
case being interpreted as the bare symbol a).

We would like to describe actions of G and H on this set. It is clear what
these actions should be, but an explicit description is a bit messy, because of
the need to state separately the cases where the element of A on which we are
acting does or does not begin with an element of the group we are acting by,
and if it does, the cases where this beginning element is or is not the inverse
of the element by which we are acting. This messiness in the definition makes
still more messy the verification that the “actions” give homomorphisms of
G and of H into the group of permutations of A.

We shall get around these annoyances (which are in any case minor com-
pared with the difficulties of doing things without van der Waerden’s method)
by another trick. Let us describe a set AG which is in bijective correspon-
dence with A : For those elements b ∈ A which already begin with a symbol
g (g ∈ |G| − {e}), we let AG contain the same element b. For elements b
which do not, let the corresponding element of AG be the expression e b.
Thus every element of AG begins with a symbol g (g ∈ |G|), and we can
now describe the action of g′ ∈ |G| on AG as simply taking an element g c
to g′g c. It is trivial to verify that this is a homomorphism of G into the
group of permutations of AG. This action on AG now induces, in an obvious
way, an action on the bijectively related set A.

Likewise, an action of H on A can be defined, via an action on the
analogously constructed set AH .

Thus we have homomorphisms of both G and H into the permutation
group of A; this is equivalent to giving a homomorphism of the group Q
we are interested in into this group of permutations. Further, given any el-
ement (4.6.4) of Q, it is easy to see by induction on n that its image in
the group of permutations of A sends the “starting point” element a to
precisely xn . . . x1 a. Hence two distinct expressions (4.6.4) correspond to
elements of Q having distinct actions on a, hence these elements of Q are
themselves distinct. So not only can every element of Q be written in the
form (4.6.4), but distinct expressions (4.6.4) correspond to distinct elements
of Q, proving the proposition. ut
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For a concrete example, again let G = Z3 = x | x3 = e and let H =
Z2 = y | y2 = e . Then A will consist of strings such as a, y a, x y x2a,
etc.. (We can drop “ ” and “ ˜ ” here because |G| − {e} and |H| − {e}
use no symbols in common.) The element x of G = Z3 will act on this set

by 3-cycles, b
��3

x b

QQk x2 b
?, one for each string b not beginning with x, while

the element y of H = Z2 acts by transposing pairs of symbols b -� y b,
where b does not begin with y. If we want to see that say, y x y x2 and
x2 y x y have distinct actions on A, we simply note that the first sends the
symbol a to the symbol y x y x2a, while the second takes it to x2 y x y a. A
picture of the Q-set A, for this G and H, looks like some kind of seaweed:

qa
qya q q
q q q
q qq
qq qq
q
you

are here

q
q
q
q q q
q
q q q

q
qq
xa q qq q

q
q
q
q q q qq

x2a q
yx2a

q
q xyx2a

q qq q q q qq qq
qq q q q

(G acts by rotating

the triangles, H by

transposing pairs of

points marked q q.)

We recall that the universal group “P ” considered at the beginning of
this section turned out to be the direct product of G and H. Since Q is
characterized by a dual universal property, we shall call it the coproduct of
G and H.

Because of the similarity of the normal form of this construction to that
of free groups, group-theorists have long called it the free product of the
given groups. However, the constructions for sets, commutative rings, abelian
groups, topological spaces, etc. characterized by this same universal property
show a great diversity of forms, and have been known under different names
in the respective disciplines. The use of the term “coproduct”, introduced
by category theory (Chapter 7 below), unifies the terminology, and we shall
follow it. On the other hand, the “P ” constructions look very similar in all
these cases, and have generally all had the name “direct product”, which is
retained (shortened to “product”) by category theory.

In both our product and coproduct constructions, the pair of groups G and
H may be replaced by an arbitrary family (Gi)i∈I . The universal example of
a group P given with an I-tuple of maps pi : P → Gi is again the classical
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direct product
I
Gi with its I-tuple of projection maps. The coproduct

Q =
I
Gi, generated by the images of a universal family of maps Gi → Q

(i ∈ I) can be constructed, as above, using strings of nonidentity elements
from a disjoint union of the underlying sets of these groups, such that two
factors from the same group Gi never occur consecutively. The coproduct
symbol is, of course, the direct product symbol turned upside-down.

Exercise 4.6:1. If X is a set, then a coproduct of copies of the infinite
cyclic group Z, indexed by X,

X
Z, will be a free group on X. Show

this by universal properties, and describe the correspondence of normal
forms. Can you find any other families of groups whose coproduct is a free
group?

Exercise 4.6:2. Let us here (following group-theorists’ notation) write co-
products of finite families of groups as Q = G ∗H, Q = F ∗G ∗H, etc..
Prove that for any three groups F, G and H, one has (F ∗ G) ∗ H ∼=
F ∗ G ∗H ∼= F ∗ (G ∗H), using (a) universal properties, and (b) normal
forms.

Exercise 4.6:3. For any two groups G and H, show how to define natural
isomorphisms iG,H : G × H ∼= H × G, and jG,H : G ∗ H ∼= H ∗ G.
What form do these isomorphisms take when G = H ? (Describe them on
elements.)

It is sometimes said that “We may identify G×H with H ×G, and
G ∗ H with H ∗ G, by treating the isomorphisms iG,H and jG,H as
the identity, and identifying the corresponding group elements.” Is this
reasonable when G = H ?

Exercise 4.6:4. Show that in a coproduct group G ∗H, the only elements
of finite order are the conjugates of the images of elements of finite order
of G and H. (First step: Find how to determine, from the normal form of
an element of G ∗H, whether it is a conjugate of an element of G or H.)

Can you similarly describe all finite subgroups of G ∗H ?

There is a fact about the direct product group which one would not at
first expect from its universal property: It also has two natural maps into it:
fG : G→ G×H and fH : H → G×H, given by g 7→ (g, e) and h 7→ (e, h).
(Note that there are no analogous maps into a direct product of sets.) To
examine this phenomenon, we recall that the universal property of G × H
says that to map a group A into G×H is equivalent to giving a map A→ G
and a map A→ H. Looking at fG, we see that the two maps it corresponds
to are the identity map idG : G→ G, defined by idG(g) = g, and the trivial
map e : G→ H, defined by e(g) = e. The map fH is characterized similarly,
with the roles of G and H reversed.

The group G × H has, in fact, a second universal property, in terms of
this pair of maps. The 3-tuple (G×H, fG, fH) is universal among 3-tuples
(K, a, b) such that K is a group, a : G → K and b : H → K are homo-
morphisms, and the images in K of these homomorphisms centralize one
another:
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(∀ g ∈ |G|, h ∈ |H|) a(g) b(h) = b(h) a(g),

equivalently:
[a(G), b(H)] = {e}.

(The notation [−,−] for commutators of elements and subgroups of a group
was defined in the paragraph preceding Exercise 3.4:2.)

If P =
I
Gi is a direct product of arbitrarily many groups, one similarly

has natural maps fi : Gi → P, but if the index set I is infinite, the images
of the fi will not in general generate P, and it follows that P cannot
have the same universal property. But one finds that the subgroup P0 of
P generated by the images fi(Gi) (which consists of those elements of P
having only finitely many coordinates 6= e) is again a universal group with
maps of the Gi into it having images that centralize one another.

Exercise 4.6:5. (i) Prove the above new universal property of G×H.
(ii) Describe the map

m : G ∗H → G × H

which the universal property of G ∗ H associates to the above pair of
maps fG, fH , and deduce that this map m is surjective, and that its
kernel is the normal subgroup of G ∗ H generated by the commutators

[g, h̃] (g ∈ |G|, h ∈ |H|).
(iii) Give versions of the above results for products and coproducts of
possibly infinite families (Gi)i∈I .

One may wonder why commutativity suddenly came up like this, since the
original universal property by which we characterized G×H had nothing to
do with it. The following observation throws a little light on this. The set of
relations that will be satisfied in G×H by the images of elements of G and
H under the two maps fG and fH defined above will be the intersection
of the sets of relations satisfied by their images in K under a : G → K,
b : H → K, in the two cases

(4.6.7) K = G; a = idG, b = e,

(4.6.8) K = H; a = e, b = idH .

(Why?)
And what are such relations? Clearly a(g)b(h) = b(h)a(g) holds in each

case. The above second universal property of G×H is equivalent to saying
that no relations hold in both cases except these relations and their conse-
quences.

A coproduct group G∗H similarly has natural maps uG : G∗H → G and
uH : G ∗H → H, constructed from the identity maps of G and H and the
trivial maps between them; but uG and uH have no unexpected properties
that I know of.
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Exercise 4.6:6. For every group G, construct a map G → G × G and a
map G ∗ G → G using universal properties, and the identity map of G,
but not using the trivial map of G. Describe how these maps behave on
elements.

Exercise 4.6:7. Suppose (Gi)i∈I is a family of groups, and we wish to con-
sider groups G given with homomorphisms Gi → G such that the images
of certain pairs Gi, Gi′ commute, while no condition is imposed on the re-
maining pairs. To formalize this, let J ⊆ I×I be a symmetric antireflexive
relation on our index set I (antireflexive means (∀ i ∈ I) (i, i) /∈ J); and
let H be the universal group with homomorphisms ri : Gi → H (i ∈ I)
such that for (i, i′) ∈ J, [ri(Gi), ri′(Gi′)] = {e}.

Study the structure of this H, and obtain a normal form if possible.
You may assume the index set I finite if this helps.

4.7. Products and coproducts of abelian groups

Let A and B be abelian groups. Following the model of the preceding sec-
tion, we may look for abelian groups P and Q having universal pairs of
maps:

P �
���

�:pA A

XXXXXzpB B

Q

XXXXXz
qAA

���
��:

qBB

Again abelian groups with both these properties exist – but this time,
they turn out to be the same group, namely A × B ! (The reader should
verify both universal properties.) To look at this another way, if we construct
abelian groups P and Q with the universal properties of the direct product
and coproduct of A and B respectively, and then form the homomorphism
m : P → Q analogous to that of Exercise 4.6:5, this turns out to be an
isomorphism.

Note that though A × B is the universal abelian group with homomor-
phisms of A and B into it, this is not the same as the universal group with
homomorphisms of A and B into it – that group, A ∗ B, constructed in
the preceding section, will generally not be abelian when A and B are.
Thus, the coproduct of two abelian groups A and B as abelian groups is
generally not the same as their coproduct as groups. Rather, we can see by
comparing universal properties that the coproduct as abelian groups is the
abelianization of the coproduct as groups: A×B = (A ∗B)ab.

Hence, in using the coproduct symbol “ ”, we have to specify what kind
of coproduct we are talking about,

gp
Ai or

ab gp
Ai, unless this is clear

from context. On the other hand, a direct product of abelian groups as abelian
groups is the same as their direct product as groups.
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For a not necessarily finite family (Ai)i∈I of abelian groups, the coprod-
uct still embeds in the direct product under the map m . It can in fact be
described as the subgroup of that direct product group consisting of those
elements almost all of whose coordinates are e. When abelian groups are
written additively, this coproduct is generally called the “direct sum” of the
groups, and denoted

⊕
I Ai. In the case of two groups, this is written A⊕B,

which thus has the same meaning as A×B.
Notes on confused terminology: Some people extend the term “direct sum”

to mean “coproduct” in all contexts – groups, rings, etc.. Other writers, be-
cause of the form that “direct sum” has for finite families of abelian groups,
use the phrase “direct sum” as a synonym of “direct product”, even in the
case of infinite families of groups. The coproduct of an infinite family of
abelian groups is sometimes called their “restricted direct product” or “re-
stricted direct sum”, the direct product then being called the “complete direct
product” or “complete direct sum”. In these notes, we shall stick with the
terms “product” and “coproduct”, as defined above (except that we shall
often expand “product” to “direct product”, to avoid possible confusion with
meanings such as a product of elements under a multiplication).

What is special about abelian groups, that makes finite products and
coproducts come out the same; and why only finite products and coprod-
ucts? One may consider the key property to be the fact that homomor-
phisms of abelian groups can be added; i.e., that given two homomorphisms
f, g : A → B, the map f + g : A → B defined by (f + g)(a) = f(a) + g(a)
is again a homomorphism. (The corresponding statement is not true for non-
abelian groups.) Temporarily writing ∗ab gp for the coproduct of two abelian
groups, one finds, in fact, that the map m : G ∗ab gp H → G×H referred to
in the second paragraph of this section has an inverse, given by the sum

qG pG + qH pH : G × H → G ∗ab gp H,

hence it is an isomorphism, allowing us to identify the above two groups. For
coproducts of noncommutative groups, the corresponding map is not a group
homomorphism, while for coproducts of infinite families of abelian groups, no
analog of the above map can be constructed because one cannot in general
make sense of an infinite sum of homomorphisms. So it is only when the
coproduct is taken in the class of abelian groups, and the given family is
finite, that we get this identification.

Part (ii) of the next exercise concerns a subtle but interesting distinction.

Exercise 4.7:1. (i) Show that for any groups G and H one has (G ∗
H)ab ∼= (G×H)ab ∼= Gab ×Hab.
(ii) Given an infinite family of groups (Gi), is it similarly true that
(

gp
Gi)

ab ∼= ab gp
(Gab

i ) (i.e.,
⊕
Gab
i ), and that ( Gi)

ab ∼= (Gab
i ) ? If

one of these isomorphisms is not always true, can you establish any general
results on when it holds, and when it fails?
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4.8. Right and left universal properties

The universal property of direct products differs in a basic way from the other
universal properties we have looked at so far. In all other cases, we constructed
an object (e.g., a group) F with specified “additional structure” or conditions
(e.g., a map of a given set X into it) such that any instance of a structure
of that sort on any object A could be obtained by a unique homomorphism
from the universal object F to the object A. A direct product P = G×H
is an object with the opposite type of universal property: all groups with the
specified additional structure (a map into G, and a map into H) are obtained
by mapping arbitrary groups A into the universal example P. Thus, while
the free group on a set X, the abelianization of a group G, the coproduct of
two groups G and H, etc., can be thought of as “first” or diagrammatically
“leftmost” groups with given kinds of structure, the direct product G × H
is the “last” or “rightmost” group with maps into G and H. We shall refer
to these two types of conditions as “left” and “right” universal properties
respectively. (This terminology is based on thinking of arrows as going from
left to right, though it happens that in most of the diagrams in sections before
4.6, the arrow from the left universal object to the general object was drawn
downward.)

The philosophy of how to construct objects with properties of either kind
is in broad outline the same: Figure out as much information as possible
about an arbitrary object (not assumed universal) with the given sort of “ad-
ditional structure”, and see whether that information can itself be considered
as a description of an object. If it can, this object will in general turn out
to be universal for the given structure! In the case of “left universal” con-
structions (free groups, coproducts, etc.), this “information” means answers
to the question, “What elements do we know exist, and what equalities must
hold among them?” (cf. Remark 3.2.13). In the right universal case, on the
other hand, the corresponding question is, “Given an element of our object,
what data can one describe about it in terms of the additional structure?”

Let us illustrate this with the case of the direct product of groups. Given
groups G and H, consider any group P with specified homomorphisms pG,
pH into G and H respectively. What data can we find about an element
x of P using these maps? Obviously, we can get from x a pair of elements
(g, h) ∈ |G| × |H|, namely

g = pG(x) ∈ |G|, h = pH(x) ∈ |H|.

Can we get any more data? We can also obtain elements pG(x2), pH(x−1),
etc.; but these can be found by group operations from the elements g = pG(x)
and h = pH(x), so they give no new information about x. All right then, let
us agree to classify elements of P according to the pairs (g, h) ∈ |G| × |H|
which they determine.
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Now suppose x ∈ |P | gives the pair (g, h), and y gives the pair (g′, h′).
Can we find from these the pair given by x y ∈ |P | ? the pair given by x−1 ?
Clearly so: these will be (g g′, h h′), and (g−1, h−1) respectively. And we
can likewise write down the pair that e ∈ |P | yields: (eG, eH).

Very well, let us take the “data” by which we have classified elements
of our arbitrary P, namely the set of pairs (g, h) (g ∈ |G|, h ∈ |H|) –
together with the law of composition we have found for these pairs, namely
(g, h) · (g′, h′) = (g g′, h h′), the inverse operation (g, h) 7→ (g−1, h−1),
and the neutral element pair (eG, eH) – and ask whether this data forms a
group. It does! And, because of the way this group was constructed, it will
have homomorphisms into G and H, and we find it is universal for this
property. It is, of course, the product group G×H.

Here is a pair of examples we have not yet discussed. Suppose we are given
a homomorphism of groups

f : G → H.

Now consider

(a) homomorphisms a : A → G, from arbitrary groups A into G, whose
composites with f are the trivial homomorphism, i.e., which satisfy f a = e;
and

(b) homomorphisms b : H → B, from H into arbitrary groups B, whose
composites with f are the trivial homomorphism, i.e., which satisfy bf = e.

Given a homomorphism of the first sort, one can get further homomor-
phisms with the same property by composing with homomorphisms A′ → A,
for arbitrary groups A′; so one may look for a pair (A, a) with the right
universal property that every such pair (A′, a′) arises from (A, a) via a
unique homomorphism A′ → A. For (b), one would want a corresponding
left universal B.

To try to find the right-universal A, we ask: Given an arbitrary homo-
morphism A → G with f a = e as in (a), what data can we attach to any
element x ∈ |A| ? Its image g = a(x), certainly. This must be an element
which f carries to the neutral element, since f a = e; thus the set of pos-
sibilities is {g ∈ |G| | f(g) = e}. We find that this set forms a group (with
a map into G, namely the inclusion) having the desired universal property.
This is the kernel of f.

We get the left universal example of (b) by familiar methods: Given arbi-
trary b : H → B with bf = e as in (b), B must contain an image h = b(h)
of each element h ∈ |H|. The fact that bf = e tells us that the images in B
of all elements of f(G) must be the neutral element, and we quickly discover
that the universal example is the quotient group B = H/N, where N is the
normal subgroup of H generated by f(G). This group H/N is called the
cokernel of the map f.
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Right universal constructions are not as conspicuous in algebra as left
universal constructions. When they occur, they are often fairly elementary
and familiar constructions (e.g., the direct product of two groups; the kernel
of a homomorphism). However, we shall see less trivial cases in later chapters;
some of the exercises below also give interesting examples.

Exercise 4.8:1. Let G be a group, and X a set. Show that there exist
(i) a G-set S with a universal map f : |S| → X, and
(ii) a G-set T with a universal map g : X → |T |,
and describe these G-sets. Begin by stating the universal properties explic-
itly.

(Hint to (i): Given any G-set S with a map f : |S| → X, an element
s ∈ |S| will determine not only an element x = f(s) ∈ X, but for every g ∈
|G| an element xg = f(g s) ∈ X. From the family of elements, (xg)g∈|G|
determined by an s ∈ S, can one describe the family determined by hs
for any h ∈ |G| ?)

One can carry the idea of the above exercise further in several directions:

(a) Given a group homomorphism ϕ : G1 → G2, note that from any G2-set
S one can get a G1-set Sϕ, by taking the same underlying set, and defining
for g ∈ |G1|, s ∈ |S|

g s = ϕ(g) s.

Now given a G1-set X, one can look for a G2-set S with a universal ho-
momorphism of G1-sets Sϕ → X, or for a G2-set T with a universal ho-
momorphism of G1-sets X → Tϕ. The above exercise corresponds to the
cases where G1 = {e}, since an {e}-set is essentially a set with no additional
structure. You should verify that for G1 = {e}, the universal questions just
mentioned reduce to those of that exercise.

(b) Instead of looking at sets S on which a group G acts by permutations,
one can consider abelian groups or vector spaces on which G acts by au-
tomorphisms. Such structures are called linear representations of G. In this
case, the universal constructions analogous to those of (a) above are still
possible, and they give two concepts of “induced representations” of a group,
important in modern group theory.

(c) The preceding point introduced extra structure on the sets on which our
groups act. One can also consider the situation where one’s groups G have
additional structure, say topological or measure-theoretic, and restrict atten-
tion to continuous, measurable, etc., G-actions on appropriately structured
spaces S. The versions of “induced representation” that one then obtains are
at the heart of the modern representation theory of topological groups.

Exercise 4.8:2. Let G be a group. As discussed in the last two sentences of
point (a) above, the ideas described there, applied to the unique homomor-
phism {e} → G, lead to the two universal constructions of Exercise 4.8:1.
Apply the same ideas to the unique homomorphism G→ {e} (again com-
bining them with the observation that an {e}-set is essentially the same as
a set) and describe the resulting constructions explicitly.
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Exercise 4.8:3. Formulate right universal properties analogous to the left
universal property defining free groups and the abelianization of a group,
and show that no constructions exist having these properties. What goes
wrong when we attempt to apply the general approach of this section?

Exercise 4.8:4. If X is a set and S a subset of X, then given any set
map f : Y → X, one gets a subset of Y, T = f−1(S). Does there exist a
universal pair (X, S), such that for any set Y, every subset T ⊆ Y is
induced in this way via a unique set map f : Y → X ?

Exercise 4.8:5. Let A, B be fixed sets. Suppose X is another set, and
f : A×X → B is a set map. Then for any set Y, and map m : Y → X, a
set map A× Y → B is induced. (How?) Does there exist, for each A and
B, a universal set X and map f as above, i.e., an X and an f such that
for any Y, all maps A× Y → B are induced by unique maps Y → X ?

Exercise 4.8:6. Let R be a ring with 1. (Commutative if you like. If you
consider not necessarily commutative R, then for “module” understand
“left module” below.) Before attempting each of the following questions,
formulate precisely the universal property desired.
(i) Given a set X, does there exist an R-module M with a universal set
map |M | → X ?
(ii) If M is an R-module, let Madd denote the underlying additive group
of M. Given an abelian group A, does there exist an R-module M with
a universal homomorphism of abelian groups Madd → A ?
(iii) and (iv): What about the left universal analogs of the above right
universal questions?

4.9. Tensor products

Let A, B and C be abelian groups, which we shall write additively. Then by
a bilinear map β : (A, B)→ C we shall mean a set map β : |A| × |B| → |C|
such that

(i) for each a ∈ |A|, the map β(a,−) : |B| → |C| (that is, the map taking
each element b ∈ |B| to β(a, b) ∈ |C|) is a linear map (homomorphism of
abelian groups) from B to C, and

(ii) for each b ∈ |B|, the map β(−, b) : |A| → |C| is a linear map from A
to C.

This is usually called a bilinear map “from A × B to C. ” (I usually
call it that myself.) However, that terminology misleads some students into
thinking that it has something to do with the group A×B. In fact, although
the definition of bilinear map involves the group structures of A and B, and
involves the set |A| × |B|, it has nothing to do with the structure of direct
product group that one can put on this set. This is illustrated by:
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Exercise 4.9:1. Show that for any abelian groups A, B, C, the only map
|A| × |B| → |C| which is both a linear map A × B → C, and a bilinear
map (A, B)→ C is the zero map.

As examples to keep in mind, take any ring R = (|R|, +, ·, −, 0, 1), and
let Radd denote the additive group (|R|, +, −, 0). Then the maps (x, y) 7→
x+ y and (x, y) 7→ x− y are group homomorphisms Radd × Radd → Radd,
but not bilinear maps; while the multiplication map (x, y) 7→ x·y is a bilinear
map (Radd, Radd)→ Radd, but not a group homomorphism Radd×Radd →
Radd.

I am speaking about abelian groups to keep the widest possible audience.
However, abelian groups can be regarded as Z-modules, and everything I
have said and will say about bilinear maps of abelian groups applies, more
generally, to bilinear maps of modules over an arbitrary commutative ring,
and in particular, of vector spaces over a field, with the adjustment that
“linear map” in (i) and (ii) above should be understood to mean module
homomorphism. (There are also extensions of these concepts to left modules,
right modules, and bimodules over noncommutative rings, which we will look
at with the help of a more sophisticated perspective in §10.8; but we won’t
worry about these till then.)

Given two abelian groups A and B, let us construct an abelian group
A ⊗ B (called the tensor product of A and B) as follows: We present it
using a set of generators which we write a⊗b, one for each a ∈ |A|, b ∈ |B|,
and defining relations which are precisely the conditions required to make
the map (a, b) 7→ a⊗ b bilinear; namely

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b,
(a, a′ ∈ |A|, b, b′ ∈ |B|).

a⊗ (b+ b′) = a⊗ b+ a⊗ b′.

(If we are working with R-modules, we also need the R-module relations

(r a)⊗ b = r(a⊗ b) = a⊗ (r b) (a ∈ |A|, b ∈ |B|, r ∈ |R|).

To indicate that one is referring to the tensor product as R-modules rather
than the tensor product as abelian groups, one often writes this A⊗R B.)

By construction, A ⊗ B will be an abelian group with a bilinear map
⊗: (A, B)→ A⊗B; and the universal property arising from its presentation
translates to say that the map ⊗ will be universal among bilinear maps on
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(A, B).

(A, B) - A⊗B
(a, b) 7→ a⊗ b

Q
Q
Q
Q
Q
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We can get a simpler presentation of this group if we are given presenta-
tions of A and B. To describe this, let us write our presentation of A as
a representation A = F (X)/ S , where F (X) is the free abelian group on
the set X of generators, and S is the subgroup of F (X) generated by
the family S of relators (elements that are required to go to 0). If A is so
presented, and likewise B is written as F (Y )/ T , then it is not hard to
show (and you may do so as the next exercise) that

(4.9.1) A⊗B ∼= F (X)⊗ F (Y )/ S ⊗ Y ∪X ⊗ T ,

where S⊗Y means {s⊗ y | s ∈ S, y ∈ Y } ⊆ |F (X)⊗F (Y )|, and X ⊗T is
defined analogously. One finds that F (X)⊗F (Y ) is a free abelian group on
its subset X⊗Y (more precisely: it is a free abelian group on X×Y via the
mapping (x, y) 7→ u(x)⊗ v(y), where u : X → |F (X)| and v : Y → |F (Y )|
are the universal maps associated with the free groups F (X) and F (Y )).
Hence (4.9.1) is equivalent to a presentation of A⊗B by the generating set
X × Y and a certain set of relations.

In the following exercises, unless the contrary is stated, you can, if you
wish, substitute “R-module” for “abelian group”, and prove the results for
this more general case.

Exercise 4.9:2. Prove (4.9.1), and the assertion that F (X)⊗ F (Y ) is free
abelian on X × Y. Can the “denominator” of (4.9.1) be replaced simply
by S ⊗ T ?

Exercise 4.9:3. (i) Given abelian groups A and C, is there a universal
pair (B, β), of an abelian group B and a bilinear map β : (A, B)→ C ?
(ii) Given an abelian group C, is there a universal 3-tuple (A, B, β),
such that A and B are abelian groups and β a bilinear map (A, B)→ C ?

Before answering each part, say what the universal property would be
and whether it would be a right or left universal property. Try the approach
suggested in the preceding section for finding such objects.

Why have we defined bilinear maps only for abelian groups? This is an-
swered by

Exercise 4.9:4. Let F, G and H be not necessarily abelian groups (so this
exercise has no generalization to R-modules), and suppose β : |F | × |G| →
|H| is a map such that
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(4.9.2)

(∀ f ∈ |F |) the map g 7→ β(f, g) is a group homomorphism
G→ H,
(∀ g ∈ |G|) the map f 7→ β(f, g) is a group homomorphism
F → H.

(i) Show that the subgroup H0 of H generated by the image of β is
abelian.
(ii) Deduce that the map β has a natural factorization

|F | × |G| −→ |F ab| × |Gab| β′−→ |H0| ↪−→ |H|,

where β′ is bilinear. Thus, the study of maps satisfying (4.9.2) is reduced
to the study of bilinear maps of abelian groups. This makes it easy to do
(iii) For general groups F and G, deduce a description of the group H
with a universal map β satisfying (4.9.2), in terms of tensor products of
abelian groups.
(iv) Deduce from (iii) or show directly that if from the definition of a ring
one drops the assumption the addition is commutative, this will in fact
follow from the other assumptions. (Recall that we assume throughout
that rings have 1.)

(Nonetheless, there are sometimes ways of generalizing a concept other
than the obvious ones, and some group-theorists have introduced a version of
the concept of bilinear map which does not collapse in the manner described
above in the noncommutative case; see [63] and papers referred to there.)

Although the image of every group homomorphism is a subgroup of the
codomain group, this is not true of images of bilinear maps:

Exercise 4.9:5. (i) Let U, V, W be finite-dimensional vector spaces over
a field, and consider composition of linear maps as a set map Hom(U, V )×
Hom(V, W )→ Hom(U, W ). Note that if we regard these hom-sets as ad-
ditive groups, this map is bilinear. Suppose V is one-dimensional; describe
the range of this composition map. Is it a subgroup of Hom(U, W ) ?
(ii) If A and B are abelian groups, does every element of A ⊗ B have
the form a⊗ b for some a ∈ |A|, b ∈ |B| ? (Prove your answer, of course.)

Another important property of tensor products is noted in

Exercise 4.9:6. If A, B and C are abelian groups, show that there is a
natural isomorphism Hom(A⊗B, C) ∼= Hom(A, Hom(B, C)).

State an analogous result holding for sets A, B, C and set maps.

A class of tensor products that is easy to describe is noted in

Exercise 4.9:7. Show that for any abelian group A and any nonnegative
integer n, one has A ⊗ Zn ∼= A/nA, where Zn denotes the cyclic group
of order n.

An interesting problem is
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Exercise 4.9:8. Investigate conditions on abelian groups (or R-modules) A
and B under which A⊗B = {0}.

Although I pointed out earlier that the condition that a set map β : |A| ×
|B| → |C| be a bilinear map (A, B)→ C is not defined in terms of the group
structure of the direct product group, A × B, there are certain relations
between these concepts:

Exercise 4.9:9. (i) Show that if A and B are abelian groups, and
β : (A, B) → C a bilinear map, then β, regarded as a map on under-
lying sets of groups, |A×B| → |C|, satisfies nontrivial identities. That is,
show that for some m and n one can find a derived n-ary operation s,
and n derived m-ary operations t1, . . . , tn, for abelian groups, such that

s(β(t1(x1, . . . , xm)), . . . , β(tn(x1, . . . , xm))) = 0

holds for all x1, . . . , xn ∈ |A×B|, with the t ’s evaluated using the group
structure of A × B; but such that the corresponding equation does not
hold for arbitrary maps β : |D| → |C| of underlying sets of abelian groups.
(ii) On the other hand, show that the bilinearity of β cannot be charac-
terized in terms of such identities; in other words, that there exist maps
β : |A| × |B| → |C| which are not bilinear maps (A, B) → C, but which
satisfy all identities that are satisfied by bilinear maps.
(iii) Can you find a list of identities which imply all identities satisfied by
bilinear maps β, in the sense described in (i)?

In subsequent sections, we shall occasionally refer again to bilinear maps.
In those situations, we may use either the notation “ (A, B)→ C ” introduced
here, or the more standard notation “A×B → C ”. (Of course, if all we have
to say is something like “this map |A| × |B| → |C| is bilinear”, we will not
need either notation.)

4.10. Monoids

So far, we have been moving within the realm of groups. It is time to broaden
our horizons. We begin with semigroups and monoids, objects which are very
much like groups in some ways, and quite different in others.

We recall that a semigroup means an ordered pair S = (|S|, ·) such that
|S| is a set and · a map |S| × |S| → |S| satisfying the associative identity,
while a monoid is a 3-tuple S = (|S|, ·, e) where |S| and · are as above, and
the third component, e, is a neutral element for the operation ·. As with
groups, the multiplication of semigroups and monoids is most often written
without the “ · ” when there is no need to be explicit. A homomorphism
of semigroups f : S → T means a set map f : |S| → |T | which respects
“ · ”; a homomorphism of monoids is required to respect neutral elements as
well: f(eS) = eT .
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(I have long considered the use of two unrelated terms, “semigroup” and
“monoid”, for these very closely related types of objects to be an unnecessary
proliferation of terminology. In most areas of mathematics, distinctions be-
tween related concepts are made by modifying phrases, e.g., “abelian group”
versus “not necessarily abelian group”, “ring with 1 ” versus “ring with-
out 1 ”, “manifold with boundary” versus “manifold without boundary”.
The author of a paper considering one of these concepts will generally begin
by setting conventions, such as “In this note, unless the contrary is stated,
rings will have unit element, and ring homomorphisms will be understood to
respect this element”. In papers of mine where monoids came up, I followed
the same principle for a long time, calling them “semigroups with neutral
element” or, after saying what this would mean, simply “semigroups”. I did
the same in these notes through 1995. However, it seems the term “monoid”
is here to stay, and I now follow standard usage, given above.)

The concept of monoid seems somewhat more basic than that of semi-
group. If X is any set, then the set of all maps X → X has a natural
monoid structure, with functional composition as the multiplication and the
identity map as the neutral element, and more generally, this is true of the set
of endomorphisms of any mathematical object. Sets whose natural structure
is one of semigroup and not of monoid tend to arise as subsidiary construc-
tions, when one considers those elements of a naturally occurring monoid
that satisfy some restriction which excludes the neutral element; e.g., the set
of maps X → X having finite range, or the set of even integers under mul-
tiplication. However, “semigroup” is the older of the two terms, so the study
of semigroups and monoids is called “semigroup theory”.

If (|S|, ·, e) is a monoid, one can, of course, look at the semigroup (|S|, ·),
while if (|S|, ·) is a semigroup, one can “adjoin a neutral element” and get a
monoid (|S|t{e}, ·, e). Thus, most results on monoids yield results on semi-
groups, and vice versa. To avoid repetitiveness, I will focus here on monoids,
and mention semigroups only when there is a contrast to be made.

The concept of a free monoid (F, u) on a set X is defined using the
expected universal property (diagram below).

X - |F |u
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Free monoids on all sets exist, by the general arguments of §3.2 and §3.3.
One also has a normal form in the free monoid on X, analogous to that
of §3.4 but without any negative exponents. That is, every element can be
written uniquely as a product,

xn . . . x1,
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where x1, . . . , xn ∈ |X|, and n ≥ 0 (the product of 0 factors being under-
stood to mean the neutral element). Multiplication is performed by juxtapos-
ing such products. “Van der Waerden’s trick” is not needed to establish this
normal form, since there is no cancellation to complicate a direct verification
of associativity. From this normal form and that of free groups, we see that
the free monoid on X is in fact isomorphic to the submonoid generated by
X within the free group on X.

If X is a set, and R a set of pairs of monoid terms in the elements of X,
there will likewise exist a monoid determined by “generators X and relations
R ”, i.e., a monoid S with a map u : X → |S| such that for each of the pairs
(s, t) ∈ R, one has su = tu in S, and which is universal for this property.
As in the group case, this S can be obtained by a direct construction, using
terms modulo identifications deducible from the monoid laws and the set of
relations R, or as a submonoid of a large direct product, or by taking the
free monoid F on the set X, and imposing the given relations.

But how does one “impose relations” on a monoid? In a group, we noted
that any relation x = y was equivalent to x y−1 = e, so to study relations
satisfied in a homomorphic image of a given group G, it sufficed to study
the set of elements of G that went to e; hence, the construction of imposing
relations reduced to that of dividing out by an appropriate normal subgroup.
But for monoids, the question of which elements fall together does not come
down to that of which elements go to e. For instance, let S be the free
monoid on {x, y}, and map S homomorphically to the free monoid on {x}
by sending both x and y to x. Note that any product of m x ’s and n y ’s
goes to xm+n under this map. So though the only element going to e is e
itself, the homomorphism is far from one-to-one.

So to study relations satisfied in the image of a monoid homomorphism
f : S → T, one should look at the whole set

Kf = {(s, t) | f(s) = f(t)} ⊆ |S| × |S|.

We note the following properties of Kf :

(4.10.1) (∀ s ∈ S) (s, s) ∈ Kf .

(4.10.2) (∀ s, t ∈ S) (s, t) ∈ Kf =⇒ (t, s) ∈ Kf .

(4.10.3) (∀ s, t, u ∈ S) (s, t) ∈ Kf , (t, u) ∈ Kf =⇒ (s, u) ∈ Kf .

(4.10.4) (∀ s, t, s′, t′ ∈ S) (s, t) ∈ Kf , (s′, t′) ∈ Kf =⇒ (ss′, tt′) ∈ Kf .

Here (4.10.1)-(4.10.3) say that Kf is an equivalence relation, and (4.10.4)
says that it “respects” the monoid operation.
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I claim, conversely, that if S is a monoid, and K ⊆ |S|× |S| is any subset
satisfying (4.10.1)-(4.10.4), then there exists a homomorphism f of S into
a monoid T such that Kf = K. Indeed, since K is an equivalence relation
on |S|, we may define |T | = |S|/K and let f : |S| → |T | be the map taking
each x ∈ |S| to its equivalence class [x] ∈ |T |. It is easy to see from (4.10.4)
that the formula [s] · [t] = [s t] defines an operation on |T |, and to verify
that this makes T = (|T |, ·, [e]) a monoid such that f is a homomorphism,
and Kf = K.

Exercise 4.10:1. (i) Compare this construction with that of §3.2. Why
did we need the conditions (3.2.1)-(3.2.3) in that construction, but not the
corresponding conditions here?
(ii) Given two monoid homomorphisms f : S → T and f ′ : S → T ′,
show that there exists an isomorphism between their images making the
diagram below commute if and only if Kf = Kf ′ .

S
�
��3

f(S) ⊆ T

Q
QQs
f ′(S) ⊆ T ′

∼=

Definition 4.10.5. For any monoid S, a binary relation K on |S| satisfying
(4.10.1)-(4.10.4) above is called a congruence on S. The equivalence class of
an element is called its congruence class under K; the monoid T constructed
above is called the quotient or factor monoid of S by K, written S/K.

Given a set R of pairs of elements of a monoid S, it is clear that one
can construct the least congruence K containing R by closing R under
four operations corresponding to conditions (4.10.1)-(4.10.4). The quotient
S/K has the correct universal property to be called the monoid obtained by
imposing the relations R on the monoid S. We shall sometimes denote this
S/R, or S/(s = t | (s, t) ∈ R), or, if the elements of R are listed as (si, ti)
(i ∈ I), as S/(si = ti | i ∈ I).

Returning to the point that led us to this discussion of congruences, by
imposing relations on a free monoid, we can get a monoid presented by any
family of generators X and family of relations R. Like the corresponding
construction for groups, this is written X | R . When there is danger
of ambiguity, the group- and monoid-constructions can be distinguished as
X | R gp and X | R md.

Exercise 4.10:2. Given congruences K and K ′ on a monoid S, will there
exist a least congruence containing both K and K ′ ? A greatest congru-
ence contained in both? Will set-theoretic union and intersection give such
congruences? If not, what useful descriptions can you find for them? Is
there a least congruence on S ? A greatest?

If K is a congruence on S, characterize congruences on T = S/K in
terms of congruences on S.
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Exercise 4.10:3. If S is a monoid and X a subset of |S|×|S|, will there be
a largest congruence contained in X ? If not, will this become true under
additional assumptions, such as that X is an equivalence relation on |S|,
or is the underlying set of a submonoid of S × S ?

Some general observations: One can speak similarly of congruences on
groups, rings, lattices, etc.. They are defined in each case by conditions
(4.10.1)-(4.10.3), plus a family of conditions analogous to (4.10.4), one for
each operation of positive arity on our algebras. The special fact that allowed
us to give a simpler treatment in the case of groups can now be reformulated,
“A congruence K on a group G is uniquely determined by the congruence
class of the neutral element e ∈ |G|, which can be any normal subgroup N of
G. The congruence classes of K are then the cosets of N in G. ” Hence in
group theory, rather than considering congruences, one almost always talks
about normal subgroups.

Since a ring R has an additive group structure, a congruence on a ring
will in particular be a congruence on its additive group, and hence will be
determined by the congruence class J of the additive neutral element 0.
The possibilities for J turn out to be precisely the ideals of R, so in ring
theory, one works with ideals rather than congruences. (However, historically,
the congruence relation “ a ≡ b (mod n) ” on the ring Z of integers was
talked about before one had the concept of the ideal nZ. Ring theorists still
sometimes write a ≡ b (mod J) rather than a− b ∈ J.)

On the other hand, on objects such as monoids and lattices, congruences
cannot be reduced to anything simpler, and are studied as such.

As usual, questions of the structure of monoids presented by generators
and relations must be tackled case by case. For example:

Exercise 4.10:4. Find a normal form or other description for the monoid
presented by two generators a and b and the one relation ab = e.

(Note that in the above and the next few exercises, letters a through d
denote general monoid elements, but e is always the neutral element. If you
prefer to write 1 instead of e in your solutions, feel free to do so, but point
out that you are using that notation.)

Exercise 4.10:5. (i) Same problem for generators a, b, c, d and relations

a b = a c = d c = e.

(ii) Same problem for generators a, b, c, d and relations

a b = a c = c d = e.

Exercise 4.10:6. Same problem for generators a, b, c and relations

a b = a c, b a = b c, c a = c b.
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Exercise 4.10:7. Same problem for generators a, b and the relation a b =
b2 a.

Exercise 4.10:8. (i) Find a normal form for the monoid presented by two
generators a, b, and the one relation abba = baab. (This is hard, but can
be done.)
(ii) (Victor Maltcev) Does there exist a normal form or other useful de-
scription for the monoid presented by generators a, b and the relation
abbab = baabb ? (I do not know the answer.)

One may define the direct product and the coproduct of two (or an arbitrary
family of) monoids, by the same universal properties as for groups,

S × T �
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��: S
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S ∗ T.
XXXXXz

S

���
��:

T

These turn out to have the same descriptions as for groups: The direct
product of an I-tuple of monoids consists of all I-tuples such that for each
i ∈ I, the i-th position is occupied by a member of the i-th monoid, with
operations defined componentwise; the coproduct consists of formal products
of strings of elements, other than the neutral element, taken from the given
monoids, such that no two successive factors come from the same monoid.
Van der Waerden’s method is used in establishing this normal form, since
multiplication of two such products can involve “cancellation” if any of the
given monoids have elements satisfying a b = e.

On monoids, as on groups, one has the construction of abelianization,
gotten by imposing the relations a b = b a for all a, b ∈ |S|.

One may also define the kernel and cokernel of a monoid homomorphism
f : S → S′ as for groups:

(4.10.6)
Ker f = submonoid of S

with underlying set {s ∈ |S| | f(s) = e},

(4.10.7) Cok f = S′/(f(s) = e | s ∈ |S|).

But we have seen that the structure of the image of a monoid homomorphism
f is not determined by the kernel of f, and it follows that not every homo-
morphic image T of a monoid S′ can be written as the cokernel (4.10.7) of a
homomorphism of another monoid S into S′ (e.g., the image of S′ under a
non-one-to-one homomorphism with trivial kernel cannot). Hence these con-
cepts of kernel and cokernel are not as important in the theory of monoids
as in group theory.

We have noted that for f a homomorphism of monoids, a better analog
of the group-theoretic concept of kernel is the congruence

(4.10.8) Kf = {(s, t) | f(s) = f(t)} ⊆ |S| × |S|.
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Note that Kf is the underlying set of a submonoid of S × S, which we
may call Cong f. Likewise, since to impose relations on a monoid we specify,
not that some elements should go to e, but that some pairs of elements
should fall together, it seems reasonable that a good generalization of the
cokernel concept should be, not an image q(S) universal for the condition
q f = e, where f is a given monoid homomorphism into S, but an image
q(S) universal for the condition q f = q g, for some pair of homomorphisms

(4.10.9) f, g : T → S.

Given f and g as above, q(S) may be constructed as the quotient of the
monoid S by the congruence generated by all pairs (f(t), g(t)) (t ∈ |T |).
Postponing till the end of this paragraph the question of what q(S) will be
called, let us note that there is a dual construction: Given f, g as in (4.10.9),
one can get a universal map p into T such that f p = g p. This will be given
by in inclusion in T of the submonoid whose underlying set is {t | f(t) =
g(t)}, called the equalizer of f and g. Dually, the q(S) constructed above
is called the coequalizer of f and g.

Exercise 4.10:9. Let f : S → T be a monoid homomorphism.
(i) Note that there is a natural pair of monoid homomorphisms from
Cong f to S. Characterize the 3-tuple formed by Cong f and these two
maps by a universal property.
(ii) What can be said of the equalizer and coequalizer of the above pair
of maps?
(iii) Can you construct from f a monoid CoCong f with a pair of maps
into it, having a dual universal property? If so, again, look at the equalizer
and coequalizer of this pair.

Exercise 4.10:10. The definition of equalizer can be applied to groups as
well as monoids. If G is a group, investigate which subgroups of G can
occur as equalizers of pairs of homomorphisms on G.

4.11. Groups to monoids and back again

If S is a monoid, we can get a group Sgp from S by “adjoining inverses” to
all its elements in a universal manner. Thus, Sgp is a group G having a map
q : |S| → |G| which respects products and neutral elements, and is universal
among all such maps from S to groups.

But what kind of a map, exactly, is q ? Since S = (|S|, ·, e) is a monoid
while Sgp = G = (|G|, ·, −1, e) is a group, we cannot call it a group homo-
morphism or a monoid homomorphism from S to G. But it is more than just
a set map, since it respects · and e. The answer is that q is a monoid homo-
morphism from S to the monoid (|G|, ·, e) (i.e., (|G|, µG, eG)). So for an
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arbitrary group H = (|H|, µH , ιH , eH), let us write Hmd for (|H|, µH , eH),
that is, “H considered as a monoid”. We can now state the universal property
of Sgp and q neatly: Sgp is a group G, and q is a monoid homomorphism
from S to Gmd, such that for any group H and any monoid homomorphism
a : S → Hmd, there exists a unique group homomorphism f : G → H such
that a = f q : S → Hmd.

S - Gmd
q

Q
Q
Q
Q
QQs

∀ a
?
Hmd

G

?

∃1 f

H

We shall call Sgp the universal enveloping group of the monoid S. It
may be presented as a group by taking a generator for each element of |S|,
and taking for defining relations the full multiplication table of S. More
generally, if we are given some presentation of S by generators and relations
as a monoid, G will be the group presented by the same generators and
relations.

Exercise 4.11:1. Show that a monoid S is “embeddable in a group” (mean-
ing embeddable in the monoid Hmd for some group H) if and only if the
universal map q : |S| → |Sgp| is one-to-one.

Exercise 4.11:2. Describe the universal enveloping groups of the monoids
of Exercises 4.10:4-4.10:7, and also of the monoid presented by generators
a, b, c and the one relation a b = a c.

The last part of the above exercise reveals one necessary condition for
the one-one-ness of the exercise preceding it to hold: The monoid S must
have the cancellation property x y = x y′ =⇒ y = y′. An interesting way of
obtaining a full set of necessary and sufficient conditions for the universal map
of a given monoid into a group to be one-to-one was found by A. I. Mal’cev
([113], [114]; also described in [7, §VII.3]).

Exercise 4.11:3. Let G be a group and S a submonoid of Gmd, which
generates G as a group. Observe that the inclusion of S in Gmd induces
a homomorphism Sgp → G. Will this in general be one-to-one? Onto?

If you have done Exercise 4.3:3, consider the case where G is the group
of that exercise, and S the submonoid generated by a and ba. Describe
the structures of S and of Sgp.

Suppose S is an abelian monoid. In this situation, important applica-
tions of the universal enveloping group construction have been made by
A. Grothendieck; the group Sgp for S an abelian monoid is therefore of-
ten called “the Grothendieck group K(S) ”. This group is also abelian, and
has a simple description: Using additive notation, and writing a for q(a),
one finds that every element of K(S) can be written a− b (a, b ∈ |S|), and
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that one has equality a− b = a′ − b′ between two such elements if and only
if there exists c ∈ |S| such that a+ b′+ c = a′+ b+ c [33, p. 40]. (If you have
seen the construction of the localization RS−1 of a commutative ring at a
multiplicative subset S, you will see that these constructions are closely re-
lated. In particular, the multiplicative group of nonzero elements of the field
of fractions F of a commutative integral domain R is the Grothendieck
group of the multiplicative monoid of nonzero elements of R.) The appli-
cation of this construction to the abelian monoid of isomorphism classes of
finite-dimensional vector bundles on a topological space X, made a monoid
under the operation corresponding to the construction “⊕ ” on vector bun-
dles, is the starting point of K-theory. But perhaps this idea has been pushed
too much – it is annoyingly predictable that when I mention to a fellow alge-
braist a monoid of isomorphism classes of modules under “⊕ ”, he or she will
say, “Oh, and then you take its Grothendieck group,” when in fact I wanted
to talk about the monoid itself.

Given a monoid S, there is also a right-universal way of obtaining a group:
The set of invertible elements (“units”) of S can be made a group U(S) in
an obvious way, and the inclusion i : U(S) → S is universal among “homo-
morphisms of groups into S ”, in the sense indicated in the diagram below.

Gmd

-U(S)md
i

Q
Q
Q
Q
QQs

∀h
?

S

G

?

∃1 f

U(S)

Exercise 4.11:4. Let S be the monoid defined by generators x, y, z and
relations x y z = e, z x y = e. Investigate the structures of S and its
abelianization Sab. Describe the groups U(S), U(S)ab, and U(Sab).

The two constructions that relate semigroups to monoids mentioned near
the beginning of the preceding section are related to each other in a way
paralleling the relation between ( )gp and ( )md :

Exercise 4.11:5. (i) If S = (|S|, ·) is a semigroup, describe how to extend
the multiplication “ · ” to |S| t {e} so that (|S| t {e}, ·, e) becomes a
monoid.

Let us call the monoid resulting from the above construction Smd,
while if S′ = (|S′|, ·, e) is a monoid, let us write S′sg for the semigroup
(|S′|, ·).
(ii) Show that given a semigroup S, the monoid Smd is universal among
monoids T given with semigroup homomorphisms S → Tsg.

(iii) Given a monoid S = (|S|, ·, e), what is the relation between the
monoids S and (Ssg)md ? Is there a natural homomorphism in either di-
rection between them?
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4.12. Associative and commutative rings

An associative ring R means a 6-tuple

R = (|R|, +, ·, −, 0, 1)

such that (|R|, +, −, 0) is an abelian group, (|R|, ·, 1) is a monoid, and the
monoid operation · : |R| × |R| → |R| is bilinear with respect to the additive
group structure. (Dropping the “ 1 ” from this definition, one gets a concept
of “ring without 1 ”, but we shall not consider these except in one exercise
near the end of this section.) A ring homomorphism is a map of underlying
sets respecting all the operations, including 1. (Some writers, although re-
quiring their rings to have 1, perversely allow “homomorphisms” that may
not preserve 1; but we shall stick to the above more sensible definition.) An
associative ring is called commutative if the multiplication · is so.

“Commutative associative ring” is usually abbreviated to “commutative
ring”. Depending on the focus of a given work, either the term “associative
ring” or the term “commutative ring” is usually shortened further to “ring”;
an author should always make clear what his or her usage will be. Here, I
shall generally shorten “associative ring” to “ring”; though I will sometimes
retain the word “associative” when I want to emphasize that commutativity
is not being assumed.

(When one deals with nonassociative rings – which we shall not do in
this chapter – it is the associativity condition on the multiplication that is
removed. Frequently one then considers in its place other identities, which
may involve both addition and the multiplication; for instance, the identities
of Lie rings, which we will introduce in §9.7, or of Jordan rings, mentioned at
the end of that section. In the definition of a given kind of nonassociative ring,
it may or may not be natural to have a 1 or other distinguished element. The
assumption that (|R|, +, −, 0) is an abelian group, and that multiplication
is bilinear with respect to this group structure, is made in all versions of ring
theory: commutative, associative and nonassociative. If weaker assumptions
are made, in particular, if this abelian group structure is replaced by a monoid
or semigroup structure, and/or if multiplication is only assumed linear in
one of its two arguments, the resulting structures are given names such as
“semiring”, “half-ring” or “near-ring”.)

If k is a fixed commutative ring, then k-modules form a natural generaliza-
tion of abelian groups, on which a concept of bilinear map is also defined, as
noted parenthetically in §4.9 above. Hence one can generalize the definition of
associative ring by replacing the abelian group structure by a k-module struc-
ture, and the bilinear map of abelian groups by a bilinear map of k-modules.
The result is the definition of an associative algebra over k. The reader famil-
iar with these concepts may note that everything I shall say below for rings
remains valid, mutatis mutandis, for k-algebras. (An associative k-algebra is
sometimes defined differently, as ring R given with a homomorphism of k
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into its center; but the two formulations are equivalent: Given a k-algebra
R in the present sense of a ring with appropriate k-module structure, the
map c 7→ c 1R (c ∈ k) is easily shown to be a homomorphism of k into
the center of R, while given a homomorphism g of k into the center of a
ring R, the definition c · r = g(c) r gives an appropriate module structure,
and these constructions are inverse to one another. For algebras without 1,
and for nonassociative algebras, this equivalence does not hold, and the “ring
with k-module structure” definition is then the useful one.)

The subject of universal constructions in ring theory is a vast one. In
this section and the next, we will mainly look at the analogs of some of the
constructions we have considered for groups and monoids.

First, free rings. Let us begin with the commutative case, since that is the
more familiar one. Suppose R is a commutative ring, and x, y, z are three
elements of R. Given any ring-theoretic combination of x, y and z, we can
use the distributive law of multiplication (i.e., bilinearity of ·) to expand this
as a sum of products of x, y and z (monomials) and additive inverses of
such products. Using the commutativity and associativity of multiplication,
we can write each monomial so that all factors x come first, followed by
all y ’s, followed by all z ’s. We can then use commutativity of addition
to bring together all occurrences of each monomial (arranging the distinct
monomials in some specified order), and finally combine occurrences of the
same monomial using integer coefficients. If we now consider all ring-theoretic
terms in symbols x, y and z, of the forms to which we have just shown we
can reduce any combination of elements x, y and z in any ring, we see, by
the same argument as in §3.4, that the set of these “reduced terms” should
give a normal form for the free commutative ring on three generators x,
y and z – if they form a commutative ring under the obvious operations.
It is, of course, well known that the set of such expressions does form a
commutative ring, called the polynomial ring in three indeterminates, and
written Z[x, y, z].

So polynomial rings over Z are free commutative rings. (More generally,
the free commutative k-algebra on a set X is the polynomial algebra k[X].)
The universal mapping property corresponds to the familiar operation of
substituting values for the indeterminates in a polynomial.

X - |Z[X]|
q

Q
Q
Q
Q
QQs

∀ a
?
|R |

Z[X]

?

∃1 f

R

When we drop the commutativity assumption and look at general asso-
ciative rings, the situation is similar, except that we cannot rewrite each
monomial so that “all x ’s come first” etc.. Thus we end up with linear com-
binations (with coefficients in Z) of arbitrary products of our generators. We
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claim that formal linear combinations of such products give a normal form
for elements of the free associative ring on the set X. This ring is written
Z X , and sometimes called the ring of noncommuting polynomials in X.

We were sketchy in talking about Z[X] because it is a well-known con-
struction, but let us stop and sort out just what we mean by the above
description of Z X , before looking for a way to prove it.

We could choose a particular way of arranging the parentheses in every
monomial term (say, nested to the right), a particular way of arranging the
different monomials, and of arranging the parentheses in every sum or differ-
ence, and so obtain a set of ring-theoretic terms to which every term could be
reduced, which we would prove constituted a normal form for the free ring.
But observe that the question of putting parentheses into monomial terms is
really just one of how to write elements in a free monoid, while the question
of expressing sums and differences is that of describing an element of the free
abelian group on a set of generators. Let us therefore assume that we have
chosen one or another way of calculating in free abelian groups – whether
using a normal form, or a representation by integer-valued functions with
only finitely many nonzero values, or whatever – and likewise that we have
chosen a way of calculating in free monoids. Then we can calculate in free
rings! A precise statement is

Lemma 4.12.1. Let Z X denote the free ring on the set X. Then the
additive group of Z X is a free abelian group on the set of products in
Z X of elements of X (including the empty product, 1), and this set of
products forms, under the multiplication of Z X , a free monoid on X.

Proof. Let S denote the free monoid on X, and F (|S|) the free abelian
group on the underlying set of this monoid. We shall begin by describing a
map |F (|S|)| → |Z X |.

If we write u for the universal map X → |Z X |, then by the univer-
sal property of free monoids, u induces a homomorphism u′ from the free
monoid S into the multiplicative monoid of Z X . Hence by the universal
property of free abelian groups, there exists a unique abelian group homo-
morphism u′′ from the free abelian group F (|S|) into the additive group
of Z X whose restriction to |S| is given by u′. Clearly the image of the
monoid S in Z X is closed under multiplication and contains the multi-
plicative neutral element; it is easy to deduce from this and the distributive
law that the image of the abelian group F (|S|) is closed under all the ring
operations. (Note that our considerations so far are valid with Z X and u
replaced by any ring R and set map X → |R|.) Since this image contains
X, and Z X is generated as a ring by X, the image is all of |Z X |, i.e.,
u′′ is surjective. (The above argument formalizes our observation that every
element of the subring generated by an X-tuple of elements of an arbitrary
ring R can be expressed as a linear combination of products of elements of
the given X-tuple.)
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We now wish to show that u′′ is one-to-one. To do this it will suffice
to show that there is some ring R with an X-tuple v of elements, such
that under the induced homomorphism Z X → R, any two elements of
Z X which are images of distinct elements of F (|S|) are mapped to distinct
elements of R.

How do we find such an R ? Van der Waerden’s trick for groups suggests
that we should obtain it from some natural representation of the desired free
ring. We noted in §3.4 that the group operations and identities arise as the op-
erations and identities of the permutations of a set, so for “representations”
of groups, we used actions on sets. The operations and identities for asso-
ciative rings arise as the natural structure on the set of all endomorphisms
of an abelian group A – one can compose such endomorphisms, and add
and subtract them, and under these operations they form a ring End(A). So
we should look for an appropriate family of endomorphisms of some abelian
group to represent Z X .

Let us, as in (3.4.5), introduce a symbol a; let Sa denote the set of
symbols xn . . . x1 a (xi ∈ X, n ≥ 0); and this time let us further write
F (Sa) for the free abelian group on this set Sa. For every x ∈ X, let
x : Sa → Sa denote the map carrying each symbol b ∈ Sa to the symbol
x b. This extends uniquely (by the universal property of free abelian groups)
to an additive group homomorphism x : F (Sa) → F (Sa). Thus (x )x∈X is
an X-tuple of elements of the associative ring End(F (Sa)).

Taking R = End(F (Sa)), the above X-tuple induces a homomorphism

f : Z X → R.

Now given any element of F (|S|), which we may write

(4.12.2) r =
∑
s∈|S| ns s (ns ∈ Z, almost all ns = 0),

we verify easily that the element f(u′′(r)) ∈ End(F (Sa)) carries a to∑
ns s a. Hence distinct elements (4.12.2) must give distinct elements

u′′(r) ∈ Z X , which proves the one-one-ness of u′′ and establishes the
lemma. ut

For many fascinating results and open problems on free algebras, see [72],
[73]. For a smaller dose, you could go to my paper [43], which answers the
question, “When do two elements of a free algebra commute?” That problem
is not of great importance itself, but it leads to the development of a number
of beautiful and useful ring-theoretic tools.

Exercise 4.12:1. Let α denote the automorphism of the polynomial ring
Z[x, y] which interchanges x and y. It is a standard result that the fixed
ring of α, i.e., {p ∈ Z[x, y] | α(p) = p}, can be described as the polynomial
ring in the two elements x+ y and x y.
(i) Consider analogously the automorphism β of the free associative ring
Z x, y interchanging x and y. Show that the fixed ring of β is generated
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by the elements x+y, x2+y2, x3+y3, . . . , and is a free ring on this infinite
set.
(ii) Observe that the homomorphism Z x, y → Z[x, y] taking x to x
and y to y must take the fixed ring of β into the fixed ring of α. Will it
take it onto the fixed ring of α ?
(iii) If G is the free group on generators x and y, and if γ is the automor-
phism interchanging x and y in this group, describe the fixed subgroup
of γ. Do the same for the free abelian group on x and y. (The analog
of (ii) for groups is trivial to answer when this has been done.)

The preceding description of the free ring on a set X involved the free
monoid on X, and we can see that our earlier description of the free commu-
tative ring (the polynomial ring) bears an analogous relationship to the free
commutative monoid. These connections between rings and monoids can be
explained in terms of another universal construction:

If R = (|R|, +, ·,−, 0, 1) is an associative ring, let Rmult denote its
multiplicative monoid, (|R|, ·, 1). Then for any monoid S, there will exist,
by the usual arguments, a ring R with a universal monoid homomorphism
u : S → Rmult.

S - Rmult
u

Q
Q
Q
Q
QQs

∀ v
?

R′mult

R

?

∃1 f

R′

To study this object, let us fix S, and consider any ring R′ with a homo-
morphism S → R′mult. The elements of R′ that we can capture using this
map are the linear combinations of images of elements of S, with integer
coefficients. (Why is there no need to mention products of such linear com-
binations?) One finds that the universal such ring R will have as additive
structure the free abelian group on |S|, with multiplicative structure deter-
mined by the condition that the given map |S| → |R| respect multiplication,
together with the bilinearity of multiplication. The result is called the monoid
ring on S, denoted ZS.

Given a presentation of S by generators and relations (written multiplica-
tively), a presentation of ZS as a ring will be given by the same generators
and relations. In particular, if we take for S the free monoid on a set X,
presented by the generating set X and no relations, then ZS will be pre-
sented as a ring by generators X and no relations, and so will be the free
ring on X, which is just what we saw in Lemma 4.12.1. If we take for S a
free abelian monoid, then S may be presented as a monoid by generators X
and relations x y = y x (x, y ∈ X), hence this is also a presentation of ZS
as a ring. Since commutativity of a set of generators of a ring is equivalent
to commutativity of the whole ring, the above presentation makes ZS the
free commutative ring on X.
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If S is a monoid, then a “linear action” or “representation” of S on an
abelian group A means a homomorphism of S into the multiplicative monoid
of the endomorphism ring End(A) of A. By the universal property of ZS,
this is equivalent to a ring homomorphism of ZS into End(A), which is
in turn equivalent to a structure of left ZS-module on the abelian group
A. In particular, to give an action of a group G by automorphisms on an
abelian group A corresponds to making A a left module over the group ring
ZG. Much of modern group theory revolves around linear actions, and hence
is closely connected with the properties of ZG (and more generally, with
group algebras k G where k is a commutative ring, so that left k G-modules
correspond to actions of G on k-modules). For some of the elementary theory,
see [33, Chapter XVIII]. A major work on group algebras is [122].

In the above discussion, we “factored” the construction of the free associa-
tive or commutative ring on a set X into two constructions: the free (respec-
tively, free abelian) monoid construction, which universally closes X under
a multiplication with a neutral element, and the monoid-ring construction,
which brings in an additive structure in a universal way. These constructions
can also be factored the other way around! Given a set X, we can first map
it into an abelian group in a universal way, getting the free abelian group
A on X, then form a ring (respectively a commutative ring) R with a uni-
versal additive group homomorphism A → Radd. For any abelian group A,
the associative ring with such a universal homomorphism is called the tensor
ring on A, because its additive group structure turns out to have the form

Z ⊕ A ⊕ (A⊗A) ⊕ (A⊗A⊗A) ⊕ . . . ,

though we shall not show this here. The corresponding universal commutative
ring is called the symmetric ring on A; its structure for general A is more
difficult to describe. For more details see [33, §§XVI.7, 8] or [57]. Thus, a free
associative ring can be described as the tensor ring on a free abelian group,
and a polynomial ring as the symmetric ring on a free abelian group.

On to other constructions. Suppose R is a commutative ring, and (fi, gi)
(i ∈ I) a family of pairs of elements of R. To impose the relations fi = gi
on R, one forms the factor-ring R/J, where J is the ideal generated by the
elements fi − gi. This ideal is often written (fi − gi)i∈I . Another common
notation, preferable because it is more explicit, is

∑
i∈I R (fi − gi), or, if we

set Y = {fi − gi | i ∈ I}, simply RY. It consists of all sums

(4.12.3)
∑
ri (fi − gi) (ri ∈ |R|, nonzero for only finitely many i ∈ I).

The construction of imposing relations on a noncommutative ring R is of
the same form, but with “ideal” taken to mean a two-sided ideal – an additive
subgroup of R closed under both left and right multiplication by members
of R. The two-sided ideal generated by {fi− gi | i ∈ I} is also often written
(fi−gi)i∈I , and again there is a more expressive notation,

∑
i∈I R (fi−gi)R,
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or RY R. This ideal consists of all sums of products of the form r (fi− gi) r′
(i ∈ I, r, r′ ∈ R). Note, however, that in the noncommutative case, it is not
in general enough to have, as in (4.12.3), one such summand for each i ∈ I.
For instance, in Z x, y , the ideal generated by the one element x contains
the element x y + y x, which cannot be simplified to a single product r x r′.

Exercise 4.12:2. Let R be a commutative ring. Will there, in general, exist
a universal homomorphism of R into an integral domain R′ ? If not, can
you find conditions on R for such a homomorphism to exist? Suggestion:
Consider the cases R = Z, Z6, Z4.

Exercise 4.12:3. (i) Obtain a normal form for elements of the associative
ring A presented by two generators x, y, and one relation y x− x y = 1.
(ii) Let Z[x]add be the additive group of polynomials in one indeterminate
x. Show that there exists a homomorphism f of the ring A of part (i)
into the endomorphism ring of this abelian group, such that f(x) is the
operation of multiplying polynomials by x in Z[x], and f(y) the operation
of differentiating with respect to x. Is this homomorphism one-to-one?

The ring of the above example, or rather the corresponding algebra over a
field k, is called the Weyl algebra. It is of importance in quantum mechan-
ics, where multiplication of the wave-function of a particle by the coordinate
function x corresponds to measuring the particle’s x-coordinate, while dif-
ferentiating with respect to x corresponds to measuring its momentum in
the x-direction. The fact that these operators do not commute leads, via the
mysterious reasoning of quantum mechanics, to the impossibility of measur-
ing those two quantities simultaneously, the simplest case of the “Heisenberg
uncertainty principle”.

Direct products
I
Ri of associative rings or commutative rings turn out,

as expected, to be gotten by taking direct products of underlying sets, with
componentwise operations.

Exercise 4.12:4. (Andreas Dress)
(i) Find all subrings of Z×Z. (Remember: a subring must have the same
multiplicative neutral element 1. Try to formulate your description of each
such subring R as a necessary and sufficient condition for an arbitrary
(a, b) ∈ Z× Z to lie in |R|.)

A much harder problem is:
(ii) Is there a similar characterization of all subrings of Z× Z× Z ?

Exercise 4.12:5. Show that the commutative ring presented by one gener-
ator x, and one relation x2 = x, is isomorphic (as a ring) to the direct
product ring Z× Z.

Exercise 4.12:6. Given generators and relations for two rings, R and S,
show how to obtain generators and relations for R× S.

Exercise 4.12:7. Describe
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(i) the commutative ring A presented by one generator x, and one re-
lation 2x = 1, and
(ii) the commutative ring B presented by one generator x and two rela-
tions 4x = 2, 2x2 = x. (Note that both of these relations are implied by
the relation of (i).)

Your descriptions in parts (i) and (ii) should make it clear whether
these rings are isomorphic.
(iii) Show that each of these rings has the property that for any ring
R (commutative if you wish) there is at most one homomorphism of the
indicated ring (A, respectively B) into R.

Exercise 4.12:8. Suppose R is a ring whose underlying abelian group is
finitely generated. Show that as a ring, R is finitely presented. (You may
use the fact that every finitely generated abelian group is finitely pre-
sented.)

If you are comfortable with algebras over a commutative ring k, try
to generalize this result to algebras over some or all such k.

In discussing universal properties, I have neglected to mention some trivial
cases. Let me give these in the next two exercises. Even if you do not write
them up, think through the “ring” cases of parts (i) and (ii) of the next
exercise, since some later exercises use them.

Exercise 4.12:9. (i) Consider the free group, the free monoid, the free
associative ring, and the free commutative ring on the empty set of gener-
ators. Reformulate the universal properties of these objects in as simple a
form as possible. Display the group, monoid, ring, and commutative ring
characterized by these properties, if they exist.
(ii) State, similarly, the universal properties that would characterize the
product and coproduct of an empty family of groups, monoids, rings, or
commutative rings, and determine these objects, if any.
(iii) Give as simple as possible a system of defining generators and relations
for the rings Z and Z/nZ.

The next exercise concerns semigroups, and rings without neutral ele-
ments. Note that when we say “without 1 ” etc., this does not forbid the
existence of an element 1 satisfying (∀x) 1x = x = x1. It just means that
we don’t require the existence of such elements, and that when they exist, we
don’t give them a special place in the definition, or require homomorphisms
to respect them.

Exercise 4.12:10. Same as parts (i) and (ii) of the preceding exercise, but
for semigroups, and for rings without 1. Same for sets. Same for G-sets
for a fixed group G.

Exercise 4.12:11. Suppose that, as some (misguided) authors do, we re-
quired rings to have 1 but did not require ring homomorphisms to preserve
1. Show that under this definition, there would exist no free commutative
ring on one generator. (In fact, there wouldn’t be free rings on any positive
number of generators; but this case is enough to prove.)
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Now back to rings with 1, and homomorphisms preserving 1.

4.13. Coproducts and tensor products of rings

We have noted that the descriptions of coproducts vary from one sort of
algebraic object to another, so it will not be surprising to find that they have
different forms for commutative and noncommutative rings. Let us again start
with the commutative case.

Suppose S and T are fixed commutative rings, and we are given homo-
morphisms s 7→ s and t 7→ t̃ of these into a third commutative ring R.
What elements of R can we capture? Obviously, elements s (s ∈ |S|) and t̃
(t ∈ |T |). From these we can form products s t̃, and we can then form sums
of elements of all these sorts:

(4.13.1) s+ t̃+ s1t̃1 + · · ·+ snt̃n.

We don’t get more elements by multiplying such sums together, because a
product (s t̃ )(s′ t̃′) reduces to ss′ t̃t′. Let us also note that the lone sum-
mands s and t̃ in (4.13.1) can actually be written in the same form as the

other summands, because 1S = 1̃T = 1R, hence s = s 1̃T and t̃ = 1S t̃. So
the subring of R that we get is generated as an additive group by the image
of the map

(4.13.2) (s, t) 7→ s t̃

of |S|× |T | into |R|. If we look for equalities among sums of elements of this
form, we find

(s+ s′) t̃ = st̃ + s′ t̃, and s(t̃+ t′) = s t̃ + s t̃′,

in other words, relations saying that (4.13.2) is bilinear. These relations and
their consequences turn out to be all we can find, and one can show that
the universal R with ring homomorphisms of S and T into it, that is, the
coproduct of S and T as commutative rings, has the additive structure of
the tensor product of the additive groups of S and T. The elements that we
have written s and t̃ are, as the above discussion implies, s⊗1T and 1S⊗ t
respectively; the multiplication is determined by the formula

(4.13.3) (s⊗ t)(s′ ⊗ t′) = s s′ ⊗ t t′

which specifies how to multiply the additive generators of the tensor product
group. For a proof that this extends to a bilinear operation on all of S ⊗ T,
and that this operation makes the additive group S⊗T into a ring, see Lang
[33, §XVI.6]. (Note: Lang works in the context of algebras over a ring k, and
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he defines such an algebra as a homomorphism f of k into the center of
a ring R – what I prefer to call, for intuitive comprehensibility, a ring R
given with a homomorphism of k into its center; cf. parenthetical remark
near the beginning of §4.12 above. Thus, when he defines the coproduct of
two commutative k-algebras to be a certain map, look at the codomain of the
map to see the ring that he means. Or, instead of looking in Lang for this
construction, you might do Exercise 4.13:5 below, which gives a generalization
of this result.)

This coproduct construction is called the “tensor product of commutative
rings”.

Exercise 4.13:1. If m and n are integers, find the structure of the tensor
product ring (Z/mZ)⊗ (Z/nZ) by two methods:
(i) By constructing the tensor product of the abelian groups Zm and
Zn, and describing the multiplication characterized above.
(ii) By using the fact that a presentation of a coproduct can be obtained
by “putting together” presentations for the two given objects. (Cf. Exer-
cise 4.12:9.)

Exercise 4.13:2. Let Z[i] denote the ring of Gaussian integers (complex
numbers a + bi such that a and b are integers). This may be presented
as a commutative ring by one generator i, and one relation i2 = −1.
Examine the structures of the rings Z[i]⊗ (Z/pZ) ( p a prime). E.g., will
they be integral domains for all p ? For some p ?

The next two exercises concern tensor products of algebras over a field
k, for students familiar with this concept. Tensor products of this sort are
actually simpler to work with than the tensor products of rings described
above, because every algebra over a field k is free as a k-module (since every
k-vector-space has a basis), and tensor products of free modules are easily
described (cf. paragraph containing (4.9.1) above).

Exercise 4.13:3. Let K and L be extensions of a field k. A compositum
of K and L means a 3-tuple (E, f, g) where E is a field extension of k,
and f : K → E, g : L → E are k-algebra homomorphisms such that E
is generated by f(|K|) ∪ g(|L|) as a field (i.e., under the ring operations,
and the partial operation of multiplicative inverse).
(i) Suppose K and L are finite-dimensional over k, and we form their
tensor product algebra K⊗kL, which is a commutative k-algebra, but not
necessarily a field. Show that up to isomorphism, all the composita of K
and L over k are given by the factor rings (K ⊗k L)/P, for prime ideals
P ⊆ K⊗k L. (First write down what should be meant by an isomorphism
between composita of K and L.)
(ii) What if K and L are not assumed finite-dimensional?

Exercise 4.13:4. (i) Determine the structure of the tensor product C⊗R
C, where C is the field of complex numbers and R the field of real
numbers. In particular, can it be written as a nontrivial direct product
of R-algebras?
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(ii) Do the same for Q(21/3)⊗Q Q(21/3) .
(iii) Relate the above results to the preceding exercise.

You can carry this exercise much farther if you like – find a general descrip-
tion of a tensor product of a finite Galois extension with itself; then of two
arbitrary finite separable field extensions (by taking them to lie in a common
Galois extension, and considering the subgroups of the Galois group they cor-
respond to); then try some examples with inseparable extensions . . . . In fact,
one modern approach to the whole subject of Galois theory is via properties
of such tensor products. (E.g., see [109], starting around §11 (p. 105).)

If S and T are arbitrary (not necessarily commutative) associative rings,
one can still make the tensor product of the additive groups of S and T into
a ring with a multiplication satisfying (4.13.3). It is not hard to verify that
this will be universal among rings R given with homomorphisms f : S → R,
g : T → R such that all elements of f(S) commute with all elements of g(T ).
(Cf. the “second universal property” of the direct product of two groups,
end of §4.6 above. In fact, some early ring-theorists wrote S × T for what
we now denote S ⊗ T, considering this construction as the ring-theoretic
analog of the direct product construction on groups.) This verification is
the exercise mentioned earlier as an alternative to looking in Lang for the
universal property of the tensor product of commutative rings:

Exercise 4.13:5. Verify the above assertion that given rings S and T, the
universal ring with mutually commuting homomorphic images of S and T
has the additive structure of S ⊗ T, and multiplication given by (4.13.3).
(Suggestion: map the additive group S ⊗ T onto that universal ring R,
then use “van der Waerden’s trick” to show the map is an isomorphism.)
Obtain as a corollary the characterization of the coproduct of commutative
rings referred to earlier.

Exercise 4.13:6. Show that if S and T are monoids, then the monoid ring
construction (§4.12) satisfies ZS ⊗ ZT ∼= Z(S × T ).

Exercise 4.13:7. Suppose S and T are associative rings, and we form the
additive group Radd = Sadd ⊗ Tadd. Is the multiplication described above
in general the unique multiplication on Radd which makes it into a ring R
such that the maps s 7→ s⊗ 1T and t 7→ 1S ⊗ s are ring homomorphisms?
You might look, in particular, at the case S = Z[x], T = Z[y].

Let us now look at coproducts of not necessarily commutative rings, writ-
ing these S ∗ T as for groups and monoids. They exist by the usual general
nonsense, and again, a presentation of S∗T can be gotten by putting together
presentations of S and T. But the explicit description of these coproducts is
more complicated than for the constructions we have considered so far. For
S and T arbitrary associative rings, there is no neat explicit description of
S ∗ T. Suppose, however, that the additive group of S is free as an abelian
group on a basis containing the unit element, {1S}∪BS , and that of T is free
as an abelian group on a basis of the same sort, {1T }∪BT . (For example, the
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rings S = Z[x] and T = Z[i] have such bases, with BS = {x, x2, . . . } and
BT = {i}.) Then we see that given a ring R and homomorphisms S → R,
T → R, written s 7→ s and t 7→ t̃, the elements of R that we get by ring op-
erations from the images of S and T can be written as linear combinations,
with integer coefficients, of products xn . . . x1 where xi ∈ BS ∪ B̃T (i.e.,

{b | b ∈ BS} ∪ {b̃ | b ∈ BT }), and no two factors from the same basis-set
occur successively. (In thinking this through, note that a product of two ele-
ments from BS can be rewritten as a linear combination of single elements
from BS ∪ {1S}, and that occurrences of 1S can be eliminated because in

R, 1S = 1R; and the same considerations apply to elements from B̃T . In
this description we are again considering 1R as the “empty” or “length 0 ”
product.) And in fact, the coproduct of S and T as associative rings turns
out to have precisely the set of such products as an additive basis.

Exercise 4.13:8. Verify the above assertion, using an appropriate modifi-
cation of van der Waerden’s trick.

Exercise 4.13:9. (i) Study the structure of the coproduct ring Z[i] ∗Z[i],
where Z[i] denotes the Gaussian integers as in Exercise 4.13:2. In partic-
ular, try to determine its center, and whether it has any zero-divisors.
(ii) In general, if S and T are rings free as abelian groups on two-element
bases of the forms {1, s} and {1, t}, what can be said about the structure
and center of S ∗ T ?

The next part shows that the above situation is exceptional.
(iii) Suppose as in (ii) that S and T each have additive bases containing
1, and neither of these bases consists of 1 alone, but now suppose that at
least one of them has more than two elements. Show that in this situation,
the center of S ∗ T is just Z.

When the rings in question are not free Z-modules, the above description
does not work, but in some cases the result is nonetheless easy to characterize.

Exercise 4.13:10. (i) Describe the rings Q ∗Q and Q⊗Q.
(ii) Describe the rings (Z/nZ)∗Q and (Z/nZ)⊗Q, where n is a positive
integer.

Some surprising results on the module theory of ring coproducts are ob-
tained in [46]. (That paper presumes familiarity with basic properties of
semisimple artin rings and their modules. The reader who is familiar with
such rings and modules, but not with homological algebra, should not be de-
terred by the discussion of homological properties of coproducts in the first
section; that section gives homological applications of the main result of the
paper, but the later sections, where the main result is proved, do not require
homological methods.)
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4.14. Boolean algebras and Boolean rings

Let S be a set, and let P(S) denote the power set of S, that is, {T |
T ⊆ S}. There are various natural operations on P(S) : union, intersection,
complement (i.e., cT = {s ∈ S | s /∈ T}), and the two zeroary operations,
∅ ∈ P(S) and S = c∅ ∈ P(S). Thus we can regard P(S) as the underlying
set of an algebraic structure

(4.14.1) (P(S), ∪, ∩, c, ∅, S).

This structure, or more generally, any 6-tuple consisting of a set and five
operations on that set, of arities 2, 2, 1, 0, 0, satisfying all the identities
satisfied by structures of the form (4.14.1) for sets S, is called a Boolean
algebra.

Such 6-tuples do not quite fit any of the pigeonholes we have considered so
far. For instance, neither of the operations ∪, ∩ is the composition operation
of an abelian group, hence a “Boolean algebra” is not a ring.

However, there is a way of looking at P(S) which reduces us to ring
theory. There is a standard one-to-one correspondence between the power set
P(S) of a set S and the set of functions 2S , where 2 means the 2-element
set {0, 1}; namely, the correspondence associating to each T ∈ P(S) its
characteristic function (the function whose value is 1 on elements of T and
0 on elements of cT ). If we try to do arithmetic with these functions, we run
into the difficulty that the sum of two {0, 1}-valued functions is not generally
{0, 1}-valued. But if we identify {0, 1} with the underlying set of the ring
Z/2Z rather than treating it as a subset of Z, this problem is circumvented:
2S becomes the ring (Z/2Z)S – the direct product of an S-tuple of copies of
Z/2Z. Moreover, it is possible to describe union, intersection, etc., of subsets
of S in terms of the ring operations of (Z/2Z)S . Namely, writing a for the
characteristic function of a ⊆ S, we have

(4.14.2) a ∩ b = a b, a ∪ b = a+ b+ a b, ca = 1 + a, ∅ = 0, S = 1.

Conversely, each ring operation of (Z/2Z)S , translated into an operation
on subsets of S, can be expressed in terms of our set-theoretic Boolean alge-
bra operations. The expressions for multiplication, for 0, and for 1 are clear
from (4.14.2); additive inverse is the identity operation, and + is described
by

(4.14.3) a+ b = (a ∩ cb) ∪ (ca ∩ b).

(The set (a∩ cb)∪ (ca∩ b) is called the “symmetric difference” of the sets a
and b.)

Note that the ring B = (Z/2Z)S = (2S ,+, ·,−, 0, 1), like Z/2Z, satisfies
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(4.14.4) (∀x ∈ |B|) x2 = x,

from which one easily deduces the further identities,

(4.14.5)
(∀x, y ∈ |B|) x y = y x,

(∀x ∈ |B|) x+ x = 0 (equivalently: 1 + 1 = 0 in B).

An associative ring satisfying (4.14.4) (and so also (4.14.5)) is called a Boolean
ring. We shall see below (Exercise 4.14:2) that the identities defining a
Boolean ring, i.e., the identities of associative rings together with (4.14.4), im-
ply all identities satisfied by rings (Z/2Z)S . Hence we shall see that Boolean
rings and Boolean algebras are essentially equivalent – we can turn each into
the other using (4.14.2) and (4.14.3).

Exercise 4.14:1. The free Boolean ring F (X) on any set X exists by the
usual general arguments. Find a normal form for the elements of F (X)
when X is finite. To prove that distinct expressions in normal form repre-
sent distinct elements, you will need some kind of representation of F (X);
use a representation by subsets of a set S.

Exercise 4.14:2. Assume here the result which follows from the indicated
approach to the preceding exercise, that the free Boolean ring on any finite
set X can be embedded in the Boolean ring of subsets of some set S.

(i) Deduce that all identities satisfied by the rings (Z/2Z)S (S a set)
follow from the identities by which we defined Boolean rings.
(ii) Conclude that the free Boolean ring on an arbitrary set X can be
embedded in the Boolean ring of {0, 1}-valued functions on some set (if
you did not already prove this as part of your proof of (i)).
(iii) Deduce that there exists a finite list of identities for Boolean algebras
which implies all identities holding for such structures (i.e., all identities
holding in sets P(S) under ∪, ∩, c, 0 and 1).

Exercise 4.14:3. An element a of a ring (or semigroup or monoid) is called
idempotent if a2 = a. If R is a commutative ring, let us define

Idpt(R) = ({a ∈ R | a2 = a},
.
+, ·, −. , 0, 1),

where a
.
+ b = a+ b− 2 a b and −. a = a.

(i) Verify that each of the above operations carries the set |Idpt(R)| into
itself.
(ii) Show that if a ∈ |Idpt(R)|, then R can (up to isomorphism) be
written R1 × R2 for some rings R1, R2, in such a way that the element
a has the form (0, 1) in this direct product. Deduce that if a1, . . . , ai ∈
|Idpt(R)|, then R can be written as a finite direct product in such a way
that each ai has each coordinate 0 or 1. This result can be used to get a
proof of the next part that is conceptual rather than purely computational:
(iii) Show that for any commutative ring R, Idpt(R) is a Boolean ring.
(iv) Given any Boolean ring B, show that there is a universal pair (R, f)
where R is a commutative ring, and f : B → Idpt(R) a homomorphism.
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(v) Investigate the structure of the R of the above construction in some
simple cases, e.g., B = Z/2Z, B = (Z/2Z)2, B = (Z/2Z)S .

(Students familiar with algebraic geometry will recognize that the idem-
potent elements of a commutative ring R correspond to the continuous
{0, 1}-valued functions on Spec(R). Thus the Boolean rings Idpt(R) of the
above exercise have natural representations as Boolean rings of {0, 1}-valued
functions on sets.)

Exercise 4.14:4. (i) If f : U → V is a set map, describe the homomor-
phism it induces between the Boolean rings (Z/2Z)U and (Z/2Z)V . (You
first have to decide which way the homomorphism will go.)
(ii) Let B be a Boolean ring. Formulate universal properties for a “uni-
versal representation of B by subsets of a set”, in each of the following
senses:

(a) A universal pair (S, f), where S is a set, and f a Boolean ring
homomorphism B → (Z/2Z)S .
(b) A universal pair (T, g), where T is a set, and g a Boolean ring
homomorphism (Z/2Z)T → B.

(iii) Investigate whether such universal representations exist. If such repre-
sentations are obtained, investigate whether the maps f, g will in general
be one-to-one and/or onto.

Exercise 4.14:5. (i) Show that every finite Boolean ring is isomorphic to
one of the form 2S for some finite set S.
(ii) For what finite sets S is the Boolean ring 2S free? How is the number
of free generators determined by the set S ?

Exercise 4.14:6. A subset T of a set S is said to be cofinite in S if cT
(taken relative to S, i.e., S − T ) is finite. Show that {T ⊆ Z | T is finite
or cofinite } is the underlying set of a Boolean subring of 2Z, which is
neither free, nor isomorphic to a Boolean ring 2U for any set U.

Exercise 4.14:7. It is not hard to see (as for groups, monoids, rings, and
commutative rings) that any two Boolean rings B1 and B2 will have a
coproduct as Boolean rings.
(i) Will this coproduct in general coincide with the coproduct of B1 and
B2 as rings? As commutative rings?

(ii) Suppose B1 and B2 are finite, so that we can take B1 = 2S , B2 =
2T for finite sets S and T. Can you describe the coproduct of these
two Boolean rings, and the canonical maps from those rings into their
coproduct, in terms of S and T ?

For additional credit you might see whether the result you get in (ii)
extends, in one way or another, to Boolean rings 2S and 2T for infinite
sets S and T, or to other sorts of infinite Boolean rings, such as those
described in the preceding exercise.

Above, I have for purposes of exposition distinguished between the power
set P(S) of a set S and the function-set 2S . But these notations are often
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used interchangeably, and I may use them that way myself elsewhere in these
notes.

4.15. Sets

The objects we have been studying have been sets with additional operations.
Let us briefly note the forms that some of the sorts of constructions we have
discovered take for plain sets.

Given a family of sets (Si)i∈I , the object with the universal property
characterizing products is the usual direct product, I

Si, which may be
described as the set of functions on I whose value at each element i belongs
to the set Si. The projection map pi in the statement of the universal
property takes each such function to its value at i. Note that the product of
the vacuous family of sets (indexed by the empty set!) is a one-element set.

The coproduct of a family of sets (Si)i∈I is their disjoint union
⊔
I Si, to

which we referred in passing in §4.6. If the Si are themselves disjoint, one can
take for this set their ordinary union; the inclusions of the Si in this union
give the universal family of maps qj : Sj →

⊔
I Si (j ∈ I). A construction

that will work without any disjointness assumption is to take

(4.15.1)
⊔
I Si = {(i, s) | i ∈ I, s ∈ Si}

with universal maps given by

(4.15.2) qi(s) = (i, s) (i ∈ I, s ∈ Si).

A frequent practice in mathematical writing is to assume (“without loss
of generality”) that a family of sets is disjoint, if this would be notationally
convenient, and if there is nothing logically forcing them to have elements
in common. When this disjointness condition holds one can, as noted, take
the universal maps involved in the definition of a coproduct of sets to be
inclusions. But in other cases – for instance if we want to consider a coproduct
of a set with itself, or of a set and a subset – a construction like (4.15.1) is
needed. Note that when a construction is described “in general” under such a
disjointness assumption, and is later applied in a situation where one cannot
make that assumption, one must be careful to insert qi ’s where appropriate.

Exercise 4.15:1. Investigate laws such as associativity, distributivity, etc.
which are satisfied up to natural isomorphism by the constructions of pair-
wise product and coproduct of sets.

Examine which of these laws are also satisfied by products and coprod-
ucts of groups, and which are not.

Sets can also be constructed by “generators and relations”. If X is a set,
then relations are specified by a set R of ordered pairs of elements of X,
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which we want to make fall together. The universal image of X under a map
making the components of each of these pairs fall together is easily seen to
be the quotient of X by the least equivalence relation containing R.

The constructions named in this section – direct product of sets, disjoint
union, and quotient by the equivalence relation generated by a given binary
relation – were taken for granted in earlier sections. So the point of this
section was not to introduce the reader to those constructions, but to note
their relation to the general patterns we have been seeing.

4.16. Some algebraic structures we have not looked at

. . . lattices ([4], [13], and Chapter 6 below), modular lattices, distributive lat-
tices; partially ordered sets (Chapter 5 below); cylindric algebras [87]; heaps
(Exercise 9.6:10 below); loops [7, p. 52]; Lie algebras ([95], §9.7 below), Jordan
algebras [96], general nonassociative algebras; rings with polynomial identity
[129], rings with involution, fields, division rings, Hopf algebras [136]; mod-
ules, bimodules (§§10.8-10.9 below); filtered groups, filtered rings, filtered
modules; graded rings, graded modules; ordered groups, right-ordered groups,
lattice-ordered groups [82], . . . .

As noted, we will consider some of these in later chapters.
On the objects we have considered here, we have only looked at basic

and familiar universal constructions. Once we develop a general theory of
universal constructions, we shall see that they come in many more varied
forms.

For diversity, I will end this chapter with two examples for those who know
some general topology.

4.17. The Stone-Čech compactification of a topological
space

We know that the real line R, as a topological space, is not compact. But
when studying the limit-behavior of R-valued functions or sequences, it is
frequently convenient to adjoin to R an additional point, “∞ ”, obtaining
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the compact space R ∪ {∞} shown below.

&%
'$

–2 –1 0 1 2

∞

R ∪ {∞} :

At other times, one adjoins to R two points, +∞ and −∞, getting a
compact space

R ∪ {+∞, −∞} :q q
−∞ +∞–2 –1 0 +1 +2

Note that R∪ {∞} may be obtained from R∪ {+∞,−∞} by an identifica-
tion. Hence R ∪ {+∞,−∞} can be thought of as making finer distinctions
in limiting behavior than R ∪ {∞}.

One might imagine that R ∪ {+∞,−∞} makes “the finest possible dis-
tinctions”. A precise formulation of this would be a conjecture that for any
continuous map f of R into a compact Hausdorff space K, the closure of
the image of R should be an image of R∪ {+∞,−∞}; i.e., that the map f
should factor through the inclusion R ⊆ R ∪ {+∞,−∞}. Here is a picture
of an example for which this is true:

R
⊆

R ∪ {+∞,−∞}q q
@
@
@
@
@
@
@
@R

f

?

f(R)
K .

q
q

But by thinking about either of the following pictures, you can see that
the above conjecture is not true in general:
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However, we can still ask whether there is some compactification of R
which makes “the most possible distinctions”. Let us raise this question with
R replaced by a general topological space X, and give the desired object a
name.

Definition 4.17.2. Let X be a topological space. A
Stone-Čech compactification of X will mean a pair
(C, u), where C is a compact Hausdorff space and u
a continuous map X → C, universal among all con-
tinuous maps of X into compact Hausdorff spaces K
(diagram at right).

X - C
u

Q
Q
Q
Q
QQs

∀ v
?

∃1 f

K

Exercise 4.17:1. Show that if a pair (C, u) as in the above definition exists,
then u(X) is dense in C. In fact, show that if (C, u) has the indicated
universal property but without the condition of uniqueness of factoring
maps g (see above diagram), then
(i) uniqueness of such maps holds if and only if u(X) is dense in C; and
(ii) if C ′ is the closure of u(X) in C, the pair (C ′, u) has the full
universal property.

We now want to determine whether such compactifications always exist.
The analog of our construction of free groups from terms as in §3.2 would

be to adjoin to X some kinds of “formal limit points”. But limit points of
what? Not every sequence in a compact Hausdorff space K converges, nor
need every point of the closure of a subset J ⊆ K be the limit of a sequence
of points of J (unless K is first countable); so adjoining limits of sequences
would not do. The approach of adjoining limit points can in fact be made to
work, but it requires considerable study of how such points may be described;
the end result is a construction of the Stone-Čech compactification of X in
terms of ultrafilters. We shall not pursue that approach here; it is used in
[138, Theorem 17.17 et seq.]. (NB: The compactification constructed there
may not be Hausdorff when X is “bad”, so in such cases it will not satisfy
our definition.)

The “big direct product” approach is more easily adapted. If v1 : X → K1

and v2 : X → K2 are two continuous maps of X into compact Hausdorff
spaces, then the induced map (v1, v2) : X → K1 × K2 will “make all the
distinctions among limit points made by either v1 or v2 ”, since the maps
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v1 and v2 can each be factored through it; further, if we let K ′ denote the
closure of the image of X in K1×K2 under that map, and v′ : X → K ′ the
induced map, then all these distinctions are still made in K ′, and the image
of X is dense in this space. We can do the same with an arbitrary family
of maps vi : X → Ki (i ∈ I), since Tychonoff’s Theorem tells us that the
product space I

Ki is again compact.

As in the construction of free groups, to obtain our Stone-Čech compacti-
fication by this approach we have to find some set of pairs (Ki, vi) which are
“as good as” the class of all maps v of X into all compact Hausdorff spaces
K. For this purpose, we want a bound on the cardinalities of the closures
of all images of X under maps into compact Hausdorff spaces K. To get
this, we would like to say that every point of the closure of the image of X
somehow “depends” on the images of elements of X, in such a fashion that
different points “depend” on these differently; and then bound the number
of kinds of “dependence” there can be, in terms of the cardinality of X. The
next lemma establishes the “different points depend on X in different ways”
idea, and the corollary that follows gives the desired bound.

Lemma 4.17.3. Let K be a Hausdorff topological space, and for any k ∈
|K|, let N(k) denote the set of all open neighborhoods of k (open sets in K
containing k). Then for any map v from a set X into K, and any two points
k1 6= k2 of the closure of v(X) in K, one has v−1(N(k1)) 6= v−1(N(k2))
(where by v−1(N(k)) we mean {v−1(U) | U ∈ N(k)}, a subset of P(X)).

Proof. Since ki (i = 1, 2) is in the closure of v(X), every neighborhood
of ki in K has nonempty intersection with v(X), i.e., every member of
v−1(N(ki)) is nonempty. Since N(ki) is closed under pairwise intersections,
so is v−1(N(ki)). But since K is Hausdorff and k1 6= k2, these two points
possess disjoint neighborhoods, whose inverse images in X will have empty
intersection. If the sets v−1(N(k1)) and v−1(N(k2)) were the same, this
would give a contradiction to the above nonemptiness observation. ut

Thus, we can associate to distinct points of the closure of v(X) distinct
sets of subsets of X. Hence,

Corollary 4.17.4. In the situation of the above lemma, the cardinality of the

closure of v(X) in K is ≤ 22cardX

. ut

So now, given any topological space X, let us choose a set S of cardinality

22card |X|
, and let A denote the set of all pairs a = (Ka, ua) such that Ka

is a compact Hausdorff topological space with underlying set |Ka| ⊆ S, and
ua is a continuous map X → Ka. (We no longer need to keep track of

cardinalities, but if we want to, cardA ≤ 2222card |X|

, assuming X infinite.
The two additional exponentials come in when we estimate the number of

topologies on a set of ≤ 22card |X|
elements.) Thus, if v is any continuous

map of X into a compact Hausdorff space K, and we write K ′ for the
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closure of v(X) in K, then the pair (K ′, v) will be “isomorphic” to some
pair (Ka, ua) ∈ A, in the sense that there exists a homeomorphism between
K ′ and Ka making the diagram below commute.

X
��

�*v
K ′ ⊆ K

H
HHjua

Ka

∼=

We now form the compact Hausdorff space P =
a∈AKa, and the map

u : X → P induced by the ua ’s, and let C ⊆ P be the closure of u(X). It
is easy to show, as we did for groups in §3.3, that the pair (C, u) satisfies
the universal property of Definition 4.17.2. Thus:

Theorem 4.17.5. Every topological space X has a Stone-Čech compactifi-
cation (C, u) in the sense of Definition 4.17.2. ut

Exercise 4.17:2. Show that in the above construction, u(X) will be home-
omorphic to X under u if and only if X can be embedded in a com-
pact Hausdorff space K (where an “embedding” means a continuous map
f : X → K inducing a homeomorphism between X and f(X), the latter
set being given the topology induced by that of K). Examine conditions
on X under which these equivalent statements will hold. Show that for
any topological space X, there exists a universal map into a space Y em-
beddable in a compact Hausdorff space, and that this map is always onto,
but that it may not be one-to-one. Can it be one-to-one and onto but not
a homeomorphism?

Note: Most authors use the term “compactification” to mean a dense em-
bedding in a compact space. Hence, they only consider a space X to have
a Stone-Čech compactification if the map u that we have constructed is an
embedding.

Exercise 4.17:3. Suppose we leave off the condition “Hausdorff” – does a
space X always have a universal map into a compact space C ? A compact
T1 space C ? . . .

Exercise 4.17:4. Let C be the Stone-Čech compactification of the real line
R, and regard R as a subspace of C.
(i) Show that C − R has exactly two connected components.

(The above shows that there was a grain of truth in the naive idea that
R ∪ {+∞,−∞} was the universal compactification of R. Exercise 4.17:5
will also be relevant to that idea.)
(ii) What can you say about path-connected components of C − R ?
(iii) Show that no sequence in R converges to a point of C − R.

A continuous map of R into a topological space K may be thought of
as an open curve in K. If K is a metric space one can define the length
(possibly infinite) of this curve.
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Exercise 4.17:5. Show that if v : R → K is a curve of finite length in a
compact (or more generally, a complete) metric space K, then v factors
through the inclusion of R in R ∪ {+∞,−∞}.

Is the converse true? I.e., must every map R → K which factors
through the inclusion of R in R ∪ {+∞,−∞} have finite length?

Exercise 4.17:6. (Exploring possible variants of Exercise 4.17:4-4.17:5.) It
would be nice to get a result like the first assertion of the preceding exercise,
but with a purely topological hypothesis on the map v, rather than a
condition involving a metric on K. Consider, for instance, the following
condition on a map v of the real line into a compact Hausdorff space K :

(4.17.6)
For every closed set V ⊆ K, and open set U ⊇ V, the set
v−1(U) ⊆ R has only finitely many connected components
that contain points of v−1(V ).

(You should convince yourself that this fails for the two cases shown in
(4.17.1).)
(i) Can we replace the assumptions in Exercise 4.17:5 that K is a metric
space and v has finite length by (4.17.6) or some similar condition?

(ii) In the plane R2, let X be the open unit disc, C the closed unit disc,
and u : X → C the inclusion map. Does the pair (C, u) have any universal
property with respect to X, like that indicated for R ∪ {+∞,−∞} with
respect to R in the preceding exercise?
(iii) Does the open disc have a universal path-connected compactification?

(iv) In general, if C is the Stone-Čech compactification of a “nice” space
X, what can be said about connected components, path components, ho-
motopy, cohomotopy, etc. of C −X ?

In §3.4 we saw that we could improve on the construction of the free
group on X from “terms” by noting that a certain subset of the terms
would make do for all of them. For the Stone-Čech compactification, the “big
direct product” construction is subject to a similar simplification. In that
construction, we made use of all maps (up to homeomorphism) of X into
compact Hausdorff spaces of reasonable size. I claim that we can in fact make
all the “distinctions” we need using maps into the closed unit interval, [0, 1] !
The key fact is that any two points of a compact Hausdorff space K can be
separated by a continuous map into [0, 1] (Urysohn’s Lemma). I will sketch
how this is used.

Let X be any topological space, let W denote the set of all continuous
maps w : X → [0, 1], let u : X → [0, 1]W be the map induced by (w)w∈W ,
and let C ⊆ [0, 1]W be the closure of u(X). It is immediate that C has the
property

(4.17.7)

Every continuous function of X into [0, 1] is the compos-
ite of u with a unique continuous function C → [0, 1]
(namely, the restriction to C of one of the projections
[0, 1]W → [0, 1]).
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To show that C has the universal property of the Stone-Čech compactifi-
cation of X, let K be a compact Hausdorff space. We can separate points of
K by some set S of continuous maps s : K → [0, 1], hence we can embed K
in a “cube” [0, 1]S . (The map K → [0, 1]S given by our separating family
of functions is one-to-one; hence, as K is compact Hausdorff, it will be a
topological embedding [99, Theorem 5.8, p. 141].) Let us therefore assume,
without loss of generality, that K is a subspace of [0, 1]S . Now given any
map v : X → K, we regard it as a map into the overspace [0, 1]S , and get a
factorization v = g u for a unique map g : C → [0, 1]S by applying (4.17.7)
to each coordinate. Because K is compact, it is closed in [0, 1]S , so g will
take C, the closure of u(X), into K, establishing the universal property of
C. Cf. [99, pp. 152-153].

Another twist: Following the idea of Exercise 3.3:6, we may regard a point
c of the Stone-Čech compactification C of a space X as determining a
function c̃ which associates to every continuous map v of X into a compact
Hausdorff space K a point c̃(v) ∈ K – namely, the image of c under the
unique extension of v to C. This map c̃ will be “functorial”, i.e., will respect
continuous maps f : K1 → K2, in the sense indicated in the diagram below.

X
��

�*v K1 3 c̃(v)

HH
Hjf v

K2 3 c̃(fv)
?

From Urysohn’s Lemma one can deduce that c̃ is determined by its be-
havior on maps w : X → [0, 1], hence, more generally, by its behavior on
maps w of X into closed intervals [a, b] ⊆ R. We carry this observation
further in

Exercise 4.17:7. A bounded real-valued continuous function on X can be
regarded as a continuous map from X into a compact subset of R, and
our c̃ can be applied to this map.
(i) Show that in this way one may obtain from c̃ a function from the set
B(X) of all bounded real-valued continuous functions on X to the real
numbers R. (To prove this function well-defined, i.e., that the result of
applying c̃ to a bounded function is independent of our choice of compact
subset of R containing the range of this function, use the functoriality
property of c̃.)
(ii) Show that this map is a ring homomorphism B(X)→ R (with respect
to the obvious ring structure on B(X)).

One can show, further, that every ring homomorphism B(X) → R is
continuous, and deduce that each such homomorphism is induced by a point
of C. So one gets another description of the Stone-Čech compactification C
of X, as the space of homomorphisms into R of the ring B(X) of bounded
continuous real-valued functions on X. The topology of C is the function
topology on maps of B(X) into R.
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Perhaps I have made this approach sound too esoteric. A simpler way
of putting it is to note that every bounded continuous real function on X
(i.e., every continuous function which has range in a compact subset of R)
extends uniquely to a bounded continuous real function on its Stone-Čech
compactification C, so B(X) ∼= B(C); and then to recall that for any com-
pact Hausdorff space C, the homomorphisms from the function-ring B(C)
into R are just the evaluation functions at points of C.

One can use this approach to get another proof of the existence of the
Stone-Čech compactification of a topological space [80, Chapter 6]. This ho-
momorphism space can also be identified with the space of all maximal ideals
of B(X), equivalently, of all prime ideals that are closed in the topology
given by the sup norm.

Exercise 4.17:8. Suppose B′ is any R-subalgebra of B(X). Let C ′ denote
the set of all maximal ideals of B′. Show that there is a natural map
m : C → C ′. Show by examples that this map can fail to be one-to-one
(even if B′ separates points of X), or to be onto. Try to find conditions
for it to be one or the other.

The Stone-Čech compactification of the topological space R is enormous,
since examples like (4.17.1) show that it has to be compatible with distinc-
tions among points made by a vast class of closures of images of R. One may
wonder whether any noncompact Hausdorff space has a Stone-Čech com-
pactification that is more modest. Can it add only one point to the space, for
instance? The next exercise finds conditions for this to happen. We shall see
in Exercise 5.5:17 how to get a space X that satisfies these conditions.

Exercise 4.17:9. Let X be a noncompact topological space which can be
embedded in a compact Hausdorff space. Show that the following condi-
tions are equivalent.

(a) The Stone-Čech compactification of X has the form u(X)∪{y}, where
u is the universal map of X into that compactification, and y is a single
point not in u(X).
(b) Of any two disjoint closed subsets F, G ⊆ X, at least one is compact.
(c) Every continuous function X → [0, 1] is constant on the complement
of some compact subset of X.

One can also consider universal constructions which mix topological and
algebraic structure:

Exercise 4.17:10. Let G be any topological group (a group given with a
Hausdorff topology on its underlying set, such that the group operations
are continuous). Show that there exists a universal pair (C, h), where
C is a compact topological group, and h : G → C a continuous group
homomorphism.

This is called the Bohr compactification of G.
Show that h(G) is dense in C. Is h generally one-to-one? A topolog-

ical embedding? What will be the relation between C and the Stone-Čech
compactification of the underlying topological space of G ?
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If it helps, you might consider some of these questions in the particular
case where G is the additive group of the real line.

In [110, §41], the Bohr compactification of a topological group G is ob-
tained as the maximal ideal space of a subring of B(G), the subring of
“almost periodic” functions.

Most often, complex- rather than real-valued functions are used in the
ring-of-bounded-functions constructions we have discussed.

4.18. Universal covering spaces

Let X be a pathwise connected topological space with a basepoint (distin-
guished point) x0. (Formally, this would be defined as a 3-tuple (|X|, T, x0),
where |X| is a set, T is a pathwise connected topology on |X|, and x0 is
an element of |X|.)

A covering space of X means a pair (Y, c), where Y is a pathwise con-
nected space with a basepoint y0, and c is a continuous basepoint-preserving
map Y → X, such that every x ∈ X has a neighborhood V such that
c−1(V ) is homeomorphic, as a space mapped to V, to a direct product of V
with a discrete space. (Draw a picture!) Such a c will have the unique path-
lifting property: Given any continuous map p : [0, 1] → X taking 0 to x0,
there will exist a unique continuous map p̃ : [0, 1]→ Y taking 0 to y0 such
that p = c p̃. Further, p̃ will depend continuously on p in the appropriate
function-space topology.

Given X, consider any covering space (Y, c) of X, and let us ask what
points of Y we can “describe” in a well-defined manner.

Of course, we have the basepoint, y0. Further, for every path p in X
starting at the basepoint x0, we know there will be a unique lifting of p to
a path p̃ in Y starting from y0; so Y also has all points of this lifted path.
It is enough, however, to note that we have the endpoint p̃(1) of each such
lifted path, since all the other points of p̃ can be described as endpoints of
liftings of “subpaths” of p. In fact, every y ∈ Y will be the endpoint p̃(1)
of a lifted path in X. For Y was assumed pathwise connected, hence for
any y ∈ Y we can find a path q in Y with q(0) = y0, q(1) = y. Letting
p = c q, a path in X, we see that q = p̃, so y = p̃(1).

Suppose p and p′ are two paths in X; when will p̃(1) and p̃′(1) be the
same point of Y ? Clearly, a necessary condition is that these two points have
the same image x in X : p(1) = p′(1) = x. Assuming this condition, note
that if p and p′ are homotopic in the class of paths in X from x0 to x, then
as one continuously deforms p to p′ in this class, the lifted path in Y will
vary continuously, hence its endpoint in c−1(x) will vary continuously. But
c−1(x) is discrete, so the endpoint must remain constant. Thus, p’s being
homotopic to p′ in the class of paths with these specified endpoints implies
p̃(1) = p̃′(1).
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So in general, we get a point of Y for every homotopy class [p] of paths
in X with initial point x0 and common final point. In a particular covering
space Y, there may or may not be further equalities among these points of
Y ; but we can ask whether, if we write U for the set of such homotopy
classes of paths, and u for the map from U to X defined by u([p]) = p(1),
we can make U a topological space in such a way that the pair (U, u) is
a covering space for X. Under appropriate assumptions on the topology of
X (the hypotheses used in [90] are that X is connected, locally pathwise
connected, and semi-locally simply connected), this can indeed be done. The
resulting covering space U has a unique continuous map onto each covering
space Y of X, which respects basepoints and respects the maps into X.
Hence (U, u) is called the universal covering space of X.

The universal covering space is a versatile animal – like the direct product
of groups, it has, in addition to the above left universal property, a right
universal one:

It is not hard to show that U is simply connected. Consider, now, pairs
(S, c), where S is a simply connected pathwise connected topological space
with basepoint s0, and c : S → X a basepoint-respecting continuous map.
Let us ask, for such a space S, the question that we noted in §4.8 as leading
to right universal constructions: If s is an arbitrary point of S, what data
will it determine that can be formulated in terms of the given space X ?
Well, obviously s determines the point c(s) ∈ X. To get more information,
note that since S is pathwise connected, there will be some path q in S
connecting s0 to s; and since S is simply connected, all such paths q are
homotopic. Applying c to these paths, we see that s determines a homotopy
class of paths in X from x0 to c(s). But as we have just noted, the set of
homotopy classes of paths from x0 to points of X can (under appropriate
conditions) itself be made into a simply connected space, the universal cov-
ering space of X. One deduces that this space U is right universal among
simply connected spaces with basepoint, given with maps into X (diagram
below).

U�X
f

�
�
�
�
�
�
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∃1 d∀ c
6

S

We could also look for a right universal covering space for X, or a simply
connected space with basepoint having a left universal map into X. But these
turn out to be uninteresting: They are X itself, and the one-point space.

There are many other occurrences of universal constructions in topology.
Some, like the two considered in this and the preceding section, can be ap-
proached in the same way as universal constructions in algebra. Others, used
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in algebraic topology, are different in that one is interested, not in maps be-
ing equal, unique, etc., but homotopic, unique up to homotopy, etc.. These
conditions can be brought into the same framework as our other universal
properties via the formalism of category theory (Chapters 7 and 8 below),
but the tasks of constructing and studying the objects these conditions char-
acterize require different approaches, which we will not treat in this course.



Part II. Basic tools and concepts.

In the next five chapters we shall assemble the concepts and tools needed for
the development of a general theory of algebras and of universal constructions
among them.

In Chapters 5 and 6, we discuss ordered sets, lattices, closure operators,
and related concepts, since these will be used repeatedly. Because of the
relation between well-ordering and the Axiom of Choice, after discussing
well-ordered sets, I take the occasion to review briefly the Zermelo-Fraenkel
axioms for set theory, and several statements equivalent to the Axiom of
Choice.

Clearly, the general context for studying universal constructions should
be some model of “a system of mathematical objects and the maps among
them”. This is provided by the concept of a category. We develop the basic
concepts of category theory in Chapter 7, and in Chapter 8 we formalize
universal properties in category-theoretic terms.

Finally, in Chapter 9 we introduce the categories that will be of special
interest to us: the varieties of algebras.
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Chapter 5

Ordered sets, induction, and the
Axiom of Choice

5.1. Partially ordered sets

We began Chapter 2 by making precise the concept of a group. Let us now
do the same for that of a partially ordered set.

A partial ordering on a set is an instance of a “relation”. This is a different
sense of the word from that of the last two chapters. These notes will deal
extensively with both kinds of “relations”; which sense is meant will generally
be clear from context. When there is danger of ambiguity, I will make the
distinction explicit, as I do, for instance, in the index.

Intuitively, a relation on a family of sets X1, . . . , Xn means a condition
on n-tuples (x1, . . . , xn) (x1 ∈ X1, . . . , xn ∈ Xn). Since the information
contained in the relation is determined by the set of n-tuples that satisfy
it, the relation is taken to be this set in the formal definition, given below.
That the relation is viewed as a “condition” comes out in the notation and
language used.

Definition 5.1.1. If X1, . . . , Xn are sets, a relation on X1, . . . , Xn means
a subset R ⊆ X1×· · ·×Xn. Relations are often written as predicates; i.e., the
condition (x1, . . . , xn) ∈ R may be written R(x1, . . . , xn), or Rx1 . . . xn,
or, if n = 2, as x1Rx2.

A relation on X, . . . , X, i.e., a subset R ⊆ Xn, is called an n-ary relation
on X.

If R is an n-ary relation on X, and Y is a subset of X, then the restric-
tion of R to Y means R ∩ Y n, regarded as an n-ary relation on Y.

We now recall

Definition 5.1.2. A partial ordering on a set X means a binary relation
“≤ ” on X satisfying the conditions

(∀x ∈ X) x ≤ x (reflexivity),

(∀x, y ∈ X) x ≤ y ∧ y ≤ x =⇒ x = y (antisymmetry),

(∀x, y, z ∈ X) x ≤ y, y ≤ z =⇒ x ≤ z (transitivity).
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A total ordering on X means a partial ordering which also satisfies

(∀x, y ∈ X) x ≤ y or y ≤ x.

A partially (respectively totally) ordered set means a set X given with
a partial (total) ordering ≤. (“Partially ordered set” is often shortened to
“poset”, though we will not do so here.)

If X is partially ordered by ≤, and Y is a subset of X, then Y will
be understood to be partially ordered by the restriction of ≤, which will
be denoted by the same symbol unless there is danger of ambiguity. This is
called the induced ordering on Y.

A more formal definition would make a partially ordered set a pair P =
(|P |, ≤) where ≤ is a partial ordering on |P |. But for us, partially ordered
sets will in general be tools rather than the objects of our study, and it would
slow us down to always maintain the distinction between P and |P |; so we
shall usually take the informal approach of understanding a partially ordered
set to mean a set P for which we “have in mind” a partial ordering relation
≤. Occasionally, however, we shall be more precise and refer to the pair
(|P |, ≤).

Standard examples of partially ordered sets are the set of real numbers
with the usual relation ≤, the set P(X) of subsets of any set X under the
inclusion relation ⊆, and the set of positive integers under the relation “ | ”,
where m | n means m divides n .

A total ordering is also called a linear ordering. The term “ordered” with-
out any qualifier is used by some authors as shorthand for “partially ordered”,
and by others for the stronger condition “totally ordered”; we will here gen-
erally specify “partially” or “totally”.

The versions of the concepts of homomorphism and isomorphism appro-
priate to partially ordered sets are given by

Definition 5.1.3. If X and Y are partially ordered sets, an isotone map
from X to Y means a function f : X → Y such that x1 ≤ x2 =⇒ f(x1) ≤
f(x2).

An invertible isotone map whose inverse is also isotone is called an order
isomorphism.

Exercise 5.1:1. Give an example of an isotone map of partially ordered sets
which is invertible as a set map, but which is not an order isomorphism.

Some well-known notation: When ≤ is a partial ordering on a set X, one
commonly writes ≥ for the opposite relation; i.e., x ≥ y means y ≤ x.
Clearly the relation ≥ satisfies the same conditions of reflexivity, antisym-
metry and transitivity as ≤.

This leads to a semantic problem: As long as ≥ is just an auxiliary nota-
tion used in connection with the given ordering ≤, one thinks of an element
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x as being “smaller” (or “lower”) than an element y 6= x if x ≤ y. But
the fact that ≥ is also reflexive, antisymmetric and transitive means that
one can take it as a new partial ordering on X, i.e., consider the partially
ordered set (X, ≥), and one should consider x as “smaller” than y in this
partially ordered set if the pair (x, y) belongs to this new ordering. Such
properties as which maps X → Y are isotone (with respect to a fixed partial
ordering on Y ) clearly change when one goes from considering X under ≤
to considering it under ≥.

The set X under the opposite of the given partial ordering is called the
opposite of the original partially ordered set. When one uses the formal nota-
tion P = (|P |, ≤) for a partially ordered set, one can write P op = (|P |, ≥).
One may also replace the symbol ≥ by ≤op, writing P op = (|P |, ≤op).
Thus, if x is smaller than y in P, i.e., x ≤ y, then y is smaller than x in
P op, i.e., y ≤op x. (“Dual ordering” is another term often used, and ∗ is
sometimes used instead of op.)

In these notes we shall rarely make explicit use of the opposite partially
ordered set construction. But once one gets past the notational confusion, the
symmetry in the theory of partially ordered sets created by that construction
is a useful tool: After proving any result, one can say “By duality . . . ”, and
immediately deduce the corresponding statement with all ordering relations
reversed.

One also commonly uses x < y as an abbreviation for (x ≤ y) ∧ (x 6= y),
and of course x > y for (x ≥ y) ∧ (x 6= y). These relations do not satisfy
the same conditions as ≤. The conditions they satisfy are noted in

Exercise 5.1:2. Show that if ≤ is a partial ordering on a set X, then the
relation < is transitive and is antireflexive, i.e., satisfies (∀x ∈ X) x 6< x.
Conversely, show that any transitive antireflexive binary relation < on a
set X is induced in the above way by a unique partial ordering ≤.

A relation < with these properties (transitivity and antireflexivity) might
be called a “partial strict ordering”. One can thus refer to “the partial strict
ordering < corresponding to the partial ordering ≤, ” and “the partial or-
dering ≤ corresponding to the partial strict ordering < ”. Of course, for a
partial ordering denoted by a symbol such as “ | ” (“divides”), or R (a partial
ordering written as a binary relation), there is no straightforward symbol for
the corresponding partial strict ordering.

Exercise 5.1:3. For partially ordered sets X and Y, suppose we call a
function f : X → Y a strict isotone map if x < y =⇒ f(x) < f(y).
Show that

one-to-one and isotone =⇒ strict isotone =⇒ isotone,

but that neither implication is reversible.

In contexts where “≤ ” already has a meaning, if another partial ordering
has to be considered, it is often denoted by a variant symbol such as 4. One
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then uses corresponding symbols <, ≺, � for the opposite order, the strict
order relation, etc.. (However, order-theorists dealing with a partial ordering
≤ sometimes write y � x to mean “ y covers x ”, that is “ y > x and there
is no z between y and x ”. When the symbol is used this way, it cannot be
used for the strict relation associated with a second ordering. We shall not
use the concept of covering in these notes.)

A somewhat confused situation is that of symbols for the subset relation.
Most often, the notation one would expect from the above discussion is fol-
lowed: ⊆ is used for “is a subset of”, ⊇ for the opposite relation, and ⊂, ⊃
for strict inclusions. We will follow these conventions here. However, many
authors, especially in Eastern Europe, write ⊂ for “is a subset of”, a us-
age based on the view that since this is a more fundamental concept than
that of a proper subset, it should be denoted by a primitive symbol, not by
one obtained by adding an extra mark to the symbol for “proper subset”.
Such authors use $ (or typographical variants) for “proper subset” (and the
reversed symbols for the reversed relations). There was even at one time a
movement to make “< ” mean “less than or equal to”, with � for strict in-
equality. Together with the above set-theoretic usage, this would have formed
a consistent system, but the idea never got off the ground. Finally, many au-
thors, for safety, use a mixed system: ⊆ for “subset” and $ for “proper
subset”. (That was the notation used in the first graduate course I took, and
I sometimes follow it in my papers. However, I rarely need a symbol for strict
inclusion, so the question of how to write it seldom comes up.)

Although partially ordered sets are not algebras in the sense in which we
shall use the term, many of the kinds of universal constructions we have
considered for algebras can be carried out for them. In particular

Definition 5.1.4. Let (Xi)i∈I be a family of partially ordered sets. Then
their direct product will mean the partially ordered set having for underlying
set the direct product of the underlying sets of the Xi, ordered so that
(xi)i∈I ≤ (yi)i∈I if and only if xi ≤ yi for all i ∈ I.

Exercise 5.1:4. (i) Verify that the above relation is indeed a partial or-
dering on the product set, and that the resulting partially ordered set has
the appropriate universal property to be called the direct product of the
partially ordered sets Xi.
(ii) Let X be a set and R a binary relation on X. Show that there exists
a universal example of a partially ordered set (Y, ≤) with a map u : X →
Y such that for all x1, x2 ∈ X, one has (x1, x2) ∈ R =⇒ u(x1) ≤
u(x2) in Y. This may be called the partially ordered set presented by the
generators X and the relation-set R (analogous to the presentations of
groups, monoids and rings we saw in §§4.3, 4.10 and 4.12). Will the map
u in general be one-to-one? Onto?
(iii) Determine whether there exist constructions with the universal prop-
erties of the coproduct of two partially ordered sets, and of the free partially
ordered set on a set X. Describe these if they exist.
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(iv) Discuss the problem of imposing a set R of further relations on a
given partially ordered set (X, ≤); i.e., of constructing a universal isotone
map of X into a partially ordered set Y such that the images of the
elements of X also satisfy the relations comprising R. If this can be done,
examine the properties of the construction.

We have noted that for any set X, the set P(X) of subsets of X is
partially ordered by ⊆. Given a partially ordered set S, we may look for
universal ways of representing S by subsets of a set X. Note that if f : X →
Y is a map between sets, then f induces, in natural ways, both an isotone
map P(X) → P(Y ) and an isotone map P(Y ) → P(X), the first taking
subsets of X to their images under f, the second taking subsets of Y to their
inverse images. Let us call these the “direction-preserving construction” and
the “direction-reversing construction” respectively. Thus, given a partially
ordered set S, there are four universal sets we might look for: a set X having
an isotone map S → P(X) universal in terms of the direction-preserving
construction of maps among power sets, a set X with such a map universal in
terms of the direction-reversing construction, and sets X with isotone maps
in the reverse direction, P(X)→ S, universal for the same two constructions
of maps among power sets.

Exercise 5.1:5. (i) Write out the universal properties of the four possible
constructions indicated.
(ii) Investigate which of the four universal sets exist, and describe these
as far as possible.

Definition 5.1.5. Let X be a partially ordered set, S a subset of X, and
s an element of S. Then s is said to be minimal in S if there is no t ∈ S
with t < s, while s is said to be the least element of S if for all t ∈ S,
s ≤ t. The terms maximal and greatest are used for the dual concepts.

(There was really no need to refer to X in the above definition, since the
properties in question just depend on the set S and the induced order rela-
tion on it; but these concepts are often applied to subsets of larger partially
ordered sets, so I included this context in the definition.)

Exercise 5.1:6. Let X be a partially ordered set.
(i) Show that if X has a least element x, then x is the unique minimal
element of X.
(ii) If X is finite, show conversely that a unique minimal element, if it
exists, is a least element.
(iii) Give an example showing that if X is not assumed finite, this converse
is false.

(I have included this exercise as a warning. I have many times found
myself unwittingly writing or saying “unique minimal element” when I
meant “least element”. It somehow sounds more precise; but it doesn’t
mean the same thing.)
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Exercise 5.1:7. Let (X, ≤) be a partially ordered set. Then the pair
(X, ≤) constitutes a presentation of itself as a partially ordered set in
the sense of Exercise 5.1:4(ii); but of course, there may be proper sub-
sets R of the relation ≤ such that (X, R) is a presentation of the same
partially ordered set. (I.e., such that R “generates” ≤ in an appropriate
sense.)
(i) If X is finite, show that there exists a least subset of R which gen-
erates ≤.
(ii) Show that this is not in general true for infinite X.

Point (i) of the above exercise is the basis for the familiar way of dia-
graming finite partially ordered sets. One draws a picture with vertices rep-
resenting the elements of the set, and edges corresponding to the members
of the least relation generating the partial ordering; i.e., the smallest set of
order-relations from which all the others can be deduced. The higher point
on each edge represents the larger element under the partial ordering. This
picture is called the Hasse diagram of the given partially ordered set.

For example, the picture below represents the set of all nonempty subsets
of {0, 1, 2}, partially ordered by inclusion. The relation {1} ≤ {0, 1, 2}
is not shown explicitly, because it is a consequence of the relations {1} ≤
{0, 1} ≤ {0, 1, 2} (and also of {1} ≤ {1, 2} ≤ {0, 1, 2}).

{0, 1, 2}

{0, 1} {0, 2} {1, 2}

{0} {1} {2}
   

   
  

```
```

``

   
   

  

```
```

`̀

````````

        

Here are a few more pieces of commonly used terminology.

Definition 5.1.6. Let ≤ be a partial ordering on a set X.
If x, y are elements of X with x ≤ y, then the interval [x, y] means

the subset {z ∈ X | x ≤ z ≤ y}, with the induced partial ordering ≤.
A subset C of a partially ordered set X which is totally ordered under

the induced ordering is called a chain in X.
Elements x and y of X are called incomparable if neither x ≤ y nor

y ≤ x holds. A subset Y ⊆ X is called an antichain if every pair of distinct
elements of Y is incomparable.

An element x ∈ X is said to majorize a subset Y ⊆ X if for all y ∈ Y,
y ≤ x. One similarly says x majorizes an element y if y ≤ x.

A subset Y of X is said to be cofinal in X if every element of X is
majorized by some element of Y.

Note that in addition to the above order-theoretic meaning of “chain”,
there is a nonspecialized use of the word; for instance, one speaks of a “chain
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of equalities x1 = x2 = · · · = xn. ” We shall at times use the term in this
nontechnical way, relying on context to avoid ambiguity.

Unfortunately, there are no standard terms for the duals of the concepts
“majorize” and “cofinal”. One occasionally sees “minorize” and “coinitial”,
but these seem awkward. I often write “downward cofinal” for the dual of
“cofinal”. The best circumlocution I know for the dual of “majorizes” is, “is
majorized by every element of”.

The concept of cofinality, noted in the last sentence of Definition 5.1.6,
probably originated in topology: If s is a point of a topological space S,
and N(s) the set of all neighborhoods of s, then a neighborhood basis of s
means a subset B ⊆ N(s) cofinal in that set, under the ordering by reverse
inclusion. The virtue of this concept is that one can verify that a function on
S approaches some limit at s by checking its behavior on members of such
a B. E.g., one generally checks continuity of a function at a point s of the
real line using the cofinal system of neighborhoods {(s− ε, s+ ε) | ε > 0}.

Exercise 5.1:8. (i) Show that if X is a finite partially ordered set, then
a subset Y is cofinal in X if and only if it contains all maximal elements
of X.
(ii) Show by example that this is not true for infinite partially ordered
sets. Is one direction true?

Exercise 5.1:9. Let X be a finite partially ordered set. One defines the
height of X as the maximum of the cardinalities of all chains in X, and
the width of X as the maximum of the cardinalities of all antichains in
X.
(i) Show that card(X) ≤ height(X) · width(X).

(The above result fails for infinite partially ordered sets, as will be
shown in Exercise 5.6:12(ii).)
(ii) Must every (or some) chain in X of maximal cardinality have non-
empty intersection with every (or some) antichain of maximal cardinality?

Definition 5.1.7. Let ≤ and 4 be partial orderings on a set X. Then one
says ≤ is an extension or strengthening (or sometimes, a refinement) of 4
if it contains the latter, as subsets of X ×X; that is, if x 4 y =⇒ x ≤ y.

The relation of “extension” is a partial ordering on the set of partial or-
derings on X. This fact can be looked at as follows. If we regard each partial
ordering on X as a subset R ⊆ X × X, and partially order the class of
all subsets of X × X by inclusion (the relation ⊆), then the relation of
extension is the restriction of this partial ordering to the subclass of those
R ⊆ X × X which are partial orders. This observation saves us the work
of verifying that the concept of extension satisfies the conditions for being a
partial order, since we know that the restriction of a partial order on a set to
any subset is again a partial order. Many of the partial orderings that arise
naturally in mathematics are, similarly, restrictions of the inclusion relation
or of some other natural partial ordering on a larger set.
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Exercise 5.1:10. Consider the set of all partial orderings on a set to be
partially ordered as above.
(i) Show that the maximal elements in the set of all partial orderings on
a set X are precisely the total orderings.
(ii) How many maximal elements does the set of partial orderings of a set
of n elements have?
(iii) How many minimal elements does the set of partial orderings of a set
of n elements have?
(iv) Show that every partial ordering on a finite set X is the set-theoretic
intersection of a set of total orderings.

If 4 is a partial ordering on a finite set, the smallest number of total
orderings that can be intersected to get 4 is called the “order dimension”
of the partially ordered set. The next question is open-ended.
(v) What can you say about the order dimension function? (You might
look for general bounds on the order dimension of a partially ordered set
of n elements, try to evaluate the order dimensions of particular partially
ordered sets, look at the behavior of order dimension under various con-
structions, etc..)

Here is an outstanding open problem.

Exercise 5.1:11. Let (X, 4) be a finite partially ordered set. Let N denote
the number of total orderings “≤ ” on X extending 4 (“linearizations of
4 ”) and for x, y ∈ X, let Nx, y denote the number of these extensions
“≤ ” which satisfy x ≤ y.
(i) Prove or disprove, if you can,

Fredman’s conjecture: For any (X, 4) such that 4 is not a total order,
there exist elements x, y ∈ X such that

(5.1.8) 1/3 ≤ Nx, y/N ≤ 2/3.

If you cannot settle this open question, here are some special cases to
look at:
(ii) Let r be a positive integer, and let X be the partially ordered set
consisting of a chain of r elements, p1 ≺ · · · ≺ pr, and an element q
incomparable with all the pi. What are N and the Npi, q in this case?
Verify Fredman’s conjecture for this partially ordered set.
(iii) Is the above example consistent with the stronger assertion that if
X has no greatest element, then an x and a y satisfying (5.1.8) can be
chosen from among the maximal elements of X ? With the assertion that
for every two maximal chains in X, one can choose an x in one of these
chains and a y in the other satisfying (5.1.8)? If one or the other of these
possible generalizations of Fredman’s Conjecture is not excluded by the
above example, can you find an example that does exclude it?
(iv) Let r again be a positive integer, and let X be the set {1, . . . , r}
partially ordered by the relation 4 under which i ≺ j if and only if
j − i ≥ 2 (where in this definition ≥ has the usual meaning for integers).
Verify the conjecture in this case as well. For how many two-element subsets
{i, j} are i and j incomparable under 4, and of these, how many satisfy
(5.1.8)?
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(v) If X is any partially ordered set such that the function Nx, y/N never
takes on the value 1/2, define a relation ≤! on X by writing x ≤! y if
either x = y, or Nx, y/N > 1/2. Determine whether this is always,
sometimes or never a (total) ordering on X. Show that for any X which
is a counterexample to Fredman’s Conjecture, ≤! must be a total ordering
on X.

Fredman’s conjecture arose as follows. Suppose that (X, ≤) is a finite
totally ordered set, but that one has only partial information on its order-
ing; namely, one knows for certain pairs of elements x, y which element is
greater, but not for all pairs. This partial information is equivalent to a par-
tial ordering 4 on X weaker than ≤. Suppose one is capable of “testing”
pairs of elements to determine their relation under ≤, and one wants to fully
determine ≤ using a small number of such tests. One would like to choose
each test so that it approximately halves the number of candidate orderings.
Examples show that one cannot do as well as that; but Fredman’s Conjecture
would imply that one can always reduce this number by at least a third at
each step. For some literature on the subject, see [62] and papers referred to
there, and more recently, [123].

Conceivably, one might be able to prove Fredman’s conjecture by assuming
one had a counterexample, and considering the peculiar place the relation ≤!

of part (v) of the above exercise would have to have among the total orderings
on X extending 4. One can see something of the structure of the set of all
total orderings on a set from the next exercise.

Exercise 5.1:12. Define the distance between two total orderings ≤i, ≤j
on a finite set X as

d(≤i, ≤j) = number of pairs of elements (x, y)
such that x <i y but x >j y.

Show that d is a metric on the set of all total orderings, and that for
any partial ordering 4 on X, any two total orderings extending 4 can be
connected by a chain (not meant in the order-theoretic sense!) ≤1, . . . , ≤n
where each ≤i is a total ordering extending 4, and d(≤i, ≤i+1) = 1 for
i = 1, . . . , n− 1.

Here is another open question.

Exercise 5.1:13. (Reconstruction problem for finite partially ordered sets.)
Let P and Q be finite partially ordered sets with the same number n > 3
of elements, and suppose they can be indexed P = {p1, . . . , pn}, Q =
{q1, . . . , qn} in such a way that for each i, P − {pi} and Q − {qi} are
isomorphic as partially ordered sets. Must P be isomorphic to Q ?

(Here nothing is assumed about what bijections give the isomorphisms
P − {pi} ∼= Q − {qi}. We are definitely not assuming that they are the
correspondences pj ←→ qj (j 6= i); if we did, the question would have an
immediate positive answer. A way to state the hypothesis without refer-
ring to such a correspondence is to say that the families of isomorphism
classes of partially ordered (n−1)-element subsets of P and of Q, counting
multiplicities, are the same.)
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If the above question has an affirmative answer, then “one can re-
construct P from its (n−1)-element partially ordered subsets”, hence the
name of the problem. What is known on the subject is surveyed in [127].

(The analogous reconstruction problem for graphs is also open, and
better known [86].)

5.2. Digression: preorders

One sometimes encounters binary relations which, like partial orderings, are
reflexive and transitive, but which do not satisfy the antisymmetry condi-
tion. For instance, although the relation “divides” on the positive integers is
a partial ordering, the relation “divides” on the set of all integers is not anti-
symmetric, since every n divides −n and vice versa. More generally, on the
elements of any commutative integral domain, “divides” is a reflexive transi-
tive relation, but for every element x and invertible element u, x and ux
each divide the other. Similarly, on a set of propositions (sentences in some
formal language) about a mathematical situation, the relation P =⇒ Q is
reflexive and transitive, but not generally antisymmetric: Distinct sentences
can each imply the other, i.e., represent equivalent conditions.

To cover such situations, one makes

Definition 5.2.1. A reflexive transitive (not necessarily antisymmetric) bi-
nary relation on a set X is called a preorder on X.

The concept of a preordered set can be reduced in a natural way to a
combination of two sorts of structure that we already know:

Proposition 5.2.2. Let X be a set. Then the following data are equivalent.

(i) A preorder 4 on X.

(ii) An equivalence relation ≈ on X, and a partial ordering ≤ on the set
X/≈ of equivalence classes.

Namely, to go from (i) to (ii), given the preorder 4 define x ≈ y to mean
(x 4 y)∧ (y 4 x), and for any two elements [x], [y] ∈ X/≈, define [x] ≤ [y]
in X/≈ to hold if and only if x 4 y holds in X.

Inversely, given, as in (ii), an equivalence relation ≈ and a partial order-
ing ≤ on X/≈, one gets a preorder 4 by defining x 4 y to hold in X if
and only if [x] ≤ [y] in X/≈. ut

Exercise 5.2:1. Prove the above proposition. (This requires one verification
of well-definedness, and some observations showing why the two construc-
tions, performed successively in either order, return the original data.)
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This is neat: A reflexive transitive relation (a preorder) decomposes into a
reflexive transitive symmetric relation (an equivalence relation) and a reflex-
ive transitive antisymmetric relation (a partial ordering).

As an example, if we take the set of elements of a commutative integral do-
main R, preordered by divisibility, and divide out by the equivalence relation
of mutual divisibility, we get a partially ordered set, which can be identified
with the set of principal ideals of R partially ordered by reverse inclusion.

In view of Proposition 5.2.2, there is no need for a theory of preorders
– that is essentially subsumed in the theory of partial orderings. But it is
valuable to have the term “preorder” available when such relations arise.

The remainder of this section consists of some exercises on preorders which
will not be used in subsequent sections. Exercises 5.2:2-5.2:9 concern a class
of preorders having applications to ring theory, group theory, and semigroup
theory. (Dependencies within that group of exercises: All later exercises de-
pend on 5.2:2-5.2:3, and 5.2:5 is also assumed in 5.2:6-5.2:9. If you wish to
hand in one of these exercises without writing out the details of others on
which it depends, you should begin with a summary of the results from the
latter that you will be assuming. You might check that summary with me
first.) The last exercise of this section, in contrast, will relate preorders and
topologies.

Exercise 5.2:2. If f and g are nondecreasing functions from the positive
integers to the nonnegative integers, let us write f 4 g if there exists a
positive integer N such that for all i, f(i) ≤ g(Ni).
(i) Show that 4 is a preorder, but not a partial order, on the set of
nondecreasing functions.
(ii) On the subset of functions consisting of all polynomials with nonneg-
ative integer coefficients, get a description of 4 in terms of the expressions
for these polynomials, and determine its “decomposition” as in Proposi-
tion 5.2.2.
(iii) Do the same for the union of the set of polynomials of (ii), and the
set of exponential functions i 7→ ni for all integers n > 1.
(iv) Show that the partial ordering ≤ on equivalence classes induced by
the above preordering 4 on nondecreasing functions from positive integers
to nonnegative integers is not a total ordering.
(v) Regarding the nondecreasing functions from positive integers to non-
negative integers as a monoid under addition, show that the equivalence
relation ≈ induced by 4 is a congruence on this monoid, so that the
factor set again becomes an additive monoid.

Exercise 5.2:3. Let S be any monoid, and x1, . . . , xn elements of S, and
for each positive integer i, let gx1, ..., xn(i) denote the number of distinct
elements of S which can be written as words of length ≤ i in x1, . . . , xn
(where factors may occur more than once). This is a nondecreasing function
from the positive integers to the nonnegative integers, the growth function
associated with x1, . . . , xn.

Show that if S is generated by x1, . . . , xn, and if y1, . . . , ym is any
finite family of elements of S, then in the notation of the preceding exercise,
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gy1, ..., ym 4 gx1, ..., xn . Deduce that if x1, . . . , xn and y1, . . . , ym are two
generating sets for the same monoid, then gx1, ..., xn ≈ gy1, ..., ym , where
≈ is the equivalence relation determined as in Proposition 5.2.2 by the
preorder 4.

Thus, if S is finitely generated, the equivalence class [gx1, ..., xn ] is the
same for all finite generating sets x1, . . . , xn of S. This equivalence class is
therefore an invariant of the finitely generated monoid S, called its growth
rate.

We see also that if a finitely generated monoid S is embeddable in another
finitely generated monoid T, then the growth rate of S must be ≤ that of
T.

Exercise 5.2:4. (i) Determine the structure of the partially ordered set
consisting of the growth rates of the free abelian monoids on finite numbers
of generators together with those of the free monoids on finite numbers of
generators.
(ii) With the help of the result of (i), show that the free abelian monoid
on m generators is embeddable in the free abelian monoid on n generators
if and only if m ≤ n.
(iii) Verify that for any positive integer n, the map from the free monoid
on n generators x1, . . . , xn to the free monoid on 2 generators x, y
taking xi to x yi (i = 1, . . . , n) is an embedding. Is this consistent with
the results of (i)?

This concept of growth rate is more often studied for groups and rings
than for monoids. Note that elements x1, . . . , xn of a group G generate
G as a group if and only if x1, x

−1
1 , . . . , xn, x

−1
n generate G as a monoid,

so the group-theoretic growth function of G with respect to {x1, . . . , xn}
may be defined to be the growth function of G as a monoid with respect
to the generating set {x1, x

−1
1 , . . . , xn, x

−1
n }. The equivalence class of the

growth functions determined in this way by generating sets for G is called
the growth rate of the group G, which is thus the same as the growth rate of
G as a monoid. This concept of growth rate has been applied, in particular,
to fundamental groups of manifolds [147].

If R is an algebra over a field k, then in defining its growth rate as an
algebra, one lets gx1, ..., xn(i) denote, not the number of distinct elements of
R that can be written as products of ≤ i factors taken from {x1, . . . , xn},
but the dimension of the k-vector space spanned in R by such products.
The remainder of the definition is as for monoids. Though it is a bit of a
digression from the subject of preorders, I will sketch in the next few exercises
an important invariant obtained from these growth rates, and some of its
properties.

Exercise 5.2:5. If S is a monoid with finite generating set x1, . . . , xn, the
Gel’fand-Kirillov dimension of S is defined as

(5.2.3) GK(S) = lim supi
ln(gx1, ..., xn(i))

ln(i)
.
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(Here “ ln ” denotes the natural logarithm, and lim supi a(i) means

limj→∞ supi≥j a(i).

Thus, if a is a nonnegative function, lim supi a(i) is a nonnegative real
number or +∞.)
(i) Show that the right hand side of (5.2.3) is a function only of the
growth rate [gx1, ..., xn ], hence does not depend on the choice of generators
x1, . . . , xn; hence that the Gel’fand-Kirillov dimension of a monoid is well
defined.
(ii) Determine the Gel’fand-Kirillov dimensions of the free abelian monoid
and the free monoid on n generators.

Exercise 5.2:6. In the early literature on Gel’fand-Kirillov dimension, it
was often stated (in effect) that for monoids S1, S2, one had GK(S1 ×
S2) = GK(S1) + GK(S2). Sketch an argument that seems to give this
result, then point out the fallacy, and if you can, find a counterexample.
(Actually, the statement was made for tensor products of algebras, rather
than direct products of monoids, but either case would imply the other.)

Exercise 5.2:7. (i) Show that if S is a finitely generated monoid and
GK(S) < 2, then GK(S) = 0 or 1.
(ii) Show, on the other hand, that there exist finitely generated monoids
having for Gel’fand-Kirillov dimensions all real numbers ≥ 2, and +∞.
(Suggestion: begin by showing that for any finite or infinite set Y of el-
ements of a free monoid F, one can construct a homomorphic image S
of F in which all elements not having members of Y as subwords have
distinct images, while all elements that do have subwords in S have a
common image, “ 0 ”.)
(iii) Show that there exist finitely generated monoids with distinct growth
rates, but the same finite Gel’fand-Kirillov dimension.

We haven’t seen any results on growth rates of k-algebras yet. If one is
only concerned with what growth rates occur, there is essentially no difference
between the cases of k-algebras and of monoids, as shown in

Exercise 5.2:8. Let k be any field.
Show that for every monoid S with generating set s1, . . . , sn, there

exists a k-algebra R with a generating set r1, . . . , rn such that for all i,
gr1, ..., rn(i) = gs1, ..., sn(i). Similarly, show that for every k-algebra R with
generating set r1, . . . , rn, there exists a monoid S with a generating set
s1, . . . , sn+1 such that for all i, gs1, ..., sn+1

(i) = gr1, ..., rn(i) + 1. Deduce
that the same sets of growth rates occur for monoids and for nonzero
k-algebras.

However, if one is interested in the growth of algebras with particular
ring-theoretic properties, these do not in general reduce to questions about
monoids. For instance, students familiar with transcendence degrees of field
extensions might do
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Exercise 5.2:9. Show that if k is a field and R a finitely generated commu-
tative k-algebra without zero-divisors, then the Gel’fand-Kirillov dimension
of R as a k-algebra (defined, as for monoids, by (5.2.3)) equals the tran-
scendence degree over k of the field of fractions of R (hence is an integer).

For more on Gel’fand-Kirillov dimension in ring theory, see [104].

For students familiar with the definitions of general topology, another in-
stance of the concept of preorder is noted in:

Exercise 5.2:10. (i) Show that if X is a topological space, and if for
x, y ∈ X, we define y ≤ x to mean “the closure of {x} contains y ”, then
≤ is a preorder on X.
(ii) Show that if X is finite, the above construction gives a bijection
between topologies and preorders on X.
(iii) Under the above bijection, what classes of preorders correspond to
T0, respectively T1, respectively T2 topologies?
(iv) If X is infinite, is the above map from topologies to preorders one-to-
one? Onto? Can one associate to every preorder on X a strongest and/or
a weakest topology yielding the given preorder under this construction?

5.3. Induction, recursion, and chain conditions

The familiar principle of induction on the natural numbers (nonnegative in-
tegers) that one learns as an undergraduate is based on the order properties
of that set. In this and the next two sections, we shall examine more general
kinds of ordered sets over which one can perform inductive proofs. We shall
also see that analogous to inductive proofs there is a concept of recursive
constructions, which can be performed under similar hypotheses.

(Any students to whom the distinction between “minimal” and “least”
elements in a partially ordered set was new should review Definition 5.1.5
before going on.)

Lemma 5.3.1. Let (X, ≤) be a partially ordered set. Then the following
conditions are equivalent:

(i) Every nonempty subset of X has a minimal element.

(ii) For every descending chain x0 ≥ x1 ≥ · · · ≥ xi ≥ . . . in X indexed by
the natural numbers, there is some n such that xn = xn+1 = . . . .

(ii′) Every strictly descending chain x0 > x1 > . . . indexed by an initial
subset of the natural numbers (that is, either by {0, 1, . . . , n} for some n,
or by the set of all nonnegative integers) is finite (that is, is in fact indexed
by {0, 1, . . . , n} for some n).

(ii′′) X has no strictly descending chains x0 > x1 > . . . indexed by the full
set of natural numbers.
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Proof. (i) =⇒ (ii′′) ⇐⇒ (ii′) ⇐⇒ (ii) is straightforward. Now assume (ii′′),
and suppose that (i) failed, i.e., that we had a nonempty subset Y ⊆ X with
no minimal element. Take any x0 ∈ Y. Since this is not minimal, we can find
x1 < x0. Since this in turn is not minimal, we can find x2 < x1. Continuing
this process, we get a contradiction to (ii′′). ut

Definition 5.3.2. A partially ordered set X is said to have descending chain
condition (abbreviated “DCC”; called “minimum condition” by some au-
thors) if it satisfies the equivalent conditions of the above lemma.

Likewise, a partially ordered set X with the dual condition (every non-
empty subset has a maximal element, equivalently, X has no infinite ascend-
ing chains) is said to have ascending chain condition, or ACC, or maximum
condition.

A well-ordered set means a totally ordered set with descending chain con-
dition.

Remark: A chain in X, as defined following Definition 5.1.2, is a totally
ordered subset, and it is meaningless to call such a subset “increasing” or
“decreasing”. In the above lemma and definition, the phrases “descending
chain” and “ascending chain” are used as shorthand for a chain which can be
indexed in a descending, respectively in an ascending manner by the natural
numbers. (One may consider this a mixture of the order-theoretic meaning
of “chain” and the informal meaning, referring to a sequence of elements in-
dexed by consecutive integers with a specified relationship between successive
terms.) But though this shorthand is used in the fixed phrases “ascending
chain condition” and “descending chain condition”, we have made the mean-
ings of these phrases explicit, via the above lemma and definition.

That the natural numbers are well-ordered has been known in one form or
another for millennia, but the importance of ACC and DCC for more general
partially ordered sets was probably first noted in ring theory, in the early
decades of the twentieth century. Rings with these conditions on their sets of
ideals, partially ordered by inclusion, are called “Noetherian” and “Artinian”
respectively, after Emmy Noether and Emil Artin who studied them.

One does not need to formally state a “principle of induction over partially
ordered sets with ACC (or DCC)”. Rather, when one wishes to prove a result
for all elements of a partially ordered set X with, say, DCC, one can simply
begin, “Suppose there are elements of X for which the statement is false. Let
x be minimal for this property”, since if the set of such elements is nonempty,
it must have a minimal member. Then one knows the statement is true for
all y < x; and if one can show from this that it is true for x as well, one
gets a contradiction, proving the desired result. Since this is a familiar form
of argument, one often abbreviates it and says, “Assume inductively that the
statement is true for all y < x ”, proves from this that it is true for x as
well, and concludes that it is true for all elements of X.

In the most familiar sort of induction on the natural numbers, one starts
by proving the desired result for 0 (or 1). Why was there no corresponding
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step in the schema described above? The analog of the statement that our
desired result holds for 0 would be the statement that it holds for all minimal
elements of X. But if one proves that a statement is true for an element x
whenever it is true for all smaller elements, then in particular, one has it
in the case where the set of smaller elements is empty. Depending on the
situation, the proof that a result is true for x if it is true for all smaller
elements may or may not involve a different argument when x is minimal.

Exercise 5.3:1. A noninvertible element of a commutative integral domain
C is called irreducible if it cannot be written as a product of two nonin-
vertible elements. Give a concise proof that if C is a commutative integral
domain with ascending chain condition on ideals (or even just on principal
ideals), then every nonzero noninvertible element of C can be written as
a product of irreducible elements.

In addition to proofs by induction, one often performs constructions in
which each step requires that a set of preceding steps already have been
done. The definition of the Fibonacci numbers fi (i = 0, 1, 2, . . . ) by the
conditions

(5.3.3) f0 = 0, f1 = 1, fn+2 = fn + fn+1 for n ≥ 0

is of this sort. These are called recursive definitions or constructions, and we
shall now see that, like inductive proofs, they can be carried out over general
partially ordered sets with chain conditions.

Let us analyze what such a construction involves in general, and then show
how to justify it. Suppose X is a partially ordered set with DCC, and suppose
that we wish to construct recursively a certain function f from X to a set
T. To say that for some x ∈ X the value of f has been determined for all
y < x is to say that we have a function f<x : {y | y < x} → T. So “a rule
defining f at each x if it has been defined at all y < x ” can be formalized
as a T -valued function r on the set of all pairs (x, f<x) where x ∈ X and
f<x is a function {y | y < x} → T. In most applications, our rule defining
f at x in terms of the values for y < x actually requires that these values
satisfy some additional conditions, and we verify these conditions inductively,
as the construction is described recursively. But to avoid complicating our
abstract formalization, let us assume r defined for all pairs (x, f<x) where
x ∈ X and f<x is a function {y | y < x} → T. For if we have a definition
of r in “good” cases, we can extend it to other cases in an arbitrary way
(e.g., assume 0 ∈ T and send (x, f<x) to 0 if f<x is not “good”). Then the
inductive proof that f is “good” can be formally considered to come after
the recursive construction of f.

We see that the property characterizing the function f constructed re-
cursively as above is that for each x ∈ X, f(x) is a certain function of the
restriction of f to {y | y < x}. For any function f : X → Y, and any subset
Z of X, let us denote the restriction of f to Z, a function Z → Y, by
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f |Z. (A variant symbol which is sometimes used, but which we will not use,
is f � Z.)

We now justify recursive constructions by proving

Lemma 5.3.4. Let X be a partially ordered set with descending chain con-
dition, T any set, and r a function associating to every pair (x, f<x) such
that x ∈ X, and f<x is a function {y ∈ X | y <x} → T, an element
r(x, f<x) ∈ T. Then there exists a unique function f : X → T such that for
all x ∈ X,

f(x) = r(x, f | {y | y <x} ).

Proof. Let X ′ ⊆ X denote the set of all x ∈ X for which there exists a
unique function f≤x : {y | y ≤ x} → T with the property that

(5.3.5) (∀ y ≤ x) f≤x(y) = r(y, f≤x | {z | z <y} ).

We claim, first, that for any two elements x0, x1 ∈ X ′, the functions f≤x0
,

f≤x1
agree on {y | y≤x0 ∧ y≤x1}. For if not, choose a minimal y in this

set at which they disagree. Then by (5.3.5), f≤x0
(y) = r(y, f≤x0

| {z | z <y}),
and f≤x1(y) = r(y, f≤x1 | {z | z <y}). But by choice of y, the restrictions
of f≤x0 and f≤x1 to {z | z < y} are equal, hence by the above equations,
f≤x0

(y) = f≤x1
(y), contradicting our choice of y.

Next, suppose that X ′ were not all of X. Let x be a minimal element of
X−X ′. Since, as we have just seen, the functions f≤y for y < x agree on the
pairwise intersections of their domains, they piece together into one function
f<x on the union of their domains. (Formally, this “piecing together” means
taking the union of these functions, as subsets of X × T.) If we now define
f≤x to agree with this function f<x on {y | y < x}, and to have the value
r(x, f<x) at x, we see that this function satisfies (5.3.5), and is the unique
function on {y | y ≤ x} which can possibly satisfy that condition. This
means x ∈ X ′, contradicting our choice of x.

Hence X ′ = X. Now piecing together these functions f≤x defined on the
sets {y | y ≤ x}, we get the desired function f defined on all of X. ut

Note that most of the above proof consisted of an inductive verification
that for every x ∈ X, there exists a unique function f≤x satisfying (5.3.5).
So recursion is justified by induction.

Example: The Fibonacci numbers are defined recursively by using for X
the ordered set of nonnegative integers, and defining r(n, (f0, . . . , fn−1)) to
be 0 if n = 0, to be 1 if n = 1, and to be fn−2 + fn−1 if n ≥ 2.

The next exercise shows that recursive constructions are not in general
possible if the given partially ordered set does not satisfy descending chain
condition.

Exercise 5.3:2. Show that there does not exist a function f from the in-
terval [0, 1] of the real line to the set {0, 1} determined by the following
rules:
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(a) f(0) = 0.
(b) For x > 0, f(x) = 1 if for all y ∈ [0, x), f(y) = 0; otherwise,
f(x) = 0.

If you prefer, you may replace the interval [0, 1] in this example with
the countable set {0} ∪ {1/n | n = 1, 2, 3, . . . }.

Exercise 5.3:3. Generalizing the above exercise, show that if (X, ≤) is any
partially ordered set not satisfying descending chain condition, then
(i) There exists a function r as in the statement of Lemma 5.3.4, with
T = {0, 1}, such that no function f satisfies the conditions of the conclu-
sion of that lemma.
(ii) There exists a function r as in the statement of Lemma 5.3.4, with
T = {0, 1}, such that more than one function f satisfies the conditions of
the conclusion of that lemma.

In a way, solving a differential equation with given initial conditions is
like a “recursive construction over an interval of the real numbers”. But
precisely because the real numbers do not have descending chain condition,
the conditions for existence and uniqueness of a solution, and the arguments
needed to prove these, are subtle. (A different sort of property of the real
line, which plays a role in such arguments, is connectedness.)

There is a situation at the very foundation of mathematics which can be
interpreted in terms of a partially ordered system with descending chain con-
dition. The Axiom of Regularity of set theory (which will be stated formally
in the next section) says that there is no “infinite regress” in the construc-
tion of sets; that is, that there are no left-infinite chains of sets under the
membership relation:

· · · ∈ Sn ∈ · · · ∈ S2 ∈ S1 ∈ S0.

This is not a difficult axiom to swallow, since if we had a set theory for
which it was not true, we could pass to the “smaller” set theory consisting of
those sets which admit no such chain to the left of them. The class of such
sets would be closed under all the constructions required by the remaining
axioms of set theory, and the “new” set theory would satisfy the Axiom of
Regularity.

To interpret Regularity in the terms we have just been discussing, let us
write A ≺ B, for sets A and B, if there is a chain of membership-relations,
A = S0 ∈ S1 ∈ · · · ∈ Sn = B (n > 0). This relation is clearly transitive. The
Regularity Axiom implies that ≺ is antireflexive (if we had A ≺ A, then a
chain of membership relations connecting A with itself could be iterated to
give an infinite chain going to the left), hence ≺ is the partial strict ordering
corresponding to a partial ordering 4; and Regularity applied again says that
this partial ordering has descending chain condition. (Well, almost. We have
only defined the concepts of partial ordering and chain condition for sets, and
the class of all sets is not a set. To get around this problem we can translate
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these observations more precisely as saying that for each set A, the collection
{B | B 4 A} is itself a set, and has descending chain condition under 4.)
This allows one to prove set-theoretic results by induction with respect to
this ordering, and likewise use it in recursive set-theoretic definitions.

We had another such situation in Chapter 2, when we talked about the
set T = TX,µ, ι, e of group-theoretic terms in a set of symbols X. These also
satisfy a principle of regularity, in terms of the relation “ s occurs in t ”,
which we denoted t �H s in Exercise 2.7:4. To show this, let T ′ denote the set
of elements of T admitting no infinite descending �H -chains to the right of
them. One verifies that T ′ is closed under the operations of conditions (a)
and (b) of the definition of T (Definition 2.5.1), and concludes that if T ′

were properly smaller than T, one would have a contradiction to condition
(c) of that definition. We only sketched the construction of T in Chapter 2,
but in §9.3 below we will introduce the concept of “term” for general classes
of algebras, and the above argument will then enable us to perform recursion
and induction on such terms.

One can, of course, do inductive proofs and recursive constructions over
partially ordered sets with ascending as well as descending chain condition.
These come up often in ring theory, where Noetherian rings, i.e., rings whose
partially ordered set of ideals has ACC, are important. In proving that a
property holds for every ideal I of such a ring, one may consider an ideal I,
and assume inductively that the desired property holds for all strictly larger
ideals.

To get the result allowing us to perform recursive constructions in such
situations, i.e., the analog of Lemma 5.3.4 with > replacing <, it is not
necessary to repeat the proof of that lemma; we can use duality of partially
ordered sets. I will give the statement and sketch the argument this once, to
show how an argument by duality works. After this, if I want to invoke the
dual of an order-theoretic result previously given, I shall consider it sufficient
to say “by duality”, or “by the dual of Proposition #.#.#”, or the like.

Corollary 5.3.6. Let X be a partially ordered set with ascending chain con-
dition, T any set, and r a function associating to every pair (x, f>x) con-
sisting of an element x ∈ X and a function f>x : {y | y >x} → T an
element r(x, f>x) ∈ T. Then there exists a unique function f : X → T such
that for all x ∈ X, f(x) = r(x, f | {y | y >x}).

Sketch of proof. The opposite of the partially ordered set X (the structure
with the same underlying set but the opposite ordering) is a partially ordered
set Xop with descending chain condition, and r can be considered to be a
function r′ with exactly the properties required to apply Lemma 5.3.4 to
that partially ordered set. That lemma gives us a unique function f ′ from
Xop to T satisfying the conclusions of that lemma relative to r′, and this
is equivalent to a function f from X to T satisfying the desired condition
relative to r. ut
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Example: The Fibonacci numbers fn were defined above for n ≥ 0. With
the help of downward recursion on the set of negative integers, one can now
easily verify that there is also a unique way of defining fn for negative n,
such that combining the values for negative and nonnegative n, we get a
sequence (fi)i∈Z which satisfies fn+2 = fn + fn+1 for all n.

Often the key to making an inductive argument or a recursive construction
work is a careful choice of a parameter over which to carry out the induction or
recursion, and an appropriate ordering on the set of values of that parameter.
The next definition describes a way of constructing partial orderings that is
frequently useful for such purposes. The well-ordered index set I in that
definition can be as simple as {0, 1}.

Definition 5.3.7. Let (Xi)i∈I be a family of partially ordered sets, indexed
by a well-ordered set I. Then lexicographic order on I

Xi is defined by
declaring (xi) ≤ (yi) to hold if and only if either (xi) = (yi), or for the least
j ∈ I such that xj 6= yj , one has xj < yj in Xj .

Note that if I = {1, . . . , n} with its natural order, then this construction
orders n-tuples (x1, . . . , xn) ∈

I
Xi by the same “left-to-right” princi-

ple that is used to arrange words in the dictionary; hence the name of the
construction. The usefulness of this construction in obtaining orderings with
descending chain condition is indicated in part (iii) of

Exercise 5.3:4. Let (Xi)i∈I be as in Definition 5.3.7.
(i) Verify that the relation on

I
Xi given by that definition is indeed

a partial order.
(ii) Show that if each Xi is totally ordered, then so is their direct product
under that ordering. Show, in contrast, that the corresponding statement
is not in general true for the product ordering, described in Definition 5.1.4.
(iii) Show that if I is finite, and each of the partially ordered sets Xi has
descending chain condition, then so does their product under lexicographic
ordering.
(iv) Comparing lexicographic ordering with the product ordering, deduce
that given a finite family of partially ordered sets, each of which has de-
scending chain condition, their direct product, under the product ordering,
also has descending chain condition.
(v) Show that the product of a family of copies of the two-element to-
tally ordered set {0, 1}, indexed by the natural numbers, does not have
descending chain condition under the product ordering. Deduce that lexi-
cographic ordering on products of infinite families of partially ordered sets
with descending chain condition also fails, in general, to have descending
chain condition.

(By duality, analogs of (iii)-(v) also hold for ascending chain condition.)

In the next exercise, a lexicographic ordering is used to give a concise proof
of a standard result on symmetric polynomials.
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Exercise 5.3:5. Let R be a commutative ring, and R[x1, . . . , xn] the poly-
nomial ring in n indeterminates over R. Given any nonzero polynomial

f =
∑
ci(1), ..., i(n) x

i(1)
1 . . . x

i(n)
n (almost all ci(1), ..., i(n) zero), let us define

the leading term of f to be the nonzero summand in this expression with
the largest exponent-string (i(1), . . . , i(n)) under lexicographic ordering
on the set of all such strings. (Since the set of nonzero summands is finite,
no chain condition is needed to make this definition.)
(i) Let f and g be nonzero elements of R[x1, . . . , xn], and suppose
that the coefficient occurring in the leading term of f is not a zero-divisor
in R. (E.g., this is automatic if R is an integral domain.) Show that the
leading term of f g is the product of the leading terms of f and of g.

An element of R[x1, . . . , xn] is called symmetric if it is invariant un-
der the natural action of the group of all permutations of the index set
{1, . . . , n} on the indeterminates x1, . . . , xn. For 1 ≤ d ≤ n, the d-th
elementary symmetric function sd is defined to be the sum of all products
of exactly d distinct members of {x1, . . . , xn}. Our goal will be to show
that the ring of symmetric polynomials in n indeterminates over R is
generated over R by the elementary symmetric polynomials.
(ii) For nonnegative integers j(1) . . . j(n), find the leading term of the

product s
j(1)
1 . . . s

j(n)
n .

(iii) Show that the following sets are the same:
(a) The set of all n-tuples (i(1), . . . , i(n)) of nonnegative integers
such that i(1) ≥ · · · ≥ i(n).
(b) The set of all exponent-strings (i(1), . . . , i(n)) of leading terms

ci(1), ..., i(n) x
i(1)
1 . . . x

i(n)
n of symmetric polynomials.

(c) The set of all exponent-strings of leading terms of products

s
j(1)
1 . . . s

j(n)
n , as in (ii) above.

(iv) Deduce that any nonzero symmetric polynomial can be changed to a
symmetric polynomial with lower exponent-string-of-the-leading-term, or
to the zero polynomial, by subtracting a scalar multiple of a product of ele-
mentary symmetric polynomials. Conclude, by induction on this exponent-
string, that the ring of symmetric polynomials in n indeterminates over
R is generated over R by the elementary symmetric polynomials.

(For standard proofs of the above result, see [31, pp. 252-255], or [33,
Theorem IV.6.1, p. 191]. For some related results on noncommutative rings,
see [60].)

Exercise 5.3:6. For nonnegative integers i and j, let ni,j be defined re-
cursively as the least nonnegative integer not equal to ni, j′ for any j′ < j,
nor to ni′, j for any i′ < i. (What ordering of the set of pairs (i, j) of
nonnegative integers can one use to justify this recursion?)

Find and prove a concise description of ni,j . (Suggestion: Calculate
some values and note patterns. To find the “pattern in the patterns”, write
numbers to base 2.)

We end with two miscellaneous exercises.
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Exercise 5.3:7. For X a topological space, show that the following condi-
tions are equivalent. (We do not understand “compact” to entail Hausdorff
or nonempty.)

(a) Every subset of X is compact in the induced topology.
(b) Every open subset of X is compact in the induced topology.
(c) The partially ordered set of open subsets of X has ascending
chain condition.

Exercise 5.3:8. One may ask whether Exercise 5.3:1 has a converse: that if
C is a commutative integral domain in which every nonzero noninvertible
element can be written as a product of irreducibles, then C has ascending
chain condition on principal ideals. Show by example that this is not true.

5.4. The axioms of set theory

We are soon going to look at some order-theoretic principles equivalent to
the powerful Axiom of Choice. Hence it is desirable to review the statement
of that axiom, and its status in relation to the other axioms of set theory.
For completeness, I will record in this section the whole set of axioms most
commonly used by set theorists.

Let us begin with some background discussion. In setting up a rigorous
foundation for mathematics, one might expect the theory to require several
sorts of entities: “primitive” elements such as numbers, additional sets formed
out of these, ordered pairs of elements, functions from one set to another, etc..
But as the theory was developed, it turned out that one could get everything
one wanted from a single basic concept, that of set, and a single relation
among sets, that of membership. The result is a set theory in which the only
members of sets are themselves sets.

As an important example of how other “primitives” are reduced to the
set concept, we recall the case of the natural numbers (nonnegative integers).
The first thing we learn in our childhood about these numbers is that they
are used to count things; to say how many objects there are in a collection.
The early set theorists observed that one can formalize the concept of two
sets having the “same number” of elements set-theoretically, as meaning that
there exists a bijection between them. This is clearly an equivalence relation
on sets. Hence the natural numbers ought be some entities which one could
associate to finite sets, so that two sets would get the same entity associated
to them if and only if they were in the same equivalence class. The original
plan was to use, as those entities, the equivalence classes themselves, i.e., to
define the natural numbers 0, 1, 2, etc., to be the corresponding equivalence
classes. Thus, the statement that a finite set had n elements would mean
that it was a member of the number n. (Cardinalities of infinite sets were to
be treated similarly.) This is good in principle – don’t create new entities to
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index the equivalence classes if the equivalence classes themselves will do. But
in this case, the equivalence classes turned out not to be a good choice: they
are too big to be sets. So the next idea was to choose one easily described
member from each such class, call these chosen elements the natural numbers
0, 1, 2, . . . , and define a set to have n elements if it could be put in bijective
correspondence with the “sample” set n.

Where would one get these “sample” finite sets from, using pure set theory?
There is no problem getting a sample 0-element set – there is a unique set
with 0 elements, the empty set ∅. Having taken this step, we have one set
in hand: ∅. This means that we are in a position to create a sample one-
element set, the set with that element as its one member, i.e., {∅}. Having
found these two elements, ∅ and {∅}, we can define a 2-element set {∅, {∅}}
to use as our next sample – and so on. After the first couple of steps, we are
not so limited in our options. (For example, one might, instead of following
the pattern illustrated, take for 4 the set of all subsets of 2.) However, the
above approach, of always taking for the next number the set of numbers
found so far, due to John von Neumann, is an elegant way of manufacturing
one set of each natural-number cardinality, and it is taken as the definition
of these numbers by modern set theorists:

(5.4.1)

0 = ∅, 1 = {∅}, 2 = {∅, {∅}},
3 = {∅, {∅}, {∅, {∅}}},

. . .

i+ 1 = i ∪ {i} = {0, 1, 2, . . . , i},
. . .

Another basic concept which was reduced to the concepts of set and mem-
bership is that of ordered pair. If X and Y are sets, then one can deduce
from the axioms (shortly to be listed) that X and Y can each be deter-
mined uniquely from the set {{X}, {X, Y } }. Since all one needs about
ordered pairs is that they are objects which specify their first and second
components unambiguously, one defines the ordered pair (X, Y ) to mean
the set {{X}, {X, Y } }.

One then goes on to define the direct product of two sets in terms of ordered
pairs, binary relations in terms of direct products, functions in terms of bi-
nary relations, etc.. From natural numbers, ordered pairs, and functions, one
constructs the integers, the rational numbers, the real numbers, the complex
numbers, etc., by well-known techniques, which I won’t review here.

(One also wants to define ordered n-tuples. The trick by which ordered
pairs were defined turns out not to generalize in an easy fashion; the most
convenient approach is to define an ordered n-tuple to mean a function whose
domain is the set n. However, this conflicts with the definition of ordered
pair! To handle this, a careful development of set theory must use different
symbols, say X, Y for the concept of “ordered pair” first described, and
(X0, X1, . . . , Xn−1) for the ordered n-tuples subsequently defined.)
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The above examples should give some motivation for the “sort” of set
theory described by the axioms which we shall now list. Of course, a text
on the foundations of mathematics will first develop language allowing one
to state these axioms precisely, and, since a statement in such language is
not always easy to understand, it will precede or follow many of the precise
statements by intuitive developments. I have tried below to give formulations
that make it as clear as possible what the axioms assert, and have added some
further remarks after the list. But for a thorough presentation, and for more
discussion of the axioms, the student should see a text on the subject. Two
recommended undergraduate texts are [14] and [23]. Written for a somewhat
more advanced audience is [21].

Here, now, are the axioms of Zermelo-Fraenkel Set Theory with the Axiom
of Choice, commonly abbreviated ZFC.

Axiom of Extensionality. Sets are equal if and only if they have the same
members. That is, X = Y if and only if for every set A, A ∈ X ⇐⇒ A ∈
Y.

Axiom of Regularity (or Well-foundedness, or Foundation). For every
nonempty set X, there is a member of X which is disjoint from X.

Axiom of the Empty Set. There exists a set with no members. (Common
notation: ∅.)
Axiom of Separation. If X is a set and P is a condition on sets, there
exists a set Y whose members are precisely the members of X satisfying P.
(Common notation: Y = {A ∈ X | P (A)}.)
Axiom of Doubletons (or Pairs). If X and Y are sets, there is a set Z
whose only members are X and Y. (Common notation: Z = {X, Y }.)
Axiom of Unions. If X is a set, there is a set Y whose members are
precisely all members of members of X. (Common notations: Y =

⋃
X or⋃

A∈X A.)

Axiom of Replacement. If f is an operation on sets (formally character-
ized by a set-theoretic proposition P (A, B) such that for every set A there is
a unique set f(A) such that P (A, f(A)) holds), and X is a set, then there
exists a set Y whose members are precisely the sets f(A) for A ∈ X. (Com-
mon notation: Y = {f(A) | A ∈ X}. When there is no danger of confusion,
this is sometimes abbreviated to Y = f(X).)

Axiom of the Power Set. If X is a set, there exists a set Y whose
members are precisely all subsets of X. (Common notations: Y = P(X) or
2X .)

Axiom of Infinity. There exists a set having ∅ as a member, closed under
the construction i 7→ i ∪ {i} (cf. (5.4.1)), and minimal for these properties.
(Common name: The set of natural numbers.)

Axiom of Choice. If X is a set, and f is a function associating to every
x ∈ X a nonempty set f(x), then there exists a function g associating to
every x ∈ X an element g(x) ∈ f(x).
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Explanations of some of the names: Extensionality means that a set is
determined by its extent, not its intent. Separation says that one can form
new sets by using any well-defined criterion to “separate out” certain elements
of an existing set. The Axiom of Infinity is so called because if we did not
assume it, the collection of all sets which can be built up from the empty set
in finitely many steps would satisfy our axioms, giving an example of a set
theory in which all sets are finite. One can show that, given the preceding
axioms, that axiom is equivalent to the existence of an infinite set.

We described Regularity earlier as saying that there was no infinite regress
under “∈ ”. That formulation requires one to have the set of natural num-
bers to index such a regress, so we chose a formulation that can be expressed
independently of the Axiom of Infinity. In the presence of the other axioms
one can prove the two formulations equivalent. (Roughly, if one had an in-
finite chain · · · ∈ S2 ∈ S1 ∈ S0, then {Si} would be a counterexample to
Regularity, while if a set X were a counterexample to Regularity, one could
select such a chain from its elements.)

Actually, the Axiom of Regularity makes little substantive difference for
areas of mathematics other than set theory itself (e.g., see [23, p. 92 et seq.]).
Without it, one can have sets with exotic properties such as being members of
themselves, but the properties of set-theoretic concepts used by most of math-
ematics – bijections, direct products, cardinality arguments, etc. – are little
affected. Its absence would simply make it a bit trickier, say, to construct,
given sets X and Y, a copy of Y disjoint from X. The Regularity Axiom
seems to have crept into the Zermelo-Fraenkel axioms by the back door: It
was not in the earlier formulations of those axioms, and still does not appear
in some listings, such as that in [14]. But it is generally accepted, and we will
count it among the axioms here, and rely on the convenience it provides. It
gives one a comforting assurance that sets are built up from earlier sets with
no “vicious circles” in the process; hence the name “Well-Foundedness”. (By
extension, many set-theorists call the condition of descending chain condition
on any partially ordered set “well-foundedness”.)

Observe that the Axioms of Extensionality and Regularity essentially clar-
ify what we intend to mean by a “set”. The next seven axioms each say that
certain sets exist. In each case these are sets which are uniquely determined
by the conditions assumed. Those seven axioms can all be considered cases of
a single axiom proposed by Frege in 1893, the Axiom of Abstraction, saying
that “Given any property, there exists a set whose members are just those
entities possessing that property”. That axiom nicely embodies the idea of
a set, but it turned out to be too strong to be consistent: it allowed one
to define things like “the set S of all sets which are not members of them-
selves,” which led to contradictions. (Russell’s Paradox: “Is that S a member
of itself?” Either a positive or a negative answer implies its own negation.)
The difficulty was, somehow, that the Axiom of Abstraction assumed “all
sets” to be known. In particular, the set S we were constructing was already
“there”, to be chosen or rejected in choosing the members of that same set
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S, allowing one to create a self-contradictory criterion for that choice. Sub-
sequent experience suggested that such contradictions could be avoided by
requiring every set to be constructed from sets “constructed before it”; and
the seven axioms in question represent sub-cases of the rejected “Axiom of
Abstraction” which meet this condition.

The Axiom of Regularity was probably another reaction against those
paradoxes. Though adding an axiom can’t remove a contradiction, the en-
counter with Russell’s Paradox very likely led mathematicians to feel that
sets that could not be “built up from scratch” were unhealthy, and should be
excluded.

The last axiom of ZFC, that of Choice, is of a different sort from those that
precede it. It asserts the existence of something not uniquely defined by the
given data: a function that chooses, in an unspecified way, one element from
each of a family of sets. This was very controversial in the early decades of the
twentieth century, both because it led to consequences which seemed surpris-
ing then (such as the existence of nonmeasurable sets of real numbers), and
because of a feeling by some that it represented an unjustifiable assumption
that something one could do in the finite case could be done in the infinite
case as well. It is a standard assumption in modern mathematics; such basic
results as that every vector space has a basis, that a direct product of com-
pact topological spaces is compact, and that a countable union of countable
sets is countable, cannot be proved without it. But there have been, and still
are, mathematicians who reject it: the intuitionists of the early 1900’s, and
the constructivists today.

Even accepting the Axiom of Choice, as we shall, it is at times instructive
to note whether a result or an argument depends on it, or can be obtained
from the other axioms. (This is like the viewpoint that, even if one does not
accept the constructivists’ extreme claim that proofs of existence that do
not give explicit constructions are worthless, one may consider constructive
proofs to be desirable when they can be found.)

In the next two sections we shall develop several set-theoretic results whose
proofs require the Axiom of Choice, and we will show that each of these
statements is, in fact, equivalent to that axiom, in the presence of the other
axioms. Hence, in those sections, we shall not assume the Axiom of Choice
except when we state this assumption explicitly, and the arguments we give
to show these equivalences will all be justifiable in terms of the theory given
by the other axioms, called “Zermelo-Fraenkel Set Theory”, abbreviated ZF.
(However, we shall not in general attempt to show explicitly how the familiar
mathematical techniques that we use are justified by those axioms – for that,
again see a text in set theory.) In all later chapters, on the other hand, we
shall freely use the Axiom of Choice, i.e., we will assume ZFC.

In the handful of results proved so far in this chapter, we have implicitly
used the Axiom of Choice just once: in Lemma 5.3.1, in showing (ii′′) =⇒
(i). Hence for the remainder of this chapter, we shall forgo assuming that
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implication, and will understand the descending chain condition to refer to
condition (i) of that lemma (which still implies (ii)-(ii′′)).

Let us note explicitly one detail of set-theoretic language we have already
used: Since all sets satisfying a given property may not together form a set,
one needs a word to refer to “collections” of sets that are not necessarily
themselves sets. These are called classes. An example is the class of all sets.
One can think of classes which are not sets, not as actually being mathematical
objects, but as providing a convenient language to use in making statements
about all sets having one or another property.

Since classes are more general than sets, one may refer to any set as a
“class”, and this is sometimes done for reasons not involving the logical dis-
tinction, but just to vary the wording. E.g., rather than saying “the set of
those subsets of X such that . . . ”, one sometimes says “the class of those
subsets of X such that . . . ”. And, for some reason, one always says “equiv-
alence class”, “conjugacy class”, etc., though they are sets.

Exercise 5.4:1. Show that for every set X there exists a set Y ⊇ X such
that a ∈ b ∈ Y =⇒ a ∈ Y ; in fact, that there exists a least such set.
(Thus, Y is the “closure” of X under passing to members of sets.)

5.5. Well-ordered sets and ordinals

Recall (Definition 5.3.2) that a partially ordered set (X, ≤) is called well-
ordered if it is totally ordered and has descending chain condition. In a totally
ordered set, a minimal element is the same as a least element, so the condition
of well-ordering says that every nonempty subset of X has a least member.

This condition goes a long way toward completely determining the struc-
ture of X. Applied first to X as a subset of itself, it tells us that if X is
nonempty, it has a least element, x0. If X does not consist of x0 alone,
then X − {x0} is nonempty, hence this set has a least element, which we
may call x1. We can go on in this fashion, and unless X is finite, we will
get a uniquely determined sequence of elements x0 < x1 < x2 < x3 < . . .
at the “bottom” of X. This list may exhaust X, but if it does not, there
will necessarily be a least element in the complement of the subset so far de-
scribed, which we may call x1,0, and if this still does not exhaust X, there
will be a least element greater than it, x1,1, etc.. We can construct in this
way successive hierarchies, and hierarchies of hierarchies – I will not go into
details – on the single refrain, “If this is not all, there is a least element of
the complement”.

A couple of concrete examples are noted in

Exercise 5.5:1. If f and g are real-valued functions on the real line R, let
us in this exercise write f ≤ g to mean that there exists some real number
N such that f(t) ≤ g(t) for all t ≥ N.
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(i) Show that this relation ≤ is a preordering, that its restriction to the
set of polynomial functions is a total ordering, and that on polynomials
with nonnegative integer coefficients, it in fact gives a well-ordering. De-
termine, if they exist, the elements x0, x1, . . . , xn, . . . , x1,0, x1,1 of this
set, in the notation of the preceding paragraphs.
(ii) Show that the set consisting of all polynomials with nonnegative in-
teger coefficients, and, in addition, the function et, is still well-ordered
under the above relation.
(iii) Find a subset of the rational numbers which is order-isomorphic (un-
der the standard ordering) to the set described in (ii).

To make precise the idea that the order structure of a well-ordered set is
“unique, as far as it goes”, let us define an “initial segment” of any totally
ordered set X to mean a subset I ⊆ X such that x ≤ y ∈ I =⇒ x ∈ I.
Then we have

Lemma 5.5.1. Let X and Y be well-ordered sets. Then exactly one of the
following conditions holds:

(a) X and Y are order-isomorphic.

(b) X is order-isomorphic to a proper initial segment of Y.

(c) Y is order-isomorphic to a proper initial segment of X.

Further, in (b) and (c) the initial segments in question are unique, and in
all three cases the order-isomorphism is unique.

Proof. We shall construct an order isomorphism of one of these three types
by a recursive construction on the well-ordered set X. Let me first describe
the idea intuitively: We start by pairing the least element of X with the least
element of Y ; and we go on, at every stage pairing the least not-yet-paired-
off element of X with the least not-yet-paired-off element of Y, until we run
out of elements of either X or Y or both.

Now in our formulation of recursive constructions in Lemma 5.3.4, we said
nothing about “running out of elements”. But we can use a trick to reduce
the approach just sketched to a recursion of the sort characterized by that
lemma.

Form a set consisting of the elements of Y and one additional element
which we shall denote DONE. Given any x ∈ X, and any function f<x : {x′ ∈
X | x′ < x} → Y ∪ {DONE}, we define r(x, f<x) ∈ Y ∪ {DONE} as follows:

If the image of f<x is a proper initial segment of Y, let
r(x, f<x) be the least element of Y not in that segment.
Otherwise, let r(x, f<x) = DONE.

By Lemma 5.3.4, this determines a function f : X → Y ∪ {DONE}. It
is straightforward to verify inductively that for those x such that f(x) 6=
DONE, the restriction f≤x of f to {x′ ∈ X | x′ ≤ x} will be the only order
isomorphism between that initial segment of X and any initial segment of
Y. From this we easily deduce that if the range of f does not contain the
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value DONE, exactly one of conclusions (a) or (b) holds, but not (c); while if
the range of f contains DONE, (c) holds but not (a) or (b). In each case, f
determines the unique order isomorphism with the indicated properties. ut

Exercise 5.5:2. Give the details of the last paragraph of the above proof.

Since the well-ordered sets fall into such a neat array of isomorphism
classes, it is natural to look for a way of choosing one “standard member”
for each of these classes, just as the natural numbers are used as “standard
members” for the different sizes of finite sets. Recall that in the von Neumann
construction of the natural numbers, (5.4.1), each number arises as the set of
all those that precede it, so that we have i < j if and only if i ∈ j, and i ≤ j
if and only if i ⊆ j. Clearly, each natural number, being finite and totally
ordered, is a well-ordered set under this ordering. Let us take these von Neu-
mann natural numbers as our standard examples of finite well-ordered sets,
and see whether we can extend this family in a natural way to get models of
infinite well-ordered sets.

Continuing to use the principle that each new object should be the set of
all that precede, we take the set of natural numbers as the standard example
chosen from among the well-ordered sets which when listed in the manner
discussed at the beginning of this section have the form X = {x0, x1, . . . },
with subscripts running over the natural numbers but nothing beyond those.
Set theorists write this object

ω = {0, 1, 2, . . . , i, . . . }.

The obvious representative for those sets having an initial segment isomorphic
to ω, and just one element beyond that segment, is written

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , i, . . . ; ω}.

We likewise go on to get ω+ 2, ω+ 3 etc.. The element coming after all the
ω + i ’s (i ∈ ω) is denoted ω + ω or ω2. (We will see later why it is not
written “more naturally” as 2ω.) After the elements ω2 + i (i ∈ ω) comes
ω3; . . . after all the elements of the form ω i (i ∈ ω) one has ω ω = ω2.
In fact, one can form arbitrary “polynomials” in ω with natural number
coefficients, and the set of these has just the order structure that was given to
the polynomials with natural number coefficients in Exercise 5.5:1 (though in
our “polynomials” in ω, the coefficients are, as noted, written on the right).
Then the set of all these polynomials in ω is taken as the next standard
sample well-ordered set . . . .

So far, we have been sketching an idea; let us make it precise. First, a small
terminological point: If X is any well-ordered set, and α the “standard”
well-ordered set (to be constructed below) that is order-isomorphic to it,
then Lemma 5.5.1 shows us how to index the elements of X by the members
of α – i.e., by the “standard” well-ordered sets smaller than α. Thus, the
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well-ordered sets less than α serve as translations, and (starting with ω)
generalizations, of the sequence of words “first, second, third, . . . ” which are
used in ordinary language to index the elements of finite totally ordered sets.
Hence, the term ordinal, used by grammarians for those words, is used by
mathematicians for the “standard samples” of isomorphism types of well-
ordered sets. Let us now give the formal definition of these objects, and
investigate their properties.

Definition 5.5.2. An ordinal (or von Neumann ordinal) is a set α such that
γ ∈ β ∈ α =⇒ γ ∈ α, and such that if β ∈ α and γ ∈ α, then either
β = γ, or β ∈ γ, or γ ∈ β.

Proposition 5.5.3. (i) Every member β of an ordinal α is an ordinal.

(ii) If α is an ordinal and S is a subset of α, then the following conditions
are equivalent:

(a) S is an ordinal.

(b) Every member of a member of S is a member of S,

(c) S ∈ α or S = α.

(iii) For any two ordinals α and β, either α is a subset of β, or β is a
subset of α.

Proof. In proving (i), the one nonobvious condition needed is that δ ∈ γ ∈
β ∈ α implies δ ∈ β. Now in that situation, the first part of the definition
of α being an ordinal shows that both β and δ are members of α, so by
the last part of that definition, either δ ∈ β or β = δ or β ∈ δ. Either of
the last two alternatives, combined with the relations δ ∈ γ ∈ β, would give
a contradiction to the Regularity Axiom. So δ ∈ β, as required.

In (ii), the implication (c) =⇒ (a) follows from (i), while (a) =⇒ (b) follows
from the definition of ordinal. To get (b) =⇒ (c), assume (b), and let us again
call on the Axiom of Regularity, this time to give us an element α′ ∈ α∪{α}
which contains S as a subset, but no member of which does so. (Since S ⊆ α,
the class of members of α ∪ {α} which contain S as a subset is indeed
nonempty.) Now if α′ 6= S, then there is some β ∈ α′−S. Since both β and
all the elements of S are elements of α, the last condition in the definition
of α being an ordinal tells us that each γ ∈ S is either equal to β, or has
β as a member, or is a member of β. If either of the first two possibilities
occurred for some γ ∈ S, we would have β ∈ S, contradicting our choice of
β. Hence every member of S must be a member of β, i.e., S ⊆ β. But this
contradicts our choice of α′ as having no member which contained S as a
subset. So in fact we must have S = α′ ∈ α ∪ {α}, proving (c).

Finally, let us get (iii) by showing that the set S = α ∩ β must equal
either α or β. Clearly, S is a subset of both α and β satisfying (b), hence
since (b) =⇒ (c), S either equals or is a member of each of α and β.
If it were a member of both, then we would have S ∈ α ∩ β = S, again
contradicting Regularity; so it must equal one of them. ut
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We would like to summarize statement (iii) above as saying that the or-
dinals form a totally ordered set under inclusion – and in fact, since by (ii),
inclusion among ordinals is equivalent to “∈ or = ”, and by Regularity, the
latter relation satisfies descending chain condition, we would like to say that
the ordinals form a well-ordered set. The only trouble is that they do not
form a set!

Here are some things we can say:

Proposition 5.5.4. (i) Every nonempty class of ordinals has a “⊆-least”
member. (In other words, the class of ordinals satisfies under ⊆ the analog
of the set-theoretic property of well-orderedness.) In particular, every ordinal,
and more generally, every set of ordinals, is well-ordered under ⊆.
(ii) The union of any set of ordinals is an ordinal.

(iii) The class of all ordinals is not a set.

(iv) Every well-ordered set has a unique order isomorphism with an ordinal.

Proof. To get (i), let C be a nonempty class of ordinals, take any β ∈ C,
and note that C ′ = {α ⊆ C | α ⊆ β} is a nonempty set of ordinals. The
axiom of Regularity says that C ′ has a member γ which is disjoint from
C ′. One can see that γ will be a least member of C ′ under ⊆, and since
members of C ′ (which are contained in β) are less than other members of
C (since these are not), γ must in fact be a least member of C. The final
sentence of (i) clearly follows.

With the help of part (iii) of the preceding proposition, it is easy to check
that the union of any set S of ordinals satisfies the definition of an ordinal,
giving (ii). Moreover, if we call this union α, then α will majorize all mem-
bers of S, hence its successor, α ∪ {α}, cannot be a member of S. So for
any set S of ordinals we have an ordinal not in S, proving (iii).

To show (iv), let S be a well-ordered set. For convenience, let us form a
new ordered set T consisting of the elements of S, ordered as in S, and
one additional element z, greater than them all. It is immediate that T will
again be well-ordered. I claim that for every t ∈ T, there is a unique order-
isomorphism between {s ∈ T | s < t} and some (unique) ordinal. Indeed, if
not, there would be a least t for which this failed, so each s < t would be
isomorphic to a unique ordinal βs, by a unique order-isomorphism. From this
it is easy to deduce that the set α = {βs | s < t} would be order-isomorphic
to {s ∈ T | s < t}, that it would be the unique ordinal with this property,
and that the isomorphism would be unique, contradicting our choice of t, and
establishing our claim. So in particular, there is a unique order-isomorphism
between S = {s ∈ T | s < z} and an ordinal, as required. ut

The proofs of the above two propositions make strong use of the Axiom
of Regularity. How do set-theorists who do not assume that axiom define
ordinals so that the same results will hold? The easy way is to add to the
definition of ordinal the case of Regularity that we need; namely, that ev-
ery nonempty β ∈ α ∪ {α} have a member which is disjoint from β. A
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different approach is taken in [23, §7.2]. Rather than starting by defining
“ordinal”, that developments starts with a construction that, from any well-
ordered set S, builds by recursion on the elements of S a certain set α,
order-isomorphic to S. It is the sets constructed in this way are then named
“ordinals”. Finally, a result is proved characterizing those sets as the sets
satisfying Definition 5.5.2, modified as just noted to compensate for the lack
of the Axiom of Regularity.

Exercise 5.5:3. Let α and β be ordinals. Show that there exists a one-to-
one isotone map f : α→ β if and only if α ≤ β.

Exercise 5.5:4. If P is a partially ordered set with DCC, let the height
ht(p) of an element p ∈ P be defined, recursively, as the least ordinal
greater than the heights of all elements q < p. Define ht(P ) to be the
least ordinal greater than the heights of all elements of P.
(i) Show that the height function on elements is the least strictly isotone
ordinal-valued function on P, and that it has range precisely ht(P ).
(ii) Show that for every ordinal α there exists a partially ordered set
containing no infinite chains, and having height α.
(iii) Suppose we define the chain height of P, chht(P ), to be the least
ordinal which cannot be embedded in P by an isotone map, and for p ∈ P
define chht(p) = chht({q ∈ P | q < p}). What relationships can you
establish between the functions ht and chht ?

Exercise 5.5:5. Show that the two conditions in Definition 5.5.2 (the defi-
nition of an ordinal) are independent, by giving examples of sets satisfying
each but not the other.

For additional credit, you can show that each of your examples has
smallest cardinality among sets with the desired property.

Since one considers ordinals to be ordered under the relation ⊆, equiv-
alently, “∈ or = ”, one has the choice, in speaking about them, between
writing ≤ and ⊆, and likewise between < and ∈ . Both the order-theoretic
and the set-theoretic notation are used, sometimes mixed together.

For every ordinal α, there is a least ordinal greater than α, namely α ∪
{α}. This is called the successor of α, and written α+1. “Most” ordinals are
successor ordinals. Those, such as 0, ω, ω2, etc., which are not, are called
limit ordinals. (Although, as I just stated, 0 is logically a limit ordinal, and
I will consider it such here, it is sometimes treated as a special case, neither
a successor nor a limit ordinal.)

Exercise 5.5:6. Show that an ordinal is a limit ordinal if and only if it is
the least upper bound of all strictly smaller ordinals; equivalently, if and
only if, as a set, it is the union of all its members.

Now that we understand why ordinals (and so in particular, natural num-
bers) are defined so that each is equal to the set of those that precede it,
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let us rescind the convention we set up in §2.3, where, for the sake of famil-
iarity, I said that an n-tuple of elements of a set S would mean a function
{1, . . . , n} → S :

Definition 5.5.5. Throughout the remainder of these notes, n-tuples will be
defined in the same way as I-tuples for other sets I. That is, for n a natural
number, an n-tuple of elements of a set S will mean a function n→ S, i.e.,
a family (s0, s1, . . . , sn−1) (si ∈ S). The set of all such functions will be
denoted Sn.

We have referred to ordinals denoted by symbols such as ω2, ω2 + 1,
etc.. As this suggests, there is an arithmetic of ordinals. If α and β are
ordinals, α + β represents the ordinal which has an initial segment α, and
the remaining elements of which form a subset order-isomorphic to β. This
exists, since by putting an order-isomorphic copy of β “above” the ordinal α,
one gets a well-ordered set, and we know that there is a unique ordinal order-
isomorphic to it. Similarly, αβ represents an ordinal which is composed of
a family of disjoint well-ordered sets, each order-isomorphic to α, one above
the other, with the order structure of the set of copies being that of β. These
operations are (of course) formally defined by recursion, as we will describe
below.

Unfortunately, the formalization of recursion that we proved in Lemma
5.3.4 is not quite strong enough for the present purposes, because in con-
structing larger ordinals from smaller ones, we will not easily be able to give
in advance a codomain set corresponding to the T of that lemma, and as
a result, we will not be able to precisely specify the function r required by
that lemma either. However, there is a version of recursion based on the Re-
placement Axiom (Fraenkel’s contribution to Zermelo-Fraenkel set theory)
which gets around this problem. Like that axiom, it assumes we are given a
construction which is not necessarily a function, because its range and do-
main are not assumed to be sets, but which nonetheless uniquely determines
one element given another. I will not discuss this concept, but will state the
result below. The proof is exactly like that of Lemma 5.3.4, except that the
Axiom of Replacement is used to carry out the “piecing together” of partial
functions.

Lemma 5.5.6 (Cf. [23, Theorem 7.1.5, p. 74]). Let X be a partially
ordered set with descending chain condition, and r a construction associating
to every pair (x, f<x), where x ∈ X and f<x is a function with domain
{y ∈ X | y < x}, a uniquely defined set r(x, f<x). Then there exists a unique
function f with domain X such that for all x ∈ X, f(x) = r(x, f | {y |
y < x}). ut

We can now define the operations of ordinal arithmetic. For completeness
we start with the (nonrecursive) definition of the successor operation. Note
that in each of the remaining (recursive) definitions, the ordinal α is held
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“constant”, and the ordinal over which we are doing the recursion is written
β or β + 1.

Definition of the successor of an ordinal:

(5.5.7) β + 1 = β ∪ {β}.

Definition of addition of ordinals:

(5.5.8)
α+ 0 = α, α+ (β + 1) = (α+ β) + 1,

α+ β =
⋃
γ<β α+ γ for β a limit ordinal > 0.

Definition of multiplication of ordinals:

(5.5.9)
α 0 = 0, α(β + 1) = (αβ) + α,

αβ =
⋃
γ <β αγ for β a limit ordinal > 0.

Definition of exponentiation of ordinals:

(5.5.10)
α0 = 1, α(β+1) = (αβ)α,

αβ =
⋃
γ <β α

γ for β a limit ordinal > 0.

Exercise 5.5:7. Definitions (5.5.8) and (5.5.9) do not look like the descrip-
tions of ordinal addition and multiplication sketched in words above. Show
that they do in fact have the properties indicated there.

Although the operations defined above agree with the familiar ones on the
finite ordinals (natural numbers), they have unexpected properties on infinite
ordinals. Neither addition nor multiplication is commutative:

1 + ω = ω, but ω + 1 > ω,

2ω = ω, but ω 2 > ω.

Exponentiation is also different from exponentiation of cardinals (discussed
later in this section):

2ω = ω.

Students who have not seen ordinal arithmetic before might do:

Exercise 5.5:8. Prove the three equalities and two inequalities asserted in
the above paragraph.

You may assume familiar facts about arithmetic of natural numbers,
and that the ordinal operations agree with the familiar operations in these
cases; but assume nothing about how they behave on infinite ordinals,
except the definitions.

Exercise 5.5:9. If an ordinal α is the disjoint union of a subset order-
isomorphic to the ordinal β and a subset order-isomorphic to the ordinal
γ, must we have α ≤ β + γ ? α ≤ max(β + γ, γ + β) ?



5.5 Well-ordered sets and ordinals 145

The formulas (5.5.8)-(5.5.10) define pairwise arithmetic operations. We can
also define arithmetic operations on families of ordinals indexed by (what
else?) ordinals. Let us record the case of addition, since we will need this
later. Given such a family (αγ)γ∈β , the idea is to define

∑
γ∈β αγ to be the

ordinal which, as a well-ordered set, is the union of a chain of disjoint subsets
of respective order types αγ (γ ∈ β), appearing in that order.

Definition of infinite ordinal addition:

(5.5.11)

∑
γ∈0 αγ = 0,

∑
γ∈β+1 αγ = (

∑
γ∈β αγ) + αβ ,∑

γ∈β αγ =
⋃
γ <β

∑
δ∈γ αδ for β a limit ordinal > 0.

Taking the αγ ’s all equal, we see that our recursive definition of
∑
β αγ

reduces to our definition of multiplication of ordinals; hence

(5.5.12)
∑
γ∈β α = αβ.

Exercise 5.5:10. (i) Given a family of ordinals (αγ)γ∈β indexed by an or-
dinal, let α denote the ordinal

⋃
γ∈β αγ (the supremum of the αγ ’s). Let P

be the set β×α, lexicographically ordered. Show that the ordinal
∑
γ∈β αγ

is isomorphic as a well-ordered set to {(γ, δ) | γ ∈ β, δ ∈ αγ} ⊆ P.
(ii) Deduce from this a description of a well-ordered set isomorphic to the
ordinal product αβ of two arbitrary ordinals.

This description clearly extends inductively to finite products γ∈β αγ
(β < ω), leading, incidentally, to an easy proof of associativity of multipli-
cation of ordinals. The extension of these ideas to infinite products will be
developed in a later exercise in this section.

We have seen that every well-ordered set is indexed in a canonical way by
an ordinal; but we do not yet know whether we can well-order every set. It
turns out that we can do so if we assume the Axiom of Choice. This is stated
in the second part of the next lemma; the first part gives a key argument
(not requiring the Axiom of Choice) used in the proof.

Lemma 5.5.13. Let X be a set. Then

(i) There exists an ordinal α which cannot be put in bijective correspon-
dence with any subset of X; equivalently, such that for any well-ordering
“≤ ” of any subset of Y ⊆ X, (Y, ≤) is isomorphic to a proper initial
segment of α.

(ii) Assuming the Axiom of Choice, X itself can be well-ordered.

Proof. The class of well-orderings of subsets of X is easily shown to be a set,
hence by the Replacement Axiom, the unique ordinals isomorphic to these
various well-ordered sets form a set, hence the union of this set is an ordinal
β. Take α = β + 1. By construction, any well-ordering of a subset Y ⊆ X
induces a bijection of Y with an initial segment of β, which is a proper
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initial segment of α, yielding the second formulation of (i). To get the first
formulation, note that if α could be put in bijective correspondence with a
subset of X, then the ordering of α would induce a well-ordering of that
subset, such that α was the unique ordinal isomorphic to that well-ordered
set, giving a contradiction to our preceding conclusion.

Assuming the Axiom of Choice, let us now take a function c which as-
sociates to every nonempty subset Y ⊆ X an element c(y) ∈ Y. Let us
recursively construct a one-to-one map from some initial subset of the ordi-
nal α of part (i) into X as follows: Suppose we have gotten a function fβ
from an ordinal β < α, regarded as a subset of α, into X. If its image is
X, we are done. If not, we send the element β, which is the first element
of α on which our map is not yet defined, to c(X − image(fβ)). It is easy
to verify by induction that each map fβ is one-to-one. If this process went
on to give a one-to-one map fα of α into X, that would contradict (i).
So instead, the construction must terminate at some step, which means we
must get a bijection between an initial segment of α and X, and hence a
well-ordering of X, proving (ii). (As in the proof of Lemma 5.5.1, our use of
a recursion that terminates before we get through all of α can be formalized
by adjoining to X an element DONE.) ut

Exercise 5.5:11. Let P be a partially ordered set, and Ch(P ) the set of
chains in P, partially ordered by writing A ≤ B if A is an initial segment
of B.
(i) Show that there can be no strict isotone map f : Ch(P )→ P. (Sug-
gestion: If there were, show that one could recursively embed any ordinal
α in P, by sending each element of α to the image under f of the chain
of images of all preceding elements.)
(ii) Deduce from (i) the same statement with Ch(P ) ordered by inclu-
sion. Conclude that Ch(P ), under either ordering, can never be order-
isomorphic to P.
(iii) Can you strengthen the result of (i) by replacing Ch(P ) by some
natural proper subset of itself?

Let us assume the Axiom of Choice for the rest of this section (though at
the beginning of the next section, we will again suspend this assumption).

Recall that two sets are said to have the same cardinality if they can be
put in bijective correspondence. Statement (ii) of the preceding lemma shows
that (assuming the Axiom of Choice), every set has the same cardinality as
an ordinal. This means we can use appropriately chosen ordinals as “standard
examples” of all cardinalities. In general, there are many ordinals of a given
cardinality (e.g., ω, ω + 1, ω2 and ω2 are all countable), so the ordinal to
use is not uniquely determined. The one easily specified choice is the least
ordinal of the given cardinality; so one makes

Definition 5.5.14. A cardinal is an ordinal which cannot be put into bijec-
tive correspondence with a proper initial segment of itself.
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For any set X, the least ordinal with which X can be put in bijective
correspondence will be called the cardinality of X, denoted card(X). Thus,
this is a cardinal, and is the only cardinal with which X can be put in
bijective correspondence.

There is an arithmetic of cardinals: If κ and λ are cardinals, κ + λ is
defined as the cardinality of the union of any two disjoint sets one of which
has cardinality κ and the other cardinality λ, κ λ as the cardinality of the
direct product of a set of cardinality κ and a set of cardinality λ, and κλ as
the cardinality of the set of all functions from a set of cardinality λ to a set of
cardinality κ. Unfortunately, if we consider the class of cardinals as a subset
of the ordinals, these are different operations from the ordinal arithmetic we
have just defined! To compare these arithmetics, let us temporarily use the

notations α+ord β, α ·ord β and α
ordβ for ordinal operations, and κ+card λ,

κ ·card λ and κ
cardλ for cardinal operations. A positive statement we can

make is that for cardinals κ and λ, the computation of their cardinal sum
and product can be reduced to that of their ordinal sum and product, by the
formulas

(5.5.15) κ+card λ = card(κ+ord λ) and κ ·card λ = card(κ ·ord λ).

These are cases of a formula holding for any family of ordinals (αγ)γ∈β :

(5.5.16)
∑card
γ∈β card(αγ) = card(

∑ord
γ∈β αγ).

On the other hand, the cardinality of an infinite ordinal product of ordinals
is not in general equal to the cardinal product of the cardinalities of these
ordinals; in particular, cardinal exponentiation does not in any sense agree

with ordinal exponentiation: 2
cardω gives the cardinality of the continuum,

which is uncountable, while 2
ordω = ω. There is no standard notation dis-

tinguishing ordinal and cardinal arithmetic; authors either introduce ad hoc
notations, or say in words whether cardinal or ordinal arithmetic is meant,
or rely on context to show this.

Exercise 5.5:12. In this exercise we shall extend the results of Exer-
cise 5.5:10, which characterized the order-types of general sums and finite
products of ordinals, to general products. (I have put this off until now so
that we would have notation distinguishing the ordinal product ordαγ
from the set-theoretic product.) We will also note a relation with cardi-
nal arithmetic. We need to begin with a generalization of lexicographic
ordering.

Suppose (Xi)i∈I is a family of partially ordered sets, indexed by a
totally ordered set I; and let each Xi have a distinguished element, de-
noted 0i. Define the support of (xi) ∈ I

Xi as {i ∈ I | xi 6= 0i}, and
let w.o.supp

I Xi denote the set of elements of
I
Xi having well-ordered

support. Similarly, let f.supp
I Xi denote the set of elements of finite sup-

port.
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(i) Show that the definition of lexicographic order, which in Defini-
tion 5.3.7 was given on

I
Xi for I well-ordered, makes sense on

w.o.supp
I Xi for arbitrary totally ordered I, and that the resulting or-

dering is total if each Xi is totally ordered.
(ii) Show that if I is reverse-well-ordered (has ascending chain condition)

then w.o.supp
I Xi = f.supp

I Xi.

(iii) Show that if I is reverse-well-ordered and if each Xi has descending

chain condition, and has 0i as least element, then f.supp
I Xi has descend-

ing chain condition under lexicographic ordering.
(iv) Let us now be given an ordinal-indexed family of ordinals, (αγ)γ∈β .
Write down the definition of ord

γ∈β αγ analogous to (5.5.11). Verify that

if any αγ is 0, your definition gives the ordinal 0. In the contrary case,

show that your definition gives an ordinal order-isomorphic to f.supp
γ∈β op αγ .

(Here βop denotes the set β, but with its ordering – used in defining
lexicographic order on our product – reversed. Note that “ γ ∈ βop ” means
the same as “ γ ∈ β ”. For the elements 0γ in the definition of f.supp, we
take the ordinal 0 ∈ αγ , which is why we need to assume all αγ nonzero.)

(v) Deduce a description of the order-type of α
ordβ , and conclude that

card(α
ordβ) ≤ αcardβ .

You might also want to do
(vi) Show by examples that (iii) above fails if any of the three hypotheses
is deleted.

The set-theoretic concept of cardinality historically antedates the construc-
tion of the ordinals, so there is a system of names for cardinals independent
of their names as ordinals. The finite cardinals are, of course, denoted by
the traditional symbols 0, 1, 2, . . . . The least infinite cardinal is denoted
ℵ0, the next ℵ1, etc.. From our description of the cardinals as a subclass of
the ordinals, we see that the class of cardinals is “well-ordered” (written in
quotes, as we did for the class of ordinals, because this class is not a set).
Hence, now that one has the concept of ordinal, one continues the above set
of symbols using ordinal subscripts: The α-th cardinal after ℵ0 is written
ℵα.

There is a further notation for cardinals “regarded as ordinals”. Each
ℵα, regarded as an ordinal, is written ωα. Thus one writes ℵ0 = ω0 = ω,
ℵ1 = ω1, etc..

In the next theorem we set down, without repeating the proofs, some
well-known properties of cardinal arithmetic, though we will use them only
occasionally.

Theorem 5.5.17. Letting κ, λ, etc., denote cardinals, and letting arith-
metic notation denote cardinal arithmetic, the following statements are
true.

(i) For all κ, λ, µ,
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κ+ λ = λ+ κ, κ λ = λκ, (κ+ λ)µ = κµ+ λµ,

κλ+µ = κλκµ, κλµ = (κλ)µ.

(ii) For sets Xi (i ∈ I), card(
⋃
I Xi) ≤

∑
card(Xi).

(iii) If κβ ≤ λβ for all β ∈ α, then∑
α κβ ≤

∑
α λβ , α

κβ ≤ α
λβ , and, if λ0 > 0, κκ1

0 ≤ λ
λ1
0 .

(iv) If κ ≤ λ and λ is infinite, then κ + λ = λ. If 1 ≤ κ ≤ λ and λ
is infinite, then κλ = λ. In particular, ωω = ω, hence by (ii) and (iii), a
countable union of countable sets is countable.

(v) 2κ > κ. Equivalently, the power set of any set X has strictly larger
cardinality than X.

Proof. See [31, pp. 17-21], or [33, appendix 2, §1 and exercises at the end of
that appendix]. ut

It is interesting that while the statement ω ω = ω is easy to prove without
the Axiom of Choice (by describing an explicit bijection), its consequence,
“a countable union of countable sets is countable”, requires that axiom, to
enable us to choose, simultaneously, particular bijections between the set ω
and each of the infinitely many given countable sets.

Incidentally, while the word “countable” is unambiguous when referring to
a set that we know is infinite, when that is not the case it may mean either
“having cardinality ℵ0 ” or “having cardinality ≤ ℵ0 ”, depending on the
author. To make the former meaning unambiguous one can say “countably
infinite”; some authors use the word denumerable for this.

Turning from arithmetic back to order properties, let me define a concept
of interest in the general study of ordered sets, and note a specific application
to cardinals.

Definition 5.5.18. If X is a partially ordered set, then the cofinality of X
means the least cardinality of a cofinal subset Y ⊆ X (Definition 5.1.6).

A cardinal κ is called regular if, as an ordinal, it has cofinality κ. A
cardinal that is not regular is called singular.

Exercise 5.5:13. Show that if a partially ordered set X has cofinality κ,
then every cofinal subset Y ⊆ X also has cofinality κ.

Exercise 5.5:14. Prove:
(i) Every cardinal of the form ℵα+1 (i.e., every cardinal indexed by a
successor ordinal) is regular.
(ii) The first infinite singular cardinal is ℵω.

The next exercise examines the class of regular cardinals within the class
of ordinals.
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Exercise 5.5:15. Let us call an ordinal α regular if there is no set map
from an ordinal < α onto a cofinal subset of α.
(i) Show that regular ordinals are “sparse”, by verifying that the only
regular ordinals are 0, 1, and the regular infinite cardinals.
(ii) On the other hand, part (i) of the preceding exercise shows that within
the set of infinite cardinals, the singular cardinals are sparse: They must
be limit cardinals, i.e., cardinals ωα such that α is a limit ordinal. Prove
this if you did not do that exercise.
(iii) Show that among the limit cardinals, regular cardinals are again
sparse, by showing that if ωα is regular and α is a limit ordinal, then
α must be a cardinal; in fact, 0 or a cardinal κ satisfying

(5.5.19) κ = ωκ.

Show that the first cardinal κ satisfying (5.5.19) is the supremum of the
chain κ(i) (i ∈ ω) defined by κ(0) = 0, κ(i + 1) = ωκ(i), but that this
cardinal is still not regular.

(Regular limit cardinals will come up again in §7.4.)

Exercise 5.5:16. Since ordinals are totally ordered sets, they are in particu-
lar partially ordered sets, and we can partially order the set-theoretic direct
product of two ordinals by componentwise comparison (Definition 5.1.4).
Regarding the product-sets ω×ω, ω×ω1, ω1×ω1, ω×ωω, and ω1×ωω+1
as partially ordered in this manner, determine, as far as you can, whether
each of these contains a cofinal chain. (Partial credit will be given for par-
tial results, and additional credit for general results subsuming some of
these particular cases.)

The properties of ordinals allow us to obtain a construction that we won-
dered about when we considered Stone-Čech compactifications in §4.17:

Exercise 5.5:17. Let S be a totally ordered set, and for convenience, let
−∞ and +∞ be two elements outside S, the former regarded as less
than all elements of S and the latter as greater than all elements of S.
Then we can define the order topology on S to have as basis of open sets
the intervals (r, t) = {s ∈ S | r < s < t}, where r, t ∈ S ∪ {−∞,+∞}.
(We could do without −∞ and +∞ if we knew that S had no least or
greatest element. But if it does, then unless one introduces the above extra
elements, one has to define several distinct sorts of basic open sets, instead
of just one.)
(i) Let an ordinal α be given the order topology. Which subsets of α
are closed? Which are compact?
(ii) Show that under the order topology the ordinal ω1 is not compact,
but satisfies condition (b) of Exercise 4.17:9. (Thus, it satisfies condition (a)
of that exercise, which was what we were interested in there.)
(iii) If you are familiar with the geometric construction of the long line,
show that this also satisfies condition (b) of Exercise 4.17:9, and examine
its relationship to the ordinal ω1.
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5.6. Zorn’s Lemma

Ordinals, together with the Axiom of Choice, give a powerful tool for con-
structing non-uniquely-determined objects in many areas of mathematics.

Let me begin by sketching an example: how those tools can be used to
show that every vector space V over a field k has a basis. One constructs
recursively a chain (Bα)α∈γ of linearly independent subsets of B for some
cardinal γ, starting with B0 = ∅. For each α, as long as Bα does not
span V, one can use the Axiom of Choice to choose a v ∈ |V | not in the
span of Bα, and let Bα+1 = Bα ∪ {v}, while for β a limit ordinal, one
can take Bβ =

⋃
α∈β Bα. One verifies that each of these steps gives a new

linearly independent subset. If we take our indexing ordinal γ larger than
the cardinality of V, this construction cannot continue adding new elements
at every non-limit ordinal; so for some α, the set Bα must, in fact, span V,
and hence be a basis.

Abstracting the technique of this example, one should begin a general
construction of this nature by deciding what kind of objects one will consider
“partial constructions” (above: the linearly independent subsets of V ), and
verifying that these form a set. Hence there exists an ordinal γ of greater
cardinality than this set. Setting up the recursion over γ then involves three
tasks:

(i) Find an “initializing” partial construction to which to map 0. (Above:
the set ∅ ⊆ |V |.)
(ii) If one has built up successive partial constructions through the one
associated to an ordinal α, and that construction is still not “finished”, one
must show that it can be extended further, to give an α+1-st stage. (Above:
if Bα does not span V, then for any v outside the span of Bα, the set
Bα ∪ {v} is a larger linearly independent set.) Once one has done so, the
Axiom of Choice allows one to keep picking such extensions as long as one
has not achieved a “finished” construction.

(iii) Specify what to do at a nonzero limit ordinal α. At such a step, one
has a chain of preceding partial constructions, each extending the one before,
and it is often easy to verify that their “union”, defined in some way, is a
partial construction extending all of them. (In the vector space case, as in
many others, we literally take the union.)

Since the resulting recursion cannot give a one-to-one map from γ into
the smaller-cardinality set of all partial constructions, it must, rather, give
at some step a “finished” construction, as desired.

The above general technique is a tool that is used repeatedly, so it is nat-
ural to seek a lemma whose proof embodies once and for all the set-theoretic
side of the argument, and whose statement will show us what we must prove
separately for each case. In formulating the statement, one abstracts the set
of all “partial constructions” as a partially ordered set (X, ≤), where ≤ is
intended to be the relation of one construction being a “part of” another. The
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condition saying that we can initialize our recursion is that X be nonempty.
To show that we can extend a partial construction further if it is not yet
“finished” is, put in the contrapositive, to show that if X has any maximal
element, this is a “finished” object, i.e., one of the sort we desire. Finally,
the condition we need at steps indexed by limit ordinals, namely that given
a chain of partial constructions, we can find one which includes them all, is
made the content of a definition.

Definition 5.6.1. A partially ordered set X is called inductive if for every
nonempty chain Y ⊆ X, there is an element z ∈ X majorizing Y (i.e., such
that z ≥ every element of Y ).

We can now state the desired result, Zorn’s Lemma (statement (ii) below),
and show that it, and a number of other statements, are each in fact equivalent
to the Axiom of Choice.

Theorem 5.6.2. Assuming the axioms of Zermelo-Fraenkel set theory (but
not the Axiom of Choice), the following four statements are equivalent:

(i) The Axiom of Choice: If X is a set, and f is a function associating
to every x ∈ X a nonempty set f(x), then there exists a function g asso-
ciating to every x ∈ X an element g(x) ∈ f(x). (Equivalently: the direct
product of any family of nonempty sets is nonempty.)

(ii) Zorn’s Lemma: Every nonempty inductive partially ordered set (X, ≥)
has a maximal element.

(iii) The Well-ordering Principle: Every set can be well-ordered. (Equiv-
alently: every set can be put in bijective correspondence with an ordinal.)

(iv) Comparability of Cardinalities: Given any two sets X and Y, one
of these sets can be put in bijective correspondence with a subset of the other.
(Loosely: the class of cardinalities is totally ordered.)

Proof. The scheme of proof will be (iv) ⇐⇒ (iii) ⇐⇒ (i) ⇐⇒ (ii). That the
parenthetical restatement of (iii) is equivalent to the main statement follows
from Proposition 5.5.4(iv).

(iv) ⇐⇒ (iii): Assuming (iv), let X be any set and α an ordinal with
the property stated in Lemma 5.5.13(i). By (iv), there is either a bijection
between X and a subset of α, or between α and a subset of X. By choice of
α, the latter case cannot occur, so there is a bijection between X and a subset
S ⊆ α. Since α is well-ordered, so is every subset, and the well-ordering of
S induces a well-ordering of X, proving (iii). Assuming (iii), statement (iv)
follows from the comparability of ordinals, Proposition 5.5.3(iii), or more
directly, from Lemma 5.5.1.

(iii) ⇐⇒ (i): We proved (i) =⇒ (iii) as Lemma 5.5.13(ii). Conversely,
assume (iii). Given X and f as in (i), statement (iii) tells us that we can
find a well-ordering ≤ on the set

⋃
x∈X f(x). We can now define g to take

each x to the ≤-least element of f(x). (In terms of the axioms, we are using
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the Replacement Axiom to construct g as {(x, y) | x ∈ X and y is the least
element of f(x)}.)

(i) =⇒ (ii): Let (X, ≤) be a nonempty inductive partially ordered set,
and let us choose as in Lemma 5.5.13(i) an ordinal α which cannot be put in
bijective correspondence with any subset of X. Note that the combination of
conditions “inductive” and “nonempty” is equivalent to saying that for every
chain C ⊆ X, including the empty chain, there is an element ≥ all members
of C.

By (i), we may choose a function g associating to every nonempty subset
of X a member of that subset. We will now recursively define an isotone
map h : α→ X. Assuming that for some β ∈ α we have defined an isotone
map h<β : β → X, observe that its image will be a chain Cβ ⊆ X. If the set
Yβ of elements of X greater than all members of Cβ is nonempty, we define
h(β) = g(Yβ). In the contrary case, the hypothesis that X is inductive still
tells us that there is an element ≥ all members of Cβ . We conclude that
such an element must be equal to some member of Cβ , which means that the
chain has a largest element, c. In this case, we take h(β) = c. Note that in
this case c must be maximal in X, for if not, any element of X greater than
it would be greater than all elements of Cβ , contradicting our assumption
that Yβ was empty.

By choice of α, the map h we have constructed cannot be one-to-one, but
by the nature of our construction, the only situation in which one-one-ness
can fail is if at some point our h(β) is a maximal element of X. Thus X
has a maximal element, as claimed.

(ii) =⇒ (i): This will be a typical application of Zorn’s Lemma. Let X
and f be given as in (i). Let P be the set of all maps defined on subsets
Y ⊆ X and carrying each x ∈ Y to an element of f(x). Partially order
P by setting g1 ≥ g0 if g1 is an extension of the map g0. P is nonempty
because it contains the empty mapping, and it is easy to see that given any
chain C of elements of P under the indicated partial ordering, the union of
C will be an element of P that is ≥ all elements of C; hence P is inductive.
Thus P has a maximal element g. This element must be a function defined
on all of X (otherwise we could extend it further), completing the proof of
(i). ut

At the beginning of this section, when we sketched the situation that is
abstracted by Zorn’s Lemma, we noted that if one has a chain of partial
constructions, then their “union” is usually a partial construction extending
them all. So in such cases, in the set of all partial constructions, every chain
has not merely an upper bound, but a least upper bound. Thus, the weak-
ened form of Zorn’s Lemma saying that every partially ordered set with this
property has at least one maximal element is virtually all one ever uses. Is
this equivalent to the full form of Zorn’s Lemma? This is answered in
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Exercise 5.6:1. Show, that the statement “If P is a nonempty partially
ordered set such that every nonempty chain in P has a least upper bound,
then P has a maximal element”, implies the full form of Zorn’s Lemma.

(This is not too hard to do by an adaptation of the proof of Theo-
rem 5.6.2. More challenging is the task of finding a proof which obtains the
general version of Zorn’s Lemma by a direct application of the weakened
statement, rather than via one of the other conditions of Theorem 5.6.2.)

Having proved Theorem 5.6.2, we now make

Convention 5.6.3 Throughout the remainder of these notes, we shall as-
sume the Axiom of Choice along with the other axioms of ZFC, and thus
may freely use any of the equivalent statements of the preceding theorem.

Of these equivalent statements, Zorn’s Lemma is usually the most conve-
nient.

Note that in the last paragraph of the proof of Theorem 5.6.2 above, our
verification that P was nonempty was by the same method used to show that
every nonempty chain had an upper bound: To show the latter, we used the
union of the chain, while to get an element of P we took the empty function,
which is the union of the empty chain. It is my experience that in most proofs
using Zorn’s Lemma, the verification of nonemptiness may be achieved by the
same construction that shows every nonempty chain has an upper bound;
i.e., the assumption “nonempty” is rarely needed in the latter verification.
Hence my personal preference would be to use a definition of “inductive” that
required every chain to have an upper bound, and eliminate “X nonempty”
as a separate hypothesis of Zorn’s Lemma. (Of course, in some exceptional
cases, the verification that all chains have upper bounds may have to treat
empty and nonempty chains separately. But curiously, even when the same
verification works for both cases, many authors seem embarrassed to use a
trivial example to show their X is nonempty, and unnecessarily give a more
complicated one instead.) For conformity with common usage, I have stated
Zorn’s Lemma in terms of the standard definition of “inductive”. But we may,
at times, skip a separate verification that our inductive set is nonempty, and
instead observe that some construction gives an upper bound for any chain,
empty or nonempty.

The reader who has not seen proofs by Zorn’s Lemma before, and does not
see how to begin the next few exercises, might look at a few such proofs in a
standard graduate algebra text such as [33], and/or ask his or her instructor
for some elementary examples. The steps of identifying the sort of “partial
constructions” one wants to use, describing the appropriate partial ordering
on that set, verifying that the set is inductive, and verifying that a maximal
element corresponds to an entity of the sort one was seeking, take practice
to master.

Exercise 5.6:2. In Exercise 4.14:2(ii) you were asked to prove that the free
Boolean ring on any set could be embedded in the Boolean ring of subsets
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of some set. Prove now that every Boolean ring can be embedded in the
Boolean ring of subsets of some set.

Exercise 5.6:3. Show that in a commutative ring, every prime ideal con-
tains a minimal prime ideal. (Note: though the phrase “maximal ideal” by
convention means a maximal element of the set of proper ideals, “minimal
prime ideal” means minimal among all prime ideals, without restriction.)

Exercise 5.6:4. We saw in Exercise 5.1:10 that the maximal partial order-
ings on a set X were the total orderings. Deduce now for arbitrary X (as
we were able to deduce there for finite X) that
(i) Every partial ordering on X can be extended to a total ordering.
(ii) Every partial ordering on X is an intersection of total orderings.

Exercise 5.6:5. (i) If X is a totally ordered set, show that X has a
subset Y well-ordered under the induced ordering, and cofinal in X
(Definition 5.1.6).
(ii) Show that the Y of (i) can be taken order-isomorphic to a regular
cardinal (Exercise 5.5:14), and that this cardinal is unique. However show
that the set Y itself is not in general unique, and that if the condition of
regularity is dropped, uniqueness of the cardinal can also fail.
(iii) Suppose (Xi)i∈I is a finite family of totally ordered sets, such that
for all i, j ∈ I the set Xi×Xj , under the product order, contains a cofinal
subchain. Show that the set

I
Xi under the product order likewise has

a cofinal subchain.

The final part of this exercise does not depend on the preceding parts;
rather, it is a generalization of part (i).
(iv) Prove that every partially ordered set has a cofinal subset with de-
scending chain condition.

Exercise 5.6:6. For a partially ordered set X, show that the following con-
ditions are equivalent:
(i) X has no maximal element.
(ii) X has two disjoint cofinal subsets.
(ii′) X has an infinite family of disjoint cofinal subsets.

Exercise 5.6:7. Suppose X is a partially ordered set which contains a co-
final chain. Show that every cofinal subset of X also contains a cofinal
chain. (I find this harder to prove than I would expect. Perhaps there is
some trick I am missing.)

The next exercise is an example where the “obvious” Zorn’s Lemma proof
does not work. The simplest valid proof in this case is by the well-ordering
principle, which is not surprising since it is a result about well-orderability.
However, this can also be turned into a Zorn’s Lemma proof, if one is careful.

Exercise 5.6:8. Let X be a set, let P be the set of partial order relations
on X, partially ordered by inclusion as in Exercise 5.1:10, and let Q ⊆ P
consist of those partial orderings having descending chain condition.
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(i) Show that the maximal elements of Q (under the partial ordering
induced from P ) are the well-orderings of X.
(ii) Show that Q is not inductive.
(iii) Prove nonetheless that every element of Q is majorized by a maximal
element, and deduce that every partial ordering with DCC on a set X is
an intersection of well-orderings. (Hint: Take an appropriate ordinal α and
construct an indexing of the elements of X by an initial segment of α, in
a way “consistent” with the given partial order.)

The next four exercises, though not closely related to Zorn’s Lemma, ex-
plore further the relation between partially ordered sets and their well-ordered
subsets.

Exercise 5.6:9. Let S be an infinite set, and P(S) the set of all subsets of
S, partially ordered by inclusion. Show by example that P(S) can contain
chains of cardinality > card(S), but prove that P(S) cannot contain a
well-ordered chain of cardinality > card(S).

Exercise 5.6:10. (i) Show that every infinite totally ordered set has either
a subset order-isomorphic to ω or a subset order-isomorphic to ωop.
(ii) Show that every infinite partially ordered set P contains either a sub-
set order-isomorphic to ω, a subset order-isomorphic to ωop, or a count-
ably infinite antichain (Definition 5.1.6). (Suggestion: If P has no infinite
antichain, obtain a finite antichain B ⊆ P maximal for the property that
the set S of elements incomparable with all elements of B is infinite; then
study the properties this S must have. Alternatively, do the same thing
with the roles of comparable and incomparable elements reversed.)

This family of three partially ordered sets is essentially unique for the
above property:
(iii) Show that a set F of infinite partially ordered sets has the property
that every infinite partially ordered set contains an isomorphic copy of
a member of F if and only if F contains a partially ordered set order-
isomorphic to ω, a partially ordered set order-isomorphic to ωop, and a
countable antichain.

An application of the preceding exercise is

Exercise 5.6:11. Let P be a partially ordered set.
(i) Show that the following conditions are equivalent:

(i.a) P contains no chains order-isomorphic to ωop.
(i.b) Every infinite subset of P contains either a subset order-
isomorphic to ω, or an infinite antichain.
(i.c) P satisfies the descending chain condition.

(ii) It is clear from (i) above that conditions (ii.a)-(ii.c) below are equiv-
alent. Show that they are also equivalent to (ii.d):

(ii.a) P contains no chains order-isomorphic to ωop, and no infinite
antichains.
(ii.b) Every infinite subset of P contains a subset order-isomorphic
to ω.
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(ii.c) P has descending chain condition, and contains no infinite
antichains.
(ii.d) Every total ordering extending the ordering of P is a well-
ordering.
A partially ordered set P with the equivalent properties of (ii) is

sometimes called “partially well-ordered”.

The first part of the next exercise notes that for uncountable cardinalities,
things are more complicated.

Exercise 5.6:12. (i) Deduce from Exercise 5.6:9 that there exists a totally
ordered set P of some cardinality κ which contains no well-ordered or
reverse-well-ordered subset of cardinality κ.
(ii) Suppose P is as in (i), and ϕ is a bijection between P and a well-
ordered set Q of cardinality κ. Consider {(p, ϕ(p)) | p ∈ P}, under the
partial ordering induced by the product ordering on P × Q. Show that
this has neither chains nor antichains of cardinality κ (in contrast to the
result of Exercise 5.1:9 for finite partially ordered sets).

But perhaps one can repair this deficiency. (I have not thought hard
about the question asked below.)
(iii) Exercise 5.1:9 was based on defining the “height” of a partially ordered
set as the supremum of the cardinalities of its chains; but a different concept
of “height” was introduced for partially ordered sets with descending chain
condition in Exercise 5.5:4. Can this definition be extended in some way to
general partially ordered sets, or otherwise modified, so as to get an analog
of Exercise 5.1:9 for partially ordered sets of arbitrary cardinality? (Or can
the definition of “width” be so modified?)

Exercise 5.6:13. (i) Show that every countable totally ordered set can be
embedded in the totally ordered set (Q, ≤) of rational numbers.
(ii) Show that (Q, ≤) is not (up to order-isomorphism) the only count-
able totally ordered set with the property of part (i); but show that (Q, ≤)
has the property slightly stronger than (i), that for every countable totally
ordered set X, every embedding of a finite subset X0 ⊇ X in (Q, ≤) ex-
tends to an embedding of X in (Q, ≤), and that up to order-isomorphism
it is indeed the unique totally ordered set with this property.

Exercise 5.6:14. A subset X of a partially ordered set P is called un-
bounded if X is not majorized by any element of P.

Note that when we refer below to set-maps among partially ordered
sets, these are not assumed to be isotone.
(i) Let P be the partially ordered set ω×ω1, with the product ordering,
and let Q be either ω or ω1. Show that there exist set-maps f : P → Q
such that the image under f of every cofinal subset of P is a cofinal subset
of Q, but no set-maps g : P → Q such that the image under g of every
unbounded subset of P is unbounded in Q. On the other hand, show that
there exist set-maps h : Q → P such that the image under h of every
unbounded subset of Q is an unbounded subset of P, but no set-maps
i : Q → P such that the image under i of every cofinal subset of Q is
cofinal in P.

A partially ordered set P is called directed if any two elements of P
have a common upper bound.
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(ii) Show that for any two directed partially ordered sets P and Q, the
following conditions are equivalent:

(ii.a) There exists a set-map f : P → Q such that the image under
f of every cofinal subset of P is a cofinal subset of Q.
(ii.b) There exist a set-map h : Q→ P such that the image under h
of every unbounded subset of Q is an unbounded subset of P.

(iii) The equivalent conditions of (ii) above are written Q ≤T P. Show
that ≤T is a preordering on the class of directed partially ordered sets.
When Q ≤T P, one says Q is Tukey reducible to P. Translate the results
of (i) into a statement about Tukey reducibility.
(iv) Show that the following conditions on directed partially ordered sets
P and Q are equivalent:

(iv.a) P ≤T Q and Q ≤T P.
(iv.b) There exist set-maps f : P → Q and g : Q → P such that for
all p ∈ P and q ∈ Q one has g f(p) ≥ p and f g(q) ≥ q.
(iv.c) P and Q can be embedded as partially ordered sets (hence, by
isotone maps!) in a common directed partially ordered set R so that
each is cofinal in R. This condition is called Tukey equivalence.

(v) Obtain from the method of proof of Exercise 5.6:7 a result on Tukey
equivalence.

For a curious application of the well-ordering principle to the study of
abelian groups, see the first section of [44].

5.7. Some thoughts on set theory

I have mentioned that when the Axiom of Choice and various equivalent
principles were first considered, they were the subject of a heated controversy.

The Axiom of Choice is now known to be independent of the other axioms
of set theory; i.e., it has been proved that, assuming the consistency of the
Zermelo-Fraenkel axioms without Choice, both the full set of axioms includ-
ing Choice, and the Zermelo-Fraenkel axioms plus the negation of the Axiom
of Choice are consistent. And there are further statements (for instance the
Continuum Hypothesis, saying that 2ℵ0 = ℵ1) which have been shown in-
dependent of Zermelo-Fraenkel set theory with the Axiom of Choice, and
which there do not seem to be any compelling reasons either for accepting
or rejecting. This creates the perplexing question of what is the “true” set
theory.

Alongside Zermelo-Fraenkel Set Theory with and without Choice, etc.,
there are still other contenders for the “correct” foundations of mathematics.
The Intuitionists objected not only to the Axiom of Choice, but to the “law
of the excluded middle”, the logical principle that every meaningful state-
ment is either true or false. They claimed (if I understand correctly) that an
assertion such as Fermat’s Last Theorem (the statement that there are no
nontrivial integer solutions to xn + yn = zn, n > 2, which was unproven at
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the time) could be said to be false if a counterexample were found, or true if
an argument could be found (using forms of reasoning acceptable to them)
that proved it, but that it would be neither true nor false if neither a coun-
terexample nor a proof existed. They maintained that the application of the
law of the excluded middle to statements which involve infinitely many cases,
and which thus cannot be checked case by case, was a fallacious extension to
infinite sets of a method correct only for finite sets; in their words, that one
cannot reason in this way about an infinite set such as the set of all natural
numbers, because it cannot be regarded as a “completed totality”.

Although this viewpoint is not current, note that the distinction between
sets and proper classes, which got mathematics out of the paradoxes that
came from considering “the set of all sets”, leaves us wondering whether the
class of all sets is “a real thing”; and indeed one current textbook on set
theory refers to this in terms of the question of whether mathematicians can
consider such classes as “completed totalities”.

During a painfully protracted correspondence with someone who insisted
he could show that Zermelo-Fraenkel set theory was inconsistent, and that
the fault lay in accepting infinite sets, which he called “mere phantasms”,
I was forced to think out my own view of the matter, and the conclusion I
came to is that all sets, finite and infinite, are “phantasms”; that none of
mathematics is “real”, so that there is no true set theory; but that this does
not invalidate the practice of mathematics, or the usefulness of choosing a
“good” set theory.

To briefly explain this line of thought, let us understand the physical world
to be “real”. (If your religious or philosophical beliefs say otherwise, you can
nevertheless follow the regression to come.)

Our way of perceiving the world and interacting with it leads us to parti-
tion it into “objects”. This partitioning is useful, but is not a “real thing”.

To deal intelligently with objects, we think about families of objects, and,
as our thinking gets more sophisticated, families of such families. Though I
do not think the families, and families of families are “real things” either,
they are useful – as descriptions of the way we classify the world.

Consider in particular our system of numbers, which are themselves not
“real things”, but which give a model that allows us to use one coherent
arithmetic system to deal with the various things in the world that one can
count. Note that in spite of this motivation in terms of things one can count,
in developing the numbers we use a system that is not bounded by the lim-
itations of how high a person could count in a lifetime. A system with such
a limitation arbitrarily imposed would be more difficult to define, learn, and
work with than our system, in which the behavior of arithmetic is uniform
for arbitrarily large values! Moreover, our unbounded system turns out to
have applications to situations that a system bounded in that way would not
be able to deal with: to demographic, geographical, astronomical and other
data, which we compute from observations and theoretical models of our
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world, though no one human being could have counted the numbers involved
unit by unit.

Now in thinking about our system of numbers, we are dealing with the
concept of “all the numbers in the system” – even those who refuse to call
that family a “completed totality” do reason about it! – so, if possible, we
want our set theory to be able to handle such concepts. Just as we found it
natural to extend the system of numbers beyond the sizes of sets a real person
could count, so we may extend our system of “sets” beyond finite sets. This is
not as simple as with the number concept. Some plausible approaches turned
out to lead to contradictions, e.g., those that allowed one to speak of “the set
of all sets”. Among the approaches that do not seem to lead to contradictions,
some are more convenient than others. I think we are justified in choosing a
more convenient system to work in – one in which the “unreal objects” that
we are considering are easier to understand and generalize about.

It may seem pointless to work in a set theory which is to some extent
“arbitrary”, and to which we do not ascribe absolute “truth”. But observe
that as long as we use a system consistent with the laws of finite arithmetic,
any statements we can prove in our system about arithmetic models of aspects
of the real world, and which can in principle be confirmed or disproved in
each case by a finite calculation, will be correct; i.e., as applicable to the
real world as those models are. This is what I see as the “justification” for
including the Axiom of Choice and other convenient axioms in our set theory.

(For arguments in favor of adding another axiom, the Axiom of Projective
Determinacy, to the standard axioms of set theory, see [148].)

Fortunately, making a choice among set theories or systems of reasoning
does not consign all others to oblivion. Logicians do consider not only which
statements hold if the Axiom of Choice is assumed, but also which hold if its
negation is assumed. (E.g., [88] shows that in a model of ZF with the negation
of Choice, one will have commutative rings with properties contradicting
several standard theorems of ZFC ring theory.) Intuitionistic logic is likewise
still studied – not, nowadays, as a preferred mode of reasoning, but as a
formal system, related to objects called Brouwerian lattices (cf. [4]) in the
same way standard logic is related to Boolean algebras.



Chapter 6

Lattices, closure operators, and Galois
connections

6.1. Semilattices and lattices

Many of the partially ordered sets P we have seen have a further valuable
property: that for any two elements of P, there is a least element ≥ both of
them, and a greatest element ≤ both of them, i.e., a least upper bound and
a greatest lower bound for the pair. In this section we shall study partially
ordered sets with this property. To get a better understanding of the subject,
let us start by looking separately at the properties of having least upper
bounds and of having greatest lower bounds.

Recall that an element x is said to be idempotent with respect to a binary
operation ∗ if x ∗ x = x. The binary operation ∗ itself is often called
idempotent if x ∗ x = x holds for all x.

Lemma 6.1.1. Suppose X is a partially ordered set in which every two el-
ements x, y ∈ X have a least upper bound; that is, such that there exists a
least element which majorizes both x and y. Then if we write this least upper
bound as x ∨ y, and regard ∨ as a binary operation on X, this operation
satisfies the identities

(∀x ∈ X) x ∨ x = x (idempotence),

(∀x, y ∈ X) x ∨ y = y ∨ x (commutativity),

(∀x, y, z ∈ X) (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity).

Conversely, given a set X with a binary operation ∨ satisfying the above
three identities, there is a unique partial order relation ≤ on X for which
∨ is the least upper bound function. This relation ≤ may be obtained from
the operation ∨ in two ways: It can be constructed as

{(x, x ∨ y) | x, y ∈ X},

or characterized as the set of elements satisfying an equation:

161
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{(x, y) | x, y ∈ X and y = x ∨ y}. ut

Exercise 6.1:1. Prove the non-obvious part of the above lemma, namely
that every idempotent commutative associative binary operation on a set
arises from a partial ordering with least upper bounds. Why is this partial
ordering unique?

Hence we make

Definition 6.1.2. An upper semilattice means a pair S = (|S|, ∨), where |S|
is a set, and ∨ (pronounced “join”) is an idempotent commutative associative
binary operation on |S|. Informally, the term “upper semilattice” is also used
for the equivalent structure of a partially ordered set in which every pair of
elements has a least upper bound.

Given an upper semilattice (|S|, ∨), we shall consider |S| as partially
ordered by the unique ordering which makes ∨ the least upper bound op-
eration (characterized in two equivalent ways in the above lemma). The set
|S| with this partial ordering is sometimes called the “underlying partially
ordered set” of the upper semilattice S.

The join of a finite nonempty family of elements xi (i ∈ I) in an upper
semilattice (which by the associativity and commutativity of the join oper-
ation ∨ makes sense without specification of an order or bracketing for the
elements, and which is easily seen to give the least upper bound of {xi} in
the natural partial ordering) is denoted

∨
i∈I xi.

The danger of confusion inherent in the symmetry of the partial order
concept is now ready to rear its head! Observe that in a partially ordered
set in which every pair of elements x, y has a greatest lower bound x ∧ y,
the operation ∧ will also be idempotent, commutative and associative (it is
simply the operation ∨ for the opposite partially ordered set), though the
partial ordering is recovered from it in the opposite way, by defining x ≤ y if
and only if x can be written y∧z, equivalently, if and only if x = x∧y. We
have no choice but to make a formally identical definition for the opposite
concept (first half of the first sentence below):

Definition 6.1.3. A lower semilattice means a pair S = (|S|, ∧), where |S|
is a set and ∧ (pronounced “meet”) is an idempotent commutative asso-
ciative binary operation on |S|; or informally, the equivalent structure of
a partially ordered set in which every pair of elements has a greatest lower
bound. If (|S|, ∧) is such a pair, regarded as a lower semilattice, then |S|
will be considered partially ordered in the unique way which makes ∧ the
greatest lower bound operation.

The notation for the meet of a finite nonempty family of elements is∧
i∈I xi.

A partially ordered set (X, ≤) in which every pair of elements x and y
has both a least upper bound x ∨ y and a greatest lower bound x ∧ y is
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clearly determined – indeed, redundantly determined – by the 3-tuple L =
(X, ∨, ∧). We see that a 3-tuple consisting of a set, an upper semilattice
operation, and a lower semilattice operation arises in this way if and only if
these operations are compatible, in the sense that the unique partial ordering
for which ∨ is the least-upper-bound operation coincides with the unique
partial ordering for which ∧ is greatest-lower-bound operation.

Is there a nice formulation for this compatibility condition? The statement
that for any two elements x and y, the element y can be written x∨ z for
some z if and only if the element x can be written y∧w for some w would
do, but it is awkward. If, instead of using as above the descriptions of how to
construct all pairs (x, y) with x ≤ y with the help of the operations ∨ and
∧, we use the formulas that characterize them as solution-sets of equations,
we get the condition that for all elements x and y, y = x∨y ⇐⇒ x∧y = x.
But the best expression for our condition – one that does not use any “can
be written”s or “ ⇐⇒ ”s – is obtained by playing off one description of ∨
against the other description of ∧. This is the fourth pair of equations in

Definition 6.1.4. A lattice will mean a 3-tuple L = (|L|, ∨, ∧) satisfying
the following identities for all x, y, z ∈ |L| :

x ∨ x = x x ∧ x = x (idempotence),

x ∨ y = y ∨ x x ∧ y = y ∧ x (commutativity),

(x ∨ y) ∨ z = x ∨ (y ∨ z) (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity),

x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x (compatibility);

in other words, such that (|L|, ∨) is an upper semilattice, (|L|, ∧) is a lower
semilattice, and the two semilattice structures correspond to the same partial
ordering on |L|. Informally, the term will also be used for the equivalent
structure of a partially ordered set in which every pair of elements has both
a least upper bound and a greatest lower bound.

Given a lattice (|L|, ∨, ∧), we shall consider |L| partially ordered by the
unique partial ordering (characterizable in four equivalent ways) which makes
its join operation the least upper bound and its meet operation the greatest
lower bound. The set |L| with this partial ordering is sometimes called the
“underlying partially ordered set of L.”

Examples: If S is a set, then the power set P(S) (the set of all subsets
of S), partially ordered by the relation of inclusion, has least upper bounds
and greatest lower bounds, given by operations of union and intersection of
sets; hence (P(S), ∪, ∩) is a lattice. Since the definition of Boolean algebra
was modeled on the structure of the power set of a set, every Boolean alge-
bra (|B|, ∪, ∩, c, 0, 1) gives a lattice (|B|, ∪, ∩) on dropping the last three
operations; and since we know that Boolean rings are equivalent to Boolean
algebras, every Boolean ring (|B|,+, ·,−, 0, 1) becomes a lattice under the
operations x ∨ y = x+ y + x y and x ∧ y = x y.
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Every totally ordered set – for instance, the real numbers – is a lattice,
since the larger and the smaller of two elements will respectively be their
least upper bound and greatest lower bound. The set of real-valued functions
on any set X may be ordered by writing f ≤ g if f(x) ≤ g(x) for all x,
and this set is a lattice under pointwise maximum and minimum.

Under the partial ordering by divisibility, the set of positive integers has
least upper bounds and greatest lower bounds, called “least common multi-
ples” and “greatest common divisors”. Note that if we represent a positive
integer by its prime factorization, and consider such a factorization as a func-
tion associating to each prime a nonnegative integer, then least common mul-
tiples and greatest common divisors reduce to pointwise maxima and minima
of these functions.

Given a group G, if we order the set of subgroups of G by inclusion, then
we see that for any two subgroups H and K, there is a largest subgroup
contained in both, gotten by intersecting their underlying sets, and a small-
est subgroup containing both, the subgroup generated by the union of their
underlying sets. So the set of subgroups of G forms a lattice, called the sub-
group lattice of G. This observation goes over word-for-word with “group”
replaced by “monoid”, “ring”, “vector space”, etc..

Some writers use “ring-theoretic” notation for lattices, writing x + y for
x ∨ y, and x y for x ∧ y. Note, however, that a nontrivial lattice is never a
ring (since by idempotence, its join operation cannot be a group structure).
We will not use such notation here.

Although one can easily draw pictures of partially ordered sets and semi-
lattices which are not lattices, it takes a bit of thought to find naturally
occurring examples. The next exercise notes a couple of these.

Exercise 6.1:2. (i) If G is a group, show that within the lattice of sub-
groups of G, the finitely generated subgroups form an upper semilattice
under the induced order, but not necessarily a lower semilattice, and the
finite subgroups form a lower semilattice but not necessarily an upper
semilattice. (For partial credit you can verify the positive assertions; for
full credit you must find examples establishing the negative assertions as
well.)
(ii) Let us partially order the set of polynomial functions on the unit
interval [0, 1] by pointwise comparison (f ≤ g if and only if f(x) ≤ g(x)
for all x ∈ [0, 1]). Show that this partially ordered set is neither an upper
nor a lower semilattice.

Exercise 6.1:3. Give an example of a 3-tuple (|L|, ∨, ∧) which satisfies
all the identities defining a lattice except for one of the two compatibility
identities. If possible, give a systematic way of constructing such examples.
Can you determine for which upper semilattices (|L|, ∨) there will exist
operations ∧ such that (|L|, ∨, ∧) satisfies all the lattice identities except
the specified one? (The answer will depend on which identity you leave
out; you can try to solve the problem for one or both cases.)

Exercise 6.1:4. Show that the two compatibility identities at the end of
Definition 6.1.4 together imply the two idempotence identities.
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Exercise 6.1:5. Show that an element of a lattice is a maximal element if
and only if it is a greatest element. Is this true in every upper semilattice?
In every lower semilattice?

A homomorphism of lattices, upper semilattices, or lower semilattices
means a map of their underlying sets which respects the lattice or semi-
lattice operations. If L1 and L2 are lattices, one can speak loosely of an
“upper semilattice homomorphism L1 → L2, ” meaning a map of underlying
sets which respects joins but not necessarily meets; this is really a homomor-
phism (L1)∨ → (L2)∨, where (Li)∨ denotes the upper semilattice (|Li|, ∨)
gotten by forgetting the operation ∧; one may similarly speak of “lower semi-
lattice homomorphisms” of lattices. Note that if f : |L1| → |L2| is a lattice
homomorphism, or an upper semilattice homomorphism, or a lower semilat-
tice homomorphism, it will be an isotone map with respect to the natural
order-relations on |L1| and |L2|, but in general, an isotone map f need not
be a homomorphism of any of these sorts.

A sublattice of a lattice L is a lattice whose underlying set is a subset of
|L| and whose operations are the restrictions to this set of the operations
of L. A subsemilattice of an upper or lower semilattice is defined similarly,
and one can speak loosely of an upper or lower subsemilattice of a lattice L,
meaning a subsemilattice of L∨ or L∧.

Exercise 6.1:6. (i) Give an example of a subset S of the underlying set of
a lattice L such that every pair of elements of S has a least upper bound
and a greatest lower bound in S under the induced ordering, but such that
S is not the underlying set of either an upper or a lower subsemilattice of
L.
(ii) Give an example of an upper semilattice homomorphism between lat-
tices that is not a lattice homomorphism.
(iii) Give an example of a bijective isotone map between lattices which is
not an upper or lower semilattice homomorphism.
(iv) Show that a bijection between lattices is a lattice isomorphism if either
(a) it is an upper (or lower) semilattice homomorphism, or (b) it and its
inverse are both isotone.

Exercise 6.1:7. Let k be a field. If V is a k-vector space, then the cosets of
subspaces of V, together with the empty set, are called the affine subspaces
of V.
(i) Show that the affine subspaces of a vector space (ordered by inclusion)
form a lattice.
(ii) Suppose we map the set of affine subspaces of the vector space kn into
the set of vector subspaces of kn+1 by sending each affine subspace A ⊆ kn
to the vector subspace s(A) ⊆ kn+1 spanned by {(x0, . . . , xn−1, 1) |
(x0, . . . , xn−1) ∈ A}. Show that this map s is one-to-one. One may ask
whether s respects meets and/or joins. Show that it respects one of these,
and respects the other in “most but not all” cases, in a sense you should
make precise.

(The study of the affine subspaces of kn is called n-dimensional affine
geometry. By the above observations, the geometry of the vector subspaces
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of kn+1 may be regarded as a slight extension of n-dimensional affine
geometry; this is called n-dimensional projective geometry. In view of the
relation with affine geometry, a 1-dimensional subspace of kn+1 is called a
“point” of projective n-space, a 2-dimensional subspace, or more precisely,
the set of “points” it contains, is called a “line”, etc..)

The methods introduced in Chapters 3 and 4 can clearly be used to estab-
lish the existence of free lattices and semilattices, and of lattices and semi-
lattices presented by generators and relations. As in the case of monoids,
a “relation” means a statement equating two terms formed from the given
generators using the given operations – in this case, the lattice or semilattice
operations.

Exercise 6.1:8. (i) If P is a partially ordered set, show that there exist
universal examples of an upper semilattice, a lower semilattice, and a lat-
tice, with isotone maps of P into their underlying partially ordered sets,
and that these may be constructed as semilattices or lattices presented by
appropriate generators and relations.
(ii) Show likewise that given any upper or lower semilattice S, there
is a universal example of a lattice L with an upper, respectively lower
semilattice homomorphism of S into it.
(iii) If the S of part (ii) above “is a lattice” (has both least upper bounds
and greatest lower bounds), will this universal semilattice homomorphism
be an isomorphism? If the P of part (i) “is a lattice” will the universal
isotone maps of that part be isomorphisms of partially ordered sets?
(iv) Show that the universal maps of (i) and (ii) are in general not surjec-
tive, and investigate whether each of them is in general one-to-one.

Exercise 6.1:9. Determine a normal form or other description for the free
upper semilattice on a set X. Show that it will be finite if X is finite.

There exists something like a normal form theorem for free lattices [4,
§VI.8], but it is much less trivial than the result for semilattices referred to
in the above exercise, and we will not develop it here. However, the next
exercise develops a couple of facts about free lattices.

Exercise 6.1:10. (i) Determine the structures of the free lattices on 0, 1,
and 2 generators.
(ii) Show for some positive integer n that the free lattice on n generators
is infinite. (One approach: In the lattice of affine subsets of the plane R2

(Exercise 6.1:7), consider the sublattice generated by the five lines x = 0,
x = 1, x = 2, y = 0, y = 1.)

Exercise 6.1:11. (i) Recall (cf. discussion preceding Exercise 5.1:5) that
a set map X → Y induces maps P(X) → P(Y ) and P(Y ) → P(X).
Show that one of these is always, and the other is not always a lattice
homomorphism.
(ii) If L is (a) a lattice, respectively (b) an upper semilattice, (c) a lower
semilattice or (d) a partially ordered set, show that there exists a universal
example of a set X together with, respectively,
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(a) a lattice homomorphism L→ (P(X), ∪, ∩),
(b) an upper semilattice homomorphism L→ (P(X), ∪),
(c) a lower semilattice homomorphism L→ (P(X), ∩), respectively,
(d) an isotone map L → (P(X), ⊆) (unless you did this case in Ex-
ercise 5.1:5).
In each case, first formulate the relevant universal properties. These

should be based on the construction of part (i) that does give lattice ho-
momorphisms. In each case, describe the set X as explicitly as you can.
(iii) In the context of part (i), the map between P(X) and P(Y ) that
does not generally give a lattice homomorphism will nevertheless preserve
some of the types of structure named in part (ii). If L is an arbitrary
structure of one of those sorts, see whether you can find an example of a
set X and a map |L| → P(X) respecting that structure, and universal
with respect to induced maps in the indicated direction.
(iv) For which of the constructions that you obtained in parts (ii)
and/or (iii) can you show the universal map |L| → P(X) one-to-one?
In the case(s) where you cannot, can you find an example in which it is
not one-to-one?

In Exercise 5.6:6 we saw that any partially ordered set without maximal
elements has two disjoint cofinal subsets. Let us examine what similar results
hold for lattices.

Exercise 6.1:12. Let L be a lattice without greatest element.
(i) If L is countable, show that it contains a cofinal chain, that this chain
will have two disjoint cofinal subchains, and that these will be disjoint
cofinal sublattices of L.
(ii) Show that in general, L need not have a cofinal chain.
(iii) Must L have two disjoint cofinal sublattices? (I don’t know the an-
swer.)
(iv) Show that L will always contain two disjoint upper subsemilattices,
each cofinal in L.

Here is another open question, of a related sort.

Exercise 6.1:13. (i) (Open question, David Wasserman.) If L is a lattice
with more than one element, must L have two proper sublattices L1 and
L2 whose union generates L ?

Parts (ii) and (iv) below, which are fairly easy, give some perspective on
this question; parts (iii) and (v) are digressions suggested by (ii) and (iv).
(ii) Show that if A is a group, monoid, ring or lattice which is finitely
generated but cannot be generated by a single element, then A is generated
by the union of two proper subgroups, subrings, etc.. (You can give one
proof that covers all these cases.)
(iii) Determine precisely which finitely generated groups are not generated
by the union of any two proper subgroups.
(iv) Let p be a prime and Z[p−1] the subring of Q generated by p−1, and
let Z[p−1]add denote its underlying additive group. Show that the abelian
group Z[p−1]add/Zadd is non-finitely-generated, and cannot be generated
by two proper subgroups.
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(v) Are the groups of parts (iii) and (iv) above the only ones that are not
generated by two proper subgroups?

I could not end an introduction to lattices without showing you the
concepts introduced in the next two exercises, though this brief mention,
and the results developed in the two subsequent exercises, will hardly do
them justice. I will refer in these exercises to the following two 5-element
lattices:

N5 :
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q q q M3 :

q
q
q
q
q
q

(M3 is sometimes called M5.)

Exercise 6.1:14. (i) Show that the following conditions on a lattice L are
equivalent:

(a) For all x, y, z ∈ |L| with x ≤ z, one has x∨ (y∧z) = (x∨y)∧z.
(b) L has no sublattice isomorphic to N5 (shown above).
(c) For every pair of elements x, y ∈ |L|, the intervals [x∧ y, y] and
[x, x ∨ y] are isomorphic, the map in one direction being given by
z 7→ x ∨ z, in the other direction by z 7→ z ∧ y.

(ii) Show that condition (a) is equivalent to an identity, i.e., a statement
that a certain equation in n variables and the lattice-operations holds
for all n-tuples of elements of L. (Condition (a) as stated fails to be an
identity, because it refers only to 3-tuples satisfying x ≤ z.)
(iii) Show that the lattice of subgroups of an abelian group satisfies the
above equivalent conditions. Deduce that the lattice of submodules of a
module over a ring will satisfy the same conditions.

For this reason, a lattice satisfying these conditions is called modular.
(iv) Determine, as far as you can, whether each of the following lattices
is in general modular: the lattice of all subsets of a set; the lattice of all
subgroups of a group; the lattice of all normal subgroups of a group; the
lattice of all ideals of a ring; the lattice of all subrings of a ring; the lattice
of all subrings of a Boolean ring; the lattice of elements of a Boolean ring
under the operations x ∨ y = x + y + x y and x ∧ y = x y; the lattice of
all sublattices of a lattice; the lattice of all closed subsets of a topological
space; the lattices associated with n-dimensional affine geometry and with
n-dimensional projective geometry (Exercise 6.1:7 above).

Exercise 6.1:15. (i) Show that the following conditions on a lattice L are
equivalent:

(a) For all x, y, z ∈ |L|, one has x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
(a*) For all x, y, z ∈ |L|, one has x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
(b) L has no sublattice isomorphic either to M3 or to N5.
Note that if one thinks of ∨ as “addition” and ∧ as “multiplication”,

then (a*) has the form of the distributive law of ring theory. (Condition (a)
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is also a distributive law, though that identity does not hold in any nonzero
ring.) Hence lattices satisfying the above equivalent conditions are called
distributive.
(ii) Show that the lattice of subsets of a set is distributive.
(iii) Determine, as far as you can, whether lattices of each of the remain-
ing sorts listed in parts (iii) and (iv) of the preceding exercise are always
distributive.
(iv) Show that every finitely generated distributive lattice is finite.

Exercise 6.1:16. Let V be a vector space over a field k, let S1, . . . , Sn be
subspaces of V, and within the lattice of all subspaces of V, let L denote
the sublattice generated by S1, . . . , Sn.
(i) Show that if V has a basis B such that each Si is spanned by a
subset of B, then L is distributive, as defined in the preceding exercise

Below we will prove the converse of (i); so for the remainder of this exer-
cise, we assume the lattice L generated by the vector subspaces S1, . . . , Sn
is distributive.

To prove the existence of a basis as in the hypothesis of (i), it will suffice
to prove that V contains a direct sum of subspaces, with the property that
each Si is the sum of some subfamily thereof; so this is what we will aim
for. (You’ll give the details of why this yields the desired result in the last
step.)

You may assume the last result of the preceding exercise, that every
finitely generated distributive lattice is finite.
(ii) Let T = S1 + · · · + Sn, the largest element of L. Assuming L has
elements other than T, let W be maximal among these. Show that there
is a least element U ∈ L not contained in W.
(iii) Let E be a subspace of V such that U = (U ∩W )⊕E. (Why does
one exist?) Show that every member of L is either contained in W, or is
the direct sum of E with a member of L contained in W.
(iv) Writing L′ for the sublattice of L consisting of members of L
contained in W, show that the lattice of subspaces of V generated by
{S1, . . . , Sn, E} is isomorphic to L′ × {0, E}, and hence is again a finite
distributive sublattice of the lattice of subspaces of V.
(v) Conclude by induction (on what?) that there exists a family of sub-
spaces E1, . . . , Er ⊆ V such that every member of L, and hence in par-
ticular, each of S1, . . . , Sn, is the direct sum of a subset of this family.
(vi) Deduce that V has a basis B such that each Si is spanned by a
subset of B.

Exercise 6.1:17. Let us show that the result of the preceding exercise fails
for infinite families (Si)i∈I . Our example will be a chain of subspaces,
so
(i) Verify that every chain in a lattice is a distributive sublattice.

Now let k be a field, and V the k-vector-space of all k-valued functions
on the nonnegative integers. You may assume the standard result that V is
uncountable-dimensional. For each nonnegative integer n, let Sn = {f ∈
V | f(i) = 0 for i < n}.
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(ii) Show that V does not have a basis B such that each Si is spanned
by a subset of B. (One way to start: Verify that for each n, Sn+1 has
codimension 1 in Sn, and that the intersection of these subspaces is {0}.)

The preceding exercise suggests

Exercise 6.1:18. Can you find necessary and sufficient conditions on a lat-
tice L for it to be true that for every homomorphism f of L into the
lattice of subspaces of a vector space V, there exists a basis B of V such
that every subspace f(x) (x ∈ |L|) is spanned by a subset of B ?

We remark that the analog of Exercise 3.3:2 with the finite lattice N5 in
place of the finite group S3 is worked out for n = 3 in [143].

6.2. 0, 1, and completeness

We began this chapter with the observation that many natural examples of
partially ordered sets have the property that every pair of elements has a least
upper bound and a greatest lower bound. But most of these examples in fact
have the stronger property that such bounds exist for every set of elements.
E.g., in the lattice of subgroups of a group, one can take the intersection of,
or the subgroup generated by the union of, an arbitrary set of subgroups. The
property that every subset {xi | i ∈ I} has a least upper bound (denoted∨
I xi) and a greatest lower bound (denoted

∧
I xi) leads to the class of

nonempty complete lattices, which we shall consider in this section.
Note that in an ordinary lattice, because every pair of elements x, y

has a least upper bound x ∨ y, it follows that for every positive integer n,
every family of n elements x0, . . . , xn−1 has a least upper bound, namely∨
xi = x0 ∨ · · · ∨ xn−1. Hence, to get least upper bounds for all families,

we need to bring in the additional cases of infinite families, and the empty
family.

Now every element of a lattice L is an upper bound of the empty family,
so a least upper bound for the empty family means a least element in the
lattice. Such an element is often written 0, or when there is a possibility of
ambiguity, 0L. Likewise, a greatest lower bound for the empty family means
a greatest element, commonly written 1 or 1L.

It is not hard to see that the two conditions that a partially ordered set
have pairwise least upper bounds (joins) and that it have a least element (a
least upper bound of the empty family) are independent: either, neither, or
both may hold. On the other hand, existence of pairwise joins and existence
of infinite joins (joins indexed by infinite families, with repetition allowed
just as in the case of pairwise joins) are not independent; the latter condition
implies the former. However, we may ask whether the property “existence of
infinite joins” can somehow be decomposed into the conjunction of existence
of pairwise joins, and some natural condition which is independent thereof.
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The next result shows that it can, and more generally, that for any cardinal
α, the condition “there exist joins of all families of cardinality < α ” can be
so decomposed.

Lemma 6.2.1. Let P be a partially ordered set, and α an infinite cardinal.
Then the following conditions are equivalent:

(i) Every nonempty subset of P with < α elements has a least upper bound
in P.

(ii) Every pair of elements of P has a least upper bound, and every non-
empty chain in P with < α elements has a least upper bound.

The dual statements concerning greatest lower bounds are likewise equiv-
alent to one another.

Proof. (i) =⇒ (ii) is clear.
Conversely, assuming (ii) let us take any nonempty set X of < α elements

of P, and index it by an ordinal β < α : X = {xε | ε < β}. We shall prove
inductively that for 0 < γ ≤ β, there exists a least upper bound

∨
ε<γ xε.

Because we have not assumed a least upper bound for the empty set, this
need not be true for γ = 0, so we start the induction by observing that for
γ = 1, the set {xε | ε < 1} = {x0} has least upper bound x0. Now let
1 < γ ≤ β and assume our result is true for all positive δ < γ. If γ is a
successor ordinal, γ = δ + 1, then we apply the existence of pairwise least
upper bounds in P and see that (

∨
ε<δ xε) ∨ xδ will give the desired least

upper bound
∨
ε<γ xε. On the other hand, if γ is a limit ordinal, then the

elements
∨
ε<δ xε where δ ranges over all nonzero members of γ will form

a nonempty chain of < α elements in P, which by (ii) has a least upper
bound, and this is the desired element

∨
ε<γ xε. So by induction,

∨
ε<β xε

exists, proving (i).
The final statement follows by duality. ut

Definition 6.2.2. Let α be a cardinal. Then a lattice or an upper semilattice
L in which every nonempty set of < α elements has a least upper bound will
be called <α-upper semicomplete. A lattice or a lower semilattice satisfying
the dual condition is said to be <α-lower semicomplete. A lattice satisfying
both conditions will be called <α-complete.

When these conditions hold for all cardinals α, one calls L upper semi-
complete, respectively lower semicomplete, respectively complete.

(We may at times want to refer to the least upper bound or greatest lower
bound in a partially ordered set P of a set X = {xi | i ∈ I} indexed by some
set other than an ordinal; in such cases we will, of course, write

∨
i∈I xi or∧

i∈I xi. If no indexing is given, we can write these as
∨
x∈X x or

∧
x∈X x;

which we may abbreviate to
∨
X or

∧
X.)

One can similarly speak of a lattice or semilattice as being upper or
lower ≤α-semicomplete if all nonempty subsets of cardinality ≤ α have
least upper bounds, respectively greatest lower bounds. Note, however,
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that upper or lower ≤α-semicompleteness is equivalent to upper or lower
<α+-semicompleteness respectively, where α+ is the successor of the car-
dinal α. Since not every cardinal is a successor, the class of conditions
named by the “< ” properties properly contains the class of conditions
named by the “≤ ” properties. Consequently, in the interest of brevity, many
authors write “α-semicomplete” and “α-complete” for what we are calling
“<α-semicomplete” and “<α-complete”. I prefer to use a more transparent
terminology, however.

We have observed, in effect, that every lattice is <ℵ0-complete; so the
first case of interest among the above completeness conditions is that of
≤ℵ0-completeness, equivalently, <ℵ1-completeness. This property is com-
monly called countable completeness, even by authors who in their systematic
notation would write it as ℵ1-completeness. Countable upper and lower semi-
completeness are defined similarly. We will not, however, use these terms in
these notes, since the cases of greatest interest to us in this section, and the
only cases we will be concerned with after this section, are the full complete-
ness conditions.

Note that in a partially ordered set (e.g., a lattice) with ascending chain
condition, all nonempty chains have least upper bounds – since they in fact
have greatest elements. Likewise in a partially ordered set with descending
chain condition, all chains have greatest lower bounds.

Exercise 6.2:1. Suppose β and γ are infinite cardinals, and X a set
having cardinality ≥ max(β, γ). Let L = {S ⊆ X | card(S) < β or
card(X − S) < γ}. Verify that L is a lattice, and investigate for what
cardinals α this lattice is upper, respectively lower <α-semicomplete.

The upper and lower semicompleteness conditions, when not restricted by
a cardinal α, have an unexpectedly close relation.

Proposition 6.2.3. Let L be a partially ordered set. Then the following con-
ditions are equivalent:

(i) Every subset of L has a least upper bound; i.e., L is the underlying
partially ordered set of an upper semicomplete upper semilattice with least
element.

(i*) Every subset of L has a greatest lower bound; i.e., L is the underlying
partially ordered set of a lower semicomplete lower semilattice with greatest
element.

(ii) L is the underlying partially ordered set of a nonempty complete lattice.

Proof. To see the equivalence of the two formulations of (i), recall that a
least upper bound for the empty set is a least element, while the existence of
least upper bounds for all nonempt subsets is what it means to be an upper
semicomplete upper semilattice.

To show (i) =⇒ (ii), observe that the existence of a least element shows
that L is nonempty, and the upper complete upper semilattice condition
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gives half the condition to be a complete lattice. It remains to show that any
nonempty subset X of L has a greatest lower bound u. In fact, the least
upper bound of the set of all lower bounds for X will be the desired u; the
reader should verify that it has the required property.

Conversely, assuming (ii), we have by definition least upper bounds for all
nonempty subsets of L. A least upper bound for the empty set is easily seen
to be given by the greatest lower bound of all of L. (How is the nonemptiness
condition of (ii) used?)

Since (ii) is self-dual and equivalent to (i), it is also equivalent to (i*). ut

Exercise 6.2:2. If T is a topological space, show that the open sets in T,
partially ordered by inclusion, form a complete lattice. Describe the meet
and join operations (finite and arbitrary) of this lattice. Translate these
results into statements about the set of closed subsets of T.

(General topology buffs may find it interesting to show that, on the
other hand, the partially ordered set {open sets} ∪ {closed sets} is not in
general a lattice, nor is the partially ordered set of locally closed sets.)

Exercise 6.2:3. Which ordinals, when considered as ordered sets, form com-
plete lattices?

Exercise 6.2:4. (i) Show that every isotone map from a nonempty com-
plete lattice into itself has a fixed point.
(ii) Can you prove the same result for a larger class of partially ordered
sets?

Exercise 6.2:5. Let L be a complete lattice.
(i) Show that the following conditions are equivalent: (a) L has no chain
order-isomorphic to an uncountable cardinal. (b) For every subset X ⊆ |L|
there exists a countable subset Y ⊆ X such that

∨
Y =

∨
X.

(ii) Let a be any element of L. Are the following conditions equivalent?
(a) L has no chain which is order-isomorphic to an uncountable cardinal
and has join a. (b) Every subset X ⊆ L with join a contains a countable
subset Y also having join a.

Although we write the least upper bound and greatest lower bound of a
set X in a complete lattice as

∨
X or

∨
x∈X x and

∧
X or

∧
x∈X x, and

call these the meet and join of X, these “meet” and “join” are not operations
in quite the sense we have been considering so far. An operation is supposed
to be a map Sn → S for some n. One may allow n to be an infinite
cardinal (or other set), but when we consider complete lattices, there is no
fixed cardinality to use. This suggests that we should consider each of the
symbols

∨
and

∧
to stand for a system of operations, of varying finite and

infinite arities. But how large is this system? In a given complete lattice L, all
meets and joins reduce (by dropping repeated arguments) to meets and joins
of families of cardinalities ≤ card(|L|). But if we want to develop a general
theory of complete lattices, then meets and joins of families of arbitrarily
large cardinalities will occur, so this “system of operations” will not be a set
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of operations. We shall eventually see that as a consequence of this, though
complete lattices are in many ways like algebras, not all of the results that
we prove about algebras will be true for them (Exercise 8.10:6(iii)).

Another sort of complication in the study of complete lattices comes from
the equivalence of the various conditions in Proposition 6.2.3: Since these
lattices can be characterized in terms of different systems of operations, there
are many natural kinds of “maps” among them: maps which respect arbitrary
meets, maps which respect arbitrary joins, maps which respect both, maps
which respect meets of all nonempty sets and joins of all pairs, etc.. The term
“homomorphism of complete lattices” will mean a map respecting meets and
joins of all nonempty sets, but the other kinds of maps are also of interest.
These distinctions are brought out in:

Exercise 6.2:6. (i) Show that every nonempty complete lattice can be
embedded, by a map which respects arbitrary joins (including the join of
the empty set), in a power set P(S), for some set S, and likewise may be
embedded in a power set by a map which respects arbitrary meets.
(ii) On the other hand, show, either using Exercise 6.1:15(ii) or by a direct
argument, that the finite lattices M3 and N5 considered there cannot be
embedded by any lattice homomorphism, i.e., any map respecting both
finite meets and finite joins, in a power set P(S).

The next few pages contain a large number of exercises which, though I
find them of interest, digress from the main point of this section. The reader
who so wishes may skim past them and jump to the discussion immediately
preceding Definition 6.2.4.

Our proof in Lemma 6.2.1 that the existence of least upper bounds of
chains made a lattice upper semicomplete really only used well-ordered
chains, i.e., chains order-isomorphic to ordinals. In fact, one can do still bet-
ter:

Exercise 6.2:7. Recall from Exercise 5.6:5 that every totally ordered set
has a cofinal subset order-isomorphic to a regular cardinal.
(i) Deduce that for P a partially ordered set and α an infinite cardinal,
the following two conditions are equivalent:

(a) Every chain in P of cardinality < α has a least upper bound.
(b) Every chain in P which is order-isomorphic to a regular cardinal
β < α has a least upper bound.

(ii) With the help of the above result, extend Lemma 6.2.1, adding a third
equivalent condition.

There are still more ways than those we have seen to decompose the con-
dition of being a complete lattice, as shown in part (ii) of

Exercise 6.2:8. (i) Show that following conditions on a partially ordered
set L are equivalent:

(a) Every nonempty subset of L having an upper bound has a least
upper bound.
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(b) Every nonempty subset of L having a lower bound has a greatest
lower bound.
(c) L satisfies the complete interpolation property: Given two non-
empty subsets X, Y of L, such that every element of X is ≤ every
element of Y, there exists an element z ∈ L which is ≥ every element
of X and ≤ every element of Y.

(ii) Show that L is a nonempty complete lattice if and only if it has a
greatest and a least element, and satisfies the above equivalent conditions.
(iii) Give an example of a partially ordered set which satisfies (a)-(c)
above, but is not a lattice.
(iv) Give an example of a partially ordered set with greatest and least
elements, which has the finite interpolation property, i.e., satisfies (c) above
for all finite nonempty families X and Y, but which is not a lattice.

This condition-splitting game is carried further in

Exercise 6.2:9. If σ and τ are conditions on sets of elements of par-
tially ordered sets, let us say that a partially ordered set L has the
(σ, τ)-interpolation property if for any two subsets X and Y of L such
that X satisfies σ, Y satisfies τ, and all elements of X are ≤ all el-
ements of Y, there exists an element z ∈ L which is ≥ every element
of X and ≤ every element of Y. Now consider the nine conditions on L
gotten by taking for σ and τ all combinations of the three properties “is
empty”, “is a pair” and “is a chain”.
(i) Find simple descriptions for as many of these nine conditions as you
can; in particular, note cases that are equivalent to conditions we have
already named.
(ii) Show that L is a nonempty complete lattice if and only if it satisfies
all nine of these conditions.
(iii) How close to independent are these nine conditions? To answer this,
determine as well as you can which of the 29 = 512 functions from the
set of these conditions to the set {true, false} can be realized by appro-
priate choices of L. (Remark: A large number of these combinations can
be realized, so to show this, you will have to produce a large number of
examples. I therefore suggest that you consider ways that examples with
certain combinations of properties can be obtained from examples of the
separate properties.)

Exercise 6.2:10. (i) We saw in Exercise 6.1:2(ii) that the set of real poly-
nomial functions on the unit interval [0, 1], partially ordered by the rela-
tion (∀x ∈ [0, 1]) f(x) ≤ g(x), does not form a lattice. Show, however,
that it has the finite interpolation property. (This gives a solution to Ex-
ercise 6.2:8(iii), but far from the easiest solution. The difficulty in proving
this result arises from the possibility that some members of X may be
tangent to some members of Y.)
(ii) Can you obtain similar results for the partially ordered set of real
polynomial functions on a general compact set K ⊆ Rn ?

An interesting pair of invariants related to Exercise 6.2:6(i) is examined in
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Exercise 6.2:11. (i) For L a nonempty complete lattice and α a car-
dinal, show that the following conditions are equivalent: (a) L can be
embedded, by a map respecting arbitrary meets, in the power set P(S) of
a set of cardinality α, (b) There exists a subset T ⊆ |L| of cardinality
≤ α such that every element of L is the join of a (possibly infinite) subset
of T, (c) L can be written as the image, under a map respecting arbitrary
joins, of the power set P(U) of a set of cardinality α.

From condition (b) above we see that for every L there will exist α
such that these equivalent conditions hold. Let us call the least cardinal
with this property the upward generating number of L, because of formu-
lation (b). Dually, we have the concept of downward generating number.
(ii) Find a finite lattice L for which these two generating numbers are
not equal.

The above exercise concerned complete lattices. On the other hand, if L is
a lattice or semilattice with no greatest element, we can’t map any power set
P(X) onto it by a homomorphism of semilattices, since a partially ordered
set with greatest element can never be taken by an isotone map onto one
without greatest element. As a next best possibility, one might ask whether
one can map onto any such L some lower complete lower semilattice of the
form ωX , since (unlike P(X) = 2X) this does not in general have a greatest
element, but is nonetheless a full direct product. A nice test case for this idea
would be to take for L the lattice of all finite subsets of a set S. The first
part of the next exercise shows that for this case, the answer to the above
question is yes.

Exercise 6.2:12. (i) Let S be any set, and Pfin(S) the lower complete
lower semilattice of finite subsets of S. Let ωS denote the lower complete
lower semilattice of natural-number-valued functions on S (under point-

wise inequality), and |ωS | the underlying set of this lattice, so that ω|ω
S |

is the lower complete lower semilattice of natural-number-valued functions
on that set. Show that there exists a surjective homomorphism of lower

semicomplete semilattices ω|ω
S | → Pfin(S).

Suggestion: For each s ∈ S let s∗ ∈ |ω|ωS || denote the function sending

each element of ωS to its value at s. Now map each f ∈ |ω|ωS || to the
set of those s ∈ S such that f ≥ s∗. Show that this set is finite, and this
map has the desired properties.
(ii) If L is an arbitrary nonempty lower semicomplete lower semilattice,
must there exist a surjective homomorphism ωX → L of such semilattices
for some set X ? If not, can you find necessary and sufficient conditions on
L for such a homomorphism to exist?

We noted earlier that the concept of a complete lattice involves meets and
joins of arbitrary cardinalities, which form a proper class of operations, and
that as a result, it will not quite fit into the concept of an algebra we will
develop in Chapter 9 (though for any particular cardinal α, the concepts
of (< α-)complete lattice and semilattice will fall under that concept). The
next exercise takes a different approach, and regards possibly infinite meet
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and join as operators defined on subsets of |L|, rather than on tuples of
elements. This puts the concept still farther from that of Chapter 9, but the
“identities” these operations satisfy have an elegant formulation.

Exercise 6.2:13. Let |L| be a set, and suppose that
∨

and
∧

are op-
erators associating to each nonempty subset X ⊆ |L| an element of |L|
which will be denoted

∨
(X), respectively

∧
(X). Show that these opera-

tors are the greatest lower bound and least upper bound operators arising
from a complete lattice structure on |L| if and only if the following three
conditions hold.
(a) For every x0 ∈ |L|,

∨
({x0}) = x0 =

∧
({x0}).

(b) For every nonempty set Y of nonempty subsets of |L|,∨
({
∨

(X) | X ∈ Y }) =
∨

(
⋃
X∈Y (X)) and∧

({
∧

(X) | X ∈ Y }) =
∧

(
⋃
X∈Y (X)).

(c) The pairwise operations defined by a ∨ b =
∨

({a, b}) and a ∧ b =∧
({a, b}) satisfy the two “compatibility” identities of Definition 6.1.4.

To motivate the next definition, consider the following situation. Let L
be the complete lattice of all subgroups of a group G, and let K ∈ L be
a finitely generated subgroup of G, say generated by g1, . . . , gn. Suppose
this subgroup K is majorized in L by the join of a family of subgroups Hi

(i ∈ I), i.e., is contained in the subgroup generated by the Hi. Then each of
g1, . . . , gn can be expressed by a group-theoretic term in elements of

⋃
|Hi|.

But any group-theoretic term involves only finitely many elements; hence K
will actually be contained in the subgroup generated by finitely many of the
Hi. The converse also holds, since if K is a non-finitely generated subgroup
of G, then K equals (and hence is contained in) the join of all the cyclic
subgroups it contains, but is not contained in the join of any finite subfamily
thereof.

The property we have just shown to characterize the finitely generated
subgroups in the lattice of all subgroups of G has an obvious similarity to
the property defining compact subsets in a topological space, namely that if
such a subset is covered by a family of open subsets, it is covered by some
finite subfamily. Hence one makes the definition

Definition 6.2.4. An element k of a complete lattice (or more generally, of
a complete upper semilattice) L is called compact if every set of elements of
L with join ≥ k has a finite subset with join ≥ k.

By the preceding observations, the compact elements of the subgroup lat-
tice of a group are precisely the finitely generated subgroups. (We will gen-
eralize this observation when we have a general theory of algebraic objects.)

We noted in Exercise 6.1:2(i) that the finitely generated subgroups of a
group form an upper subsemilattice of the lattice of all subgroups. This sug-
gests
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Exercise 6.2:14. Do the compact elements of a complete lattice L always
form an upper subsemilattice?

Exercise 6.2:15. Show that a complete lattice L has ascending chain con-
dition if and only if all elements of L are compact.

There seems to be no standard name for an element of a complete lattice
having the dual property to compactness; sometimes such elements are called
co-compact.

We end this section with some further exercises that, though interesting,
are not closely related to material we will use in future sections.

We examined in Exercise 6.2:6 the embedding of lattices in power sets
P(S) (and found that though there were embeddings that respected meets,
and embeddings that respected joins, there were not in general embeddings
that respected both). Let us look briefly at another fundamental sort of com-
plete lattice, and the problem of embedding arbitrary lattices therein.

If X is a set, and ≈0 and ≈1 are two equivalence relations on X, let
us say ≈1 extends ≈0 if it contains it, as a subset of X × X, and write
≈0≤≈1 in this situation. Let E(X) denote the set of equivalence relations
on X, partially ordered by this relation ≤. (One could use the reverse of
this order, saying that ≈0 is a refinement of ≈1 when the latter extends the
former, and justify considering the refinement to be “bigger” by the fact that
it gives “more” equivalence classes. So our choice of the sense to give to our
ordering is somewhat arbitrary; but let us stick with the ordering based on
inclusions of binary relations.)

Exercise 6.2:16. (i) Verify that the partially ordered set E(X) defined
above forms a complete lattice. Identify the elements 0E(X) and 1E(X).

(ii) Let L be any nonempty complete lattice, and f : L→ E(X) a map
respecting arbitrary meets (a complete lower semilattice homomorphism
respecting greatest elements). Show that for any x, y ∈ X, there is a least
d ∈ L such that (x, y) ∈ f(d). Calling this element d(x, y), verify that the
map d : X ×X → L satisfies the following conditions for all x, y, z ∈ X :

(a0) d(x, x) = 0L,
(b) d(x, y) = d(y, x),
(c) d(x, z) ≤ d(x, y) ∨ d(y, z).

(iii) Prove the converse, i.e., that given a nonempty complete lattice L
and a set X, any function d : X ×X → L satisfying (a0)-(c) above arises
as in (ii) from a unique complete lower semilattice-homomorphism f : L→
E(X) respecting greatest elements.

In the remaining parts, we assume that f : L→ E(X) and d : X×X →
L are maps related as in (ii) and (iii).
(iv) Show that the map f respects least elements, i.e., that f(0L) =
0E(X), if and only if d satisfies

(a) d(x, y) = 0L ⇐⇒ x = y (a strengthening of (a0) above).
(v) Show that f respects joins of finite nonempty families if and only if
d satisfies
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(d) for all x, y ∈ X, p, q ∈ |L| such that d(x, y) ≤ p ∨ q, there
exists a finite sequence x = z0, z1, . . . , zn = y (think “a path from x to y
in X ”) such that for each i < n, either d(zi, zi+1) ≤ p or d(zi, zi+1) ≤ q.

A function d which satisfies (a)-(c) above might be called an “L-valued
metric on X, ” and (d) might be called “path sufficiency” of the L-valued
metric space X. Two other properties of importance are noted in
(vi) Assuming that f respects finite nonempty joins, i.e., satisfies (d)
above, show that it respects arbitrary nonempty joins if and only if

(e) for all x, y ∈ X, d(x, y) is a compact element of L.
(vii) Show that f is one-to-one if and only if

(f) L is generated under (not necessarily finite) joins by the elements
d(x, y) (x, y ∈ X).

Thus, to get various sorts of embeddings of complete lattices L in complete
lattices of the form E(X), it suffices to construct sets X with appropriate
sorts of L-valued metrics.

How can one do this? Note that if we take a tree (in the graph-theoretic
sense) with edges labeled in any way by elements of L, and define the dis-
tance between two vertices to be the join of the labels on the sequence of
edges connecting those vertices, then we get an L-valued metric, such that
the values assumed by this metric generate the same upper semilattice as do
the set of labels. This can be used to get a system (X, d) satisfying (a)-(c)
and (f). We also want condition (d). This can be achieved by adjoining ad-
ditional vertices:

Exercise 6.2:17. Let L be a nonempty complete lattice.
(i) Suppose (X, d) is an L-valued metric space (i.e., satisfies conditions
(a)-(c) of the preceding exercise), x and y are two points of X, and p and
q are elements of L such that d(x, y) ≤ p ∨ q. Show that we can adjoin
new points z1, z2, z3 to X and extend the metric in a consistent way
so that the steps of the path x, z1, z2, z3, y have lengths p, q, p, q
respectively. (The least obvious part is how to define the distance from z2
to a point w ∈ X. To do this, verify that d(w, x)∨ p∨ q = d(w, y)∨ p∨ q,
and use the common value.)
(ii) Show that every L-valued metric space can be embedded in a path-
sufficient one. (This will involve a countable sequence of steps X = X0 ⊆
X1 ⊆ . . . such that each Xi “cures” all failures of path-sufficiency found
in Xi−1, using the idea of part (i). The desired space is then

⋃
Xi.)

Now if the given complete lattice L is generated as a complete upper
semilattice by the upper subsemilattice K of its compact elements, then one
can carry out the above constructions as to get condition (e) above, and
hence an embedding of L in E(X) that respects arbitrary meets and joins.
Conversely, one sees that this assumption on K is necessary for such an
embedding to exist.

If we don’t make this assumption on K, we can still use the above con-
struction to embed L in a lattice E(X) by a map respecting arbitrary meets
and finite joins.
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We shall see in the next section that any lattice can be embedded by a
lattice homomorphism in a complete lattice, so the above technique shows
that any lattice can be embedded by a lattice homomorphism in a lattice of
equivalence relations.

If L is finite, the construction of Exercise 6.2:17 gives, in general, a count-
able, but not a finite L-valued metric space X. It was for a long time an
open question whether every finite lattice could be embedded in the lattice
of equivalence relations of a finite set. This was finally proved in 1980 by
P. Pudlák and J. Tůma [126]. However, good estimates for the size of an X
such that even a quite small lattice L (e.g., the 15-element lattice E(4)op)
can be embedded in E(X) remain to be found. The least m such that E(n)op

embeds in E(m) has been shown by Pudlák to grow at least exponentially in

n; the earliest upper bound obtained for m was 22 . .
.

with n2 exponents!
For subsequent better results see [106] and [93, in particular p. 16, top].

6.3. Closure operators

We introduced this chapter by noting certain properties common to the par-
tially ordered sets of all subsets of a set, of all subgroups of a group, and
similar examples. But so far, we seem to have made a virtue of abstractness,
defining semilattice, lattice, etc., without reference to systems of subsets of
sets. Neither abstractness nor concreteness is everywhere a virtue; each makes
its contribution, and it is time to turn to an important class of concrete lat-
tices.

Lemma 6.3.1. Let S be a set. Then the following data are equivalent:

(i) A lower semicomplete lower subsemilattice of P(S) which contains
1P(S) = S, in other words, a set C of subsets of S closed under taking
arbitrary intersections, including the empty intersection, S itself.

(ii) A function cl : P(S)→ P(S) with the properties:

(∀X ⊆ S) cl(X) ⊇ X (cl is increasing),

(∀X, Y ⊆ S) X ⊆ Y =⇒ cl(X) ⊆ cl(Y ) (cl is isotone),

(∀X ⊆ S) cl(cl(X)) = cl(X) (cl is idempotent).

Namely, given C as in (i), one defines cl as the operator taking each
X ⊆ S to the intersection of all members of C containing X, while given
cl as in (ii), one defines C as the set of X ⊆ S satisfying cl(X) = X,
equivalently, as the set of subsets of S of the form cl(Y ) (Y ⊆ S) . ut

Exercise 6.3:1. Verify the above lemma. That is, show that the procedures
described do carry families C with the properties of point (i) to operators
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cl with the properties of point (ii) and vice versa, and are inverse to one
another, and also verify the assertion of equivalence in the final clause.

Definition 6.3.2. An operator cl on the class of subsets of a set S with
the properties described in point (ii) of the above lemma is called a closure
operator on S. If cl is a closure operator on S, the subsets X ⊆ S satisfying
cl(X) = X, equivalently, the subsets of the form cl(Y ) (Y ⊆ S), are called
the closed subsets of S under cl.

We see that virtually every mathematical construction commonly referred
to as “the . . . generated by” (fill in the blank with subgroup, normal sub-
group, submonoid, subring, sublattice, ideal, congruence, etc.) is an example
of a closure operator on a set. The operation of topological closure on subsets
of any topological space is another example. Some cases are called by other
names: the convex hull of a set of points in Euclidean n-space, the span of
a subset of a vector space (i.e., the vector subspace it generates), the set of
derived operations of a set of operations on a set (§2.6). Incidentally, the con-
structions of the subgroup and subring generated by a subset of a group or
ring illustrate the fact that the closure of the empty set need not be empty.

A very common way of obtaining a closure operator on a set S, which in-
cludes most of the above examples, can be abstracted as follows: One specifies
a certain subset

(6.3.3) G ⊆ P(S)× S,

and then calls a subset X ⊆ S closed if for all (A, x) ∈ G, A ⊆ X =⇒
x ∈ X. It is straightforward to verify that the class of closed sets under this
definition is closed under arbitrary intersections, and so by Lemma 6.3.1,
corresponds to a closure operator cl on S.

For example, if K is a group, the operator “subgroup generated by” on
subsets of |K| is of this form. One takes for (6.3.3) the set of all pairs of the
forms

(6.3.4) ({x, y}, x y), ({x}, x−1), (∅, e),

where x and y range over |K|. To get the operator “normal subgroup
generated by –”, we use the above pairs, supplemented by the further pairs
({x}, y x y−1) (x, y ∈ |K|). Clearly, the other “. . . generated by” construc-
tions mentioned above can be characterized similarly. For a non-algebraic
example, the operator giving the topological closure of a subset of the real
line R can be obtained by taking G to consist of all pairs (A, x) such that
A is the set of points of a convergent sequence, and x is the limit of that
sequence.

Exercise 6.3:2. Show that for any closure operator cl on a set S, there
exists a subset G ⊆ P(S) × S which determines cl in the sense we have
been discussing.
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Exercise 6.3:3. If T is a set, display a subset G ⊆ P(T × T ) × (T × T )
such that the equivalence relations on T are precisely the subsets of T ×T
closed under the operator cl corresponding to G. (The previous exercise
gives us a way of doing this “blindly”. But what I want here is an explicit
set, which one might show to someone who didn’t know what “equivalence
relation” meant, to provide a characterization of the concept.)

In Chapter 3 we contrasted the approaches of obtaining sets one is in-
terested in “from above” as intersections of systems of larger sets, and of
building them up “from below”. We have constructed the closure operator
associated with a family (6.3.3) by noting that the class of subsets of S we
wish to call closed is closed under arbitrary intersections; so we have implic-
itly obtained these closures “from above”. The next exercise constructs them
“from below”.

Exercise 6.3:4. Let S be a set and G a subset of P(S) × S. For X a

subset of S and α any ordinal, let us define cl
(α)
G (X) recursively by:

cl
(0)
G (X) = X,

cl
(α+1)
G (X) = cl

(α)
G (X) ∪ {x | (∃A ⊆ cl

(α)
G (X)) (A, x) ∈ G}.

cl
(α)
G (X) =

⋃
β∈α cl

(β)
G (X) if α is a limit ordinal.

(i) Show (for S, G as above) that there exists an ordinal α such that

for all β > α and all X ⊆ S, cl
(β)
G (X) = cl

(α)
G (X), and that when this

is so, cl
(α)
G (X) is cl(X) in the sense of the preceding discussion. (Cf. the

construction in §3.2 of the equivalence relation R on group-theoretic terms
as the union of a chain of relations Ri.)
(ii) If for all (A, x) ∈ G, A is finite, show that the α of part (i) can be
taken to be ω.
(iii) For each ordinal α, can you find an example of a set S and a G ⊆
P(S)×S such that α is the least ordinal having the property of part (i)?

We have seen that there are restrictions on the sorts of lattices that can
be embedded by lattice homomorphisms into lattices (P(S), ∪, ∩) (Exer-
cise 6.1:15), or into lattices of submodules of modules (Exercise 6.1:14). In
contrast, note statements (ii) and (iii) of

Lemma 6.3.5. (i) If cl is a closure operator on a set X, then the set of
cl-closed subsets of X, partially ordered by inclusion, forms a complete lattice,
with the meet of an arbitrary family given by its set-theoretic intersection, and
the join of such a family given by the closure of its union. Conversely,

(ii) Every nonempty complete lattice L is isomorphic to the lattice of closed
sets of a closure operator cl on some set S; and

(iii) Every lattice L is isomorphic to a sublattice of the lattice of closed sets
of a closure operator cl on some set S.
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Sketch of proof. (i): It is straightforward to verify that the indicated opera-
tions give a greatest lower bound and a least upper bound to any family of
closed subsets.

(ii): Take S = |L|, and for each X ⊆ S, define cl(X) = {y | y ≤
∨
x∈X x}.

Then L is isomorphic to the lattice of closed subsets of S, by the map
y 7→ {x | x ≤ y}.

(iii): Again take S = |L|, but since joins of arbitrary families may not be
defined in L, define cl(X) to be the set of all elements majorized by joins
of finite subsets of X. Embed L in the lattice of cl-closed subsets of S by
the same map as before. ut

Exercise 6.3:5. Verify that the constructions of (ii) and (iii) above give
closure operators on |L|, and that the induced maps are respectively an
isomorphism of complete lattices and a lattice embedding.

The second of the two closure operators used in the above proof can be
thought of as closing a set X in |L| under pairwise joins, and under meets
with arbitrary elements of L. In the notation that denotes join by + and
writes meet as multiplication, this has the same form as the definition of
an ideal of a ring. So lattice-theorists often call sets of elements in a lattice
closed under these operations “ideals”. In particular, {y | y ≤ x} is called
the principal ideal generated by x.

Exercise 6.3:6. (i) Show that assertion (iii) of the preceding lemma can
also be proved by taking the same S and the same map, but taking
cl(X) ⊆ S to be the intersection of all principal ideals of L containing
X.
(ii) Will the complete lattices generated by the images of L under these
two constructions in general be isomorphic?

Exercise 6.3:7. Can the representation of a (complete) lattice L by closed
sets of a closure operator given in Lemma 6.3.5(iii) and/or that given in
Exercise 6.3:6 be characterized by any universal properties?

Exercise 6.3:8. Show that a lattice L is complete and nonempty if and only
if every intersection of principal ideals of L (including the intersection of
the empty family) is a principal ideal.

The concept of a set with a closure operator is not only general enough
to allow representations of all lattices, it is a convenient tool for constructing
examples. For example, recall that Exercise 6.1:10(ii), if solved by the hint
given, shows that a lattice generated by 5 elements can be infinite. With
more work, that method can be made to give an infinite lattice with 4 gen-
erators, but one can show that any 3-generator sublattice of the lattice of
affine subspaces of a vector space is finite. However, we shall now give an
ad hoc construction of a closure operator whose lattice of closed sets has an
infinite 3-generator sublattice.
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Exercise 6.3:9. Let S = ω ∪ {x, y}, where ω is regarded as the set of
nonnegative integers, and x, y are two elements not in ω. Let G ⊆
P(S)× S consist of all pairs of the form

({x, 2m}, 2m+ 1), ({y, 2m+ 1}, 2m+ 2),

where m ranges over ω in each case. Let L denote the lattice of closed
subsets of S under the induced closure operator, and consider the sub-
lattice generated by {x}, {y, 0}, and ω. Show by induction that for
every n ≥ 0, this sublattice of L contains the set {0, . . . , n}. Thus, this
3-generator lattice is infinite.

(Exercise 8.10:6, which you can do at this point, will show that the
same technique, applied to complete lattices, gives 3-generator complete
lattices of arbitrarily large cardinalities.)

Exercise 6.3:10. The lattice of the above exercise contains an infinite chain.
Does there exist a 3-generator lattice which is infinite but does not contain
an infinite chain?

Exercise 6.3:11. If A is an abelian group, can a finitely generated sublat-
tice of the lattice of all subgroups of A contain an infinite chain?

We now turn to a property which distinguishes the sort of closure operators
commonly occurring in algebra from those arising in topology and analysis.

Lemma 6.3.6. Let cl be a closure operator on a set S. Then the following
conditions are equivalent:

(i) For all X ⊆ S, cl(X) =
⋃

finite subsets X0⊆X cl(X0).

(ii) The union of every chain of closed subsets of S is closed.

(iii) The closure of each singleton {s} ⊆ S is compact in the lattice of closed
subsets.

(iv) cl is the closure operator determined by a set G ⊆ P(S) × S having
the property that the first component of each of its members is finite. ut

Exercise 6.3:12. Prove Lemma 6.3.6.

Definition 6.3.7. A closure operator satisfying the equivalent conditions of
the above lemma will be called finitary.

This is because the lattice of subalgebras of an algebra A satisfies condi-
tion (iv) of that lemma if the operations of A are all finitary, i.e., have finite
arity (§2.4). (Many authors call such closure operators “algebraic” instead
of “finitary”, because, as noted, the property is typical of closure operators
that come up in algebra.)

Exercise 6.3:13. Let cl be a finitary closure operator on a set S.
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(i) Show that if α is an infinite cardinal, and X a cl-closed subset of
S which is the closure of some subset of cardinality < α, then every
Y ⊆ X with cl(Y ) = X has a subset Y ′ with card(Y ′) < α such that
cl(Y ′) = X.
(ii) Show by example that the corresponding statement is not true for
finite α.
(iii) Show by example that the result of (i) does not characterize the fini-
tary closure operators; i.e., that not every closure operator satisfying (i) is
finitary.

Exercise 6.3:14. (i) Show that a nonempty complete lattice L is isomor-
phic to the lattice of all closed sets under a finitary closure operator if and
only if every element of L is a (possibly infinite) join of compact elements.

(ii) For what complete lattices is it true that every closure operator cl,
on any set, whose lattice of closed sets is isomorphic to L, is finitary?

Exercise 6.3:15. Show that a closure operator cl is finitary if and only if
the compact elements in the lattice of its closed subsets are precisely the
closures of finite sets.

For a not necessarily finitary closure operator, prove an inclusion be-
tween these two classes of closed subsets, but show that the other inclusion
need not hold.

Exercise 6.3:16. Consider the following three conditions on a closure oper-
ator cl on a set S. (a) cl is finitary. (b) The union of any two cl-closed
subsets of S is cl-closed. (c) Every singleton subset of S is cl-closed.

For each subset of this set of three properties, find an example of a
closure operator that has the properties in that subset, but not any of the
others. (Thus, 8 examples are asked for.) Where possible, use familiar or
important examples.

Exercise 6.3:17. (i) Show that a closure operator cl on a set S is the
operation of topological closure with respect to some topology on S if and
only if it satisfies condition (b) of the preceding exercise, and: (c0) ∅ is
cl-closed in S.
(ii) Assuming S has more than one element, show that cl is closure with
respect to a T1 topology if and only if it satisfies conditions (b) and (c)
of the preceding exercise.

Since the operation of topological closure determines the topology, this
shows that topologies on a space are equivalent to closure operators satis-
fying the indicated conditions.

Exercise 6.3:18. It is well known that if a group K is generated by ≤ γ
elements (γ a cardinal), then card(|K|) ≤ γ + ℵ0.
(i) Deduce this fact from simple properties of the set G ⊆ P(|K|)× |K|
defined in (6.3.4).
(ii) Try to generalize (i) to a result on the way the cardinalities of sets
increase under application of a closure operator cl obtained from a set G
as above, in terms of the properties of G. Can you show by example that
your results are best possible?
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When we described how to construct a closure operator cl from a subset
G ⊆ P(S)× S, it would have been tempting to call cl “the closure operator
generated by G. ” This would not quite have made sense, because a closure
operator is not itself a subset of P(S)× S. However, we can show what this
is “trying to say” by setting up a correspondence between closure operators
on S and certain subsets of P(S)× S :

Exercise 6.3:19. Let S be a set.
If cl is a closure operator on S, let us write σ(cl) = {(A, x) | A ⊆

S, x ∈ cl(A)} and let us call a subset H ⊆ P(S)× S a closure system on
S if H = σ(cl) for some closure operator cl on S.
(i) Show that closure systems on S are precisely the subsets of P(S)×S
closed under a certain closure operator, clsys (which you should describe).

(ii) Show that for any subset G ⊆ P(S)×S, if we write clG for the closure
operator determined by G in the sense discussed earlier, then σ(clG) =
clsys(G).

So though we cannot call clG the closure operator generated by G, it
is the operator corresponding to the closure system generated by G.

Of course, I cannot resist adding
(iii) Describe clsys as the closure operator on P(S)×S determined (“gen-
erated”) by an appropriate set Gsys (of elements of what set?)

We now have three ways of looking at closure data on a set S : as a
family of subsets of S, as an operator on subsets of S, and as a certain kind
of subset of P(S)× S. We take a global look at this data in:

Exercise 6.3:20. Let S be a set. Call the set of all families of subsets of
S that are closed under arbitrary intersections Clofam(S), and order this
set by inclusion. Call the set of all closure operators on S Clop(S), and
order it by putting cl1 ≤ cl2 if for all X, cl1(X) ≤ cl2(X). Call the set
of closure systems on S in the sense of the preceding exercise Closys(S),
and order it by inclusion.

Verify that Clofam(S), Clop(S) and Closys(S) are all complete lat-
tices. Do the natural correspondences between the three types of data
constitute lattice isomorphisms? If not, state precisely the relationships
involved. Describe the meet and join operations of Clop(S) explicitly.

Exercise 6.3:21. Investigate the subset of finitary closure operators within
the set Clop(S) defined in the preceding exercise. Will it be closed under
meets (finite? arbitrary?) – joins (ditto)? Given any cl ∈ Clop(S), will
there be a least finitary closure operator containing cl ? A greatest finitary
closure operator contained in cl ?

Descending from the abstruse to the elementary, here is a problem on
closure operators that could be explained to a bright High School student,
but which has so far defied solution:

Exercise 6.3:22. (Péter Frankl’s question) Let S be a finite set, and cl a
closure operator on S such that cl(∅) 6= S. Must there exist an element
s ∈ S which belongs to not more than half of the sets closed under cl ?
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(I generally state this conjecture to people not in this course in terms
of “a system C of subsets of S which is closed under pairwise intersec-
tions, and contains at least one proper subset of S. ” There are still other
formulations; for instance, as asking whether every nontrivial finite lattice
has an element which is join-irreducible (not a join of two smaller elements)
and which is majorized by no more than half the elements of the lattice.)

One occasionally encounters the dual of the type of data defining a closure
operator – a system U of subsets of a set S closed under forming arbitrary
unions; equivalently, an operator f on subsets of S which is decreasing,
idempotent, and isotone. In this situation, the complements in S of the sets
in U will be the closed sets of a closure operator, namely X 7→ c(f(cX))
(where c denotes complementation). When such an operator f is discovered,
it is often convenient to change viewpoints and work with the dual operator
cf c, to which one can apply the theory of closure operators. However, U and
f may be more natural in some situations than the dual family and map. In
such cases one may refer to f as an interior operator (though the term is not
widely used), since in a topological space, the complement of the closure of
the complement of X is called the interior of X. Clearly, every result about
closure operators gives a dual result on interior operators.

(Péter Frankl’s question, described in the last exercise, is most often stated
in dual form, asking whether, given a finite set C of sets which is closed under
pairwise unions and contains at least one nonempty set, there must exist an
element belonging to at least half the members of C. As such, it is called
the “union-closed set” question, and papers on the topic can be found by
searching for the phrase “union closed”.)

6.4. Digression: a pattern of threes

It is curious that many basic mathematical definitions involve similar systems
of three parts.

A group structure on a set is given by (1) a neutral element, (2) an
inverse-operation and (3) a multiplication; this family of operations must
satisfy (1) the neutral-element laws, (2) the inverse laws and (3) the associa-
tive law.

A partial ordering on a set is a binary relation that is (1) reflexive, (2) an-
tisymmetric and (3) transitive, while an equivalence relation is (1) reflex-
ive, (2) symmetric and (3) transitive.

The operation of a semilattice is (1) idempotent, (2) commutative
and (3) associative.

A closure operator is (1) increasing, (2) isotone and (3) idempotent.
In a metric space, the metric satisfies (1) a condition on when distances

are 0, (2) symmetry and (3) the triangle inequality.
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This parallelism is not just numerical. The general pattern seems to be
that the simplest conditions or operations, marked (1) above, have to do
with the relation of an element to itself; the intermediate ones, marked (2),
tell us, if we know how two elements relate in one order, how they relate in
the reverse order; while the strongest, those marked (3), tell us how to use
the relation of one element to a second and this second to a third to get a
relation between the first and the third.

Let us see this in the examples listed above. We must distinguish in some
cases between abstract structures and the “concrete” situations that moti-
vated them.

The concrete situation motivating the concept of a group is that of a group
of permutations of a set. For a set of permutations to form a group, (1) it
should contain the permutation e that takes every element of the set to itself,
(2) if it contains a permutation x, it should also contain the permutation
x−1 which carries q to p whenever x carries p to q, and (3) along with
any permutations x and y, it should contain the permutation x y which
carries p to r whenever y carries p to q and x carries q to r. So this fits
the pattern described.

When we look at the definition of an abstract group G, the above closure
conditions are replaced by operations of neutral element, inverse, and com-
position. The conditions on these operations needed to mimic the properties
of permutation groups as sets with operations say that when G acts on itself
by left or right multiplication, the three operations of G actually behave
like the constructions they are modeled on: left or right multiplication by the
neutral element leaves all elements of |G| fixed, left or right multiplication
by x is “reversed” by the action of x−1, and left or right multiplication by
x followed by multiplication on the same side by y is equivalent to multipli-
cation by y x, respectively x y. These are the neutral-element, inverse and
associative laws (slightly reformulated). Finally, when we return from this
abstract concept to its concrete origins via the concept of a G-set X, we
again have three conditions, saying that the actions of the neutral element,
of inverses of elements, and of composites of elements of G behave on X in
the proper manner. (However, the condition for inverses is a consequence of
the other two plus the group identities of G, and so is usually omitted from
the definition of a G-set.)

In the definitions of partial ordering, of equivalence relation, and of metric,
we do not have an abstraction of a structure on a set, but such a structure
itself. The reader can easily verify that these 3-part definitions each have the
form we have described.

In the cases of semilattices and closure operators, one can say roughly that
closure operators are the concrete origins and semilattices the abstraction.
My general characterization of the three components of these definitions does
not, as we shall see, give quite as good a fit in this case. The condition that
a closure operator be idempotent, cl(cl(X)) = cl(X), may be considered a
“transitivity” type condition, since it says that if you can get some elements
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from elements of X, and some further elements from these, then you get
those further elements from X. The “reflexivity” type condition is the one
saying cl(X) ⊇ X, since it means that what one gets from X includes all of
X itself. But I cannot see any way of interpreting the remaining condition,
X ⊆ Y =⇒ cl(X) ⊆ cl(Y ), as describing the relation between elements
considered in two different orders.

In the abstracted concept, that of a semilattice, the three conditions of
idempotence, commutativity, and associativity of the operation ∨ do fit the
pattern described, but they do not seem to come in a systematic way from
the corresponding properties of closure operators.

When one looks at important weakenings of the concepts of group, etc., the
middle operation or condition seems to be the one most naturally removed:
Monoids are a useful generalization of groups, and preorders are a useful
generalization both of partial orders and of equivalence relations.

The folklorist Alan Dundes argued that the number “three” holds a fun-
damental place in the culture of Western civilization, in ways ranging from
traditional stories (three brothers go out to seek their fortune; Goldilocks and
the three bears), superstitions (“third time’s a charm”) and verbal formulas
(“Tom, Dick and Harry”) to our 3-word personal names. (See essay in [75].)
He raised the challenge of how many of the “threes” occurring in science (ar-
chaeologists’ division of each epoch into an “early”, a “middle” and a “late”
period; the three-stage polio vaccination; the three dimensions of physics,
etc.) represent circumstances given to us by nature, and how many we have
imposed on nature through cultural prejudice!

In the situation we have been discussing, I would argue that the similarity
between the various sets of definitions represents a genuine pattern in “math-
ematical nature”; that the way the pattern appears, in terms of systems of
three conditions, in contemporary developments of these topics, is not the
only natural way these topics could be developed; but that the fact that they
are developed in this way is not a consequence of a prejudice toward the
number three, but of chance. As a simple example of how these topics might
be differently developed, if basic textbooks regularly first defined “monoid”,
and then defined a group as a monoid with an inverse operation, and sim-
ilarly first defined “preorder”, then defined partial orders and equivalence
relations as preorders satisfying the symmetry or antisymmetry condition,
and so on, then, though we would still have a recurring pattern, it would
not be a pattern of “threes”. More radically, we might define composition in
a group or monoid as an operation taking each ordered n-tuple of elements
(n ≥ 0) to its product, and formulate the associative law accordingly, letting
the neutral element simply be the empty product, and the neutral-element
law a special case of the associative law; and again, no “threes” would be
apparent. As to the reason we develop the topics as we do, rather than in
one of the above ways, I think this comes out of certain choices regarding
pedagogy and notation that have evolved in Western mathematics, for better
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or worse, without anyone’s looking ahead at the number of components this
would yield in such definitions. (On the other hand, I freely admit that my
choice in §3.1 to motivate the idea of a free group with the 3-generator case
was culturally influenced.)

Let me close this discussion by noting that many of the more complicated
objects of mathematical study arise by combining one structure that fits, or
partially fits, the pattern we have noted, with another. Thus, a lattice is a set
with two semilattice structures that satisfy compatibility identities; a ring is
given by an abelian group, together with a bilinear binary operation on this
group under which it is a monoid.

The reader familiar with the definition of a Lie algebra over a commuta-
tive ring R (§9.7 below) will note similarly that it is an R-module (a concept
which fits into the above pattern in the same way as that of G-set), with an
R-bilinear operation, the Lie bracket, which satisfies the alternating identity
(which tells both the result of bracketing an element with itself, and the rela-
tion between bracketings in opposite orders), and the Jacobi identity (which
describes how the bracket of an element with the bracket of two others can
be described in terms of the operations of bracketing with those elements
successively).

Returning to the description of a ring as an abelian group given with
a bilinear operation under which it is a monoid, it is interesting to note
that various refinements of the concept of ring involve adding one (or more!)
conditions that can be thought of as filling in the missing “middle slot” in
the monoid structure, concerning how elements relate in opposite orders: A
multiplicative inverse operation (on nonzero elements) gives a division ring
structure; commutativity of multiplication determines the favorite class of
rings of contemporary algebra; both together give the class of fields. Another
important ring-theoretic concept which can be thought of in this way is that
of an involution on a (not necessarily commutative) ring, that is, an abelian
group automorphism ∗ : |R| → |R| satisfying x∗∗ = x and (x y)∗ = y∗x∗.
The complex numbers have all three structures: multiplicative inverses, com-
mutativity, and the involution of complex conjugation.

The concept of a closure operator has an important special case gotten by
imposing an additional condition specifying “how elements relate in opposite
orders”; the exchange axiom:

(6.4.1) y /∈ cl(X), y ∈ cl(X ∪ {z}) =⇒ z ∈ cl(X ∪ {y}) (X ⊆ S, y, z ∈ S).

This is the condition which, in the theory of vector spaces, allows one to prove
that bases have unique cardinalities, and in the theory of transcendental field
extensions yields the corresponding result for transcendence bases. (To be
precise, in both of these cases (6.4.1) leads to a proof of the uniqueness of the
cardinality when the given “bases” are finite. When at least one is infinite,
the same result follows from Exercise 6.3:13(i).) Closure operators satisfying
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(6.4.1) are called (among other names) matroids. Cf. [144], and for a ring-
theoretic application, [50].

I do not attach great importance to the observations of the above section.
But I have noticed them for years, and thought this would be a good place
to mention them.

6.5. Galois connections

Let me introduce this very general concept using the case from which it gets
its name:

Galois theory deals with the situation where one is given a field F and a
finite group G of automorphisms of F. Given any subset A of F, let A∗

denote the set of elements of the group G fixing all elements of A (where
“ g fixes a ” means g(a) = a), and given any subset B of G, likewise let
B∗ be the set of elements of the field F fixed by all members of B. It is not
hard to see that in these situations, A∗ is always a subgroup of G, and B∗

a subfield of F. The Fundamental Theorem of Galois Theory says that the
groups A∗ give all the subgroups of G, and similarly that the sets B∗ are
all the fields between the fixed field of G in F and the whole field F, and
gives further information on the relation between corresponding subgroups
and subfields.

Some parts of the proof of this theorem use arguments specific to fields
and their automorphism groups; but certain other parts can be carried out
without even knowing what the words mean. For instance, the result, “If A
is a set of elements of the field F, and A∗∗ is the set of elements of F fixed
by all automorphisms in G that fix all elements of A, then A∗∗ ⊇ A ” is
clearly true independent of what is meant by a “field”, an “automorphism”,
or “to fix”!

This suggests that one should look for a general context to which the latter
sort of arguments apply. Replacing the set of elements of our field F by an
arbitrary set S, the set of elements of the group G by any set T, and the
condition of elements of F being fixed by elements of G by any relation
R ⊆ S × T, we can make the following observations:

Lemma 6.5.1. Let S, T be sets, and R ⊆ S × T a relation. For A ⊆ S,
B ⊆ T, let us write

(6.5.2)

A∗ = {t ∈ T | (∀ a ∈ A) aR t} ⊆ T,

B∗ = {s ∈ S | (∀ b ∈ B) sR b} ⊆ S,

thus defining two operations written ∗, one from P(S) to P(T ) and the
other from P(T ) to P(S). Then for A, A′ ⊆ S, B, B′ ⊆ T, we have
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(i) A ⊆ A′ =⇒ A∗ ⊇ A′∗ B ⊆ B′ =⇒ B∗ ⊇ B′∗ (∗ reverses inclusions).

(ii) A∗∗ ⊇ A B∗∗ ⊇ B (∗∗ is increasing).

(iii) A∗∗∗ = A∗ B∗∗∗ = B∗ (∗∗∗ = ∗).

(iv) ∗∗ : P(S) → P(S) and ∗∗ : P(T ) → P(T ) are closure operators on S
and T respectively.

(v) The sets A∗ (A ⊆ S) are precisely the closed subsets of T, and the
sets B∗ (B ⊆ T ) are precisely the closed subsets of S, with respect to these
closure operators ∗∗.

(vi) The maps ∗, restricted to closed sets, give an antiisomorphism (an
order-reversing, equivalently, ∨-and-∧-interchanging, bijection) between the
complete lattices of ∗∗-closed subsets of S and of T.

Proof. (i) and (ii) are immediate. We shall prove the remaining assertions
from those two, without calling again on the definition, (6.5.2).

If we apply ∗ to both sides of (ii), so that the inclusions are reversed
by (i), we get A∗∗∗ ⊆ A∗, B∗∗∗ ⊆ B∗; but if we put B∗ for A and A∗

for B in (ii) we get B∗∗∗ ⊇ B∗, A∗∗∗ ⊇ A∗. Together these inclusions
give (iii). To get (iv), note that by (i) applied twice, the operators ∗∗ are
inclusion-preserving, by (ii) they are increasing, and by applying ∗ to both
sides of (iii) we find that they are idempotent. To get (v) note that by (iii)
every set B∗ respectively A∗ is closed, and of course every closed set X has
the form Y ∗ for Y = X∗. (vi) now follows from (v), (iii) and (i). ut

If for each t ∈ T we consider the relation −R t as a condition satisfied by
some elements s ∈ S, then for A ⊆ S we can interpret A∗∗ as “the set of
elements of S which satisfy all conditions (of this sort) that are satisfied by
the elements of A ”. From this interpretation, the fact that ∗∗ is a closure
operator is intuitively understandable.

Definition 6.5.3. If S and T are sets, then a pair of maps ∗ : P(S)→ P(T )
and ∗ : P(T )→ P(S) satisfying conditions (i) and (ii) of Lemma 6.5.1 (and
hence the consequences (iii)-(vi)) is called a Galois connection between the
sets S and T.

Exercise 6.5:1. Show that every Galois connection between sets S and T
arises from a relation R as in Lemma 6.5.1, and that this relation R is in
fact unique.

Thus, a Galois connection on a pair of sets S, T can be characterized
either abstractly, by Definition 6.5.3, or as a structure arising from some
relation R ⊆ S × T. In all naturally occurring cases that I know of, the
relation R is what we start with, and the Galois connection is obtained from
it. On the other hand, the characterization as in Definition 6.5.3 has the
advantage that it can be generalized by replacing P(S) and P(T ) by other
partially ordered sets, though we shall not look at this generalization here,
except in the second part of the next exercise.
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Here is another order-theoretic characterization of Galois connections:

Exercise 6.5:2. If S and T are sets, show that a pair of maps ∗ : P(S)→
P(T ), ∗ : P(T ) → P(S) is a Galois connection if and only if for X ⊆ S,
Y ⊆ T, one has

X ⊆ Y ∗ ⇐⇒ Y ⊆ X∗.
More generally, you can show that given two partially ordered sets

(|P |, ≤) and (|Q|, ≤), and a pair of maps ∗ : |P | → |Q|, ∗ : |Q| → |P |,
these maps will satisfy conditions (i)-(ii) of Lemma 6.5.1 if and only if they
satisfy the above condition (with “≤ ” in place of “⊆ ” throughout).

Exercise 6.5:3. Show that for every closure operator cl on a set S, there
exists a set T and a relation R ⊆ S × T such that the closure operator
∗∗ on S induced by R is cl.

Can one in fact take for T any set given with any closure operator
whose lattice of closed subsets is antiisomorphic to the lattice of cl-closed
subsets of S ?

A Galois connection between two sets S and T becomes particularly
valuable when the ∗∗-closed subsets have characterizations of independent
interest. Let us give a number of examples, beginning with the one that
motivated our definition. (The reader should not worry if he or she is not
familiar with all the concepts and results mentioned in these examples.) In
describing these examples, I will sometimes, for brevity, ignore the distinction
between algebraic objects and their underlying sets.

Example 6.5.4. Take for S the underlying set of a field F, and for T the
underlying set of a finite group G of automorphisms of F. For a ∈ S and
g ∈ T let aR g mean that g fixes a, that is, g(a) = a. If we write K ⊆ F
for the subfield G∗, then, as noted earlier, the Fundamental Theorem of
Galois Theory tells us that the closed subsets of F are precisely the subfields
of F containing K, while the closed subsets of G are all its subgroups.
One finds that properties of the field extension F/K are closely related to
properties of the group G, and can be studied with the help of group theory
([31, Chapter V], [33, Chapter VI]). These further relations between group
structure and field structure are not, of course, part of the general theory of
Galois connections. That theory gives the underpinnings, over which these
further results are built.

Example 6.5.5. Let us take for S a vector space over a field K, for T the
dual space HomK(S, K), and let us take xRf to mean f(x) = 0. In this
case, one finds that the closed subsets of S are all its vector subspaces, while
those of T are the vector subspaces that are closed in a certain topology. In
the finite-dimensional case, this topology is discrete, and so the closed subsets
of T are all its subspaces. The resulting correspondence between subspaces
of a finite-dimensional vector space and of its dual space is a basic tool which
is taught (or should be!) in undergraduate linear algebra. Some details of the
infinite-dimensional case are developed in Exercise 6.5:6 below.
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Example 6.5.6. A superficially similar example: Let S = Cn (complex
n-space) and T = Q[x0, . . . , xn−1], the polynomial ring in n indeterminates
over the rationals, and let (a0, . . . , an−1)Rf mean f(a0, . . . , an−1) = 0.
This case is the starting-point for classical algebraic geometry, and still the
underlying inspiration for much of the modern theory. The closed subsets
of Cn are the solution-sets of systems of polynomial equations, while the
Nullstellensatz says that the closed subsets of T = Q[x0, . . . , xn−1] are the
“radical ideals”.

Example 6.5.7. Let S be a finite-dimensional Euclidean space Rn, with inner
product x, y , let T = S × R, and for x ∈ S, (y, a) ∈ T, define xR(y, a)
to mean x, y ≤ a. Then the closed subsets of S turn out to be the closed
convex sets.

A variant: let us restrict a above to the value 1. Then dropping this
constant “ 1 ” from our notation, T becomes S, and xR y becomes the
condition x, y ≤ 1. We thus have a Galois connection between S and
itself, under which the closed subsets on each side turn out to be the closed
convex subsets containing 0. For instance, in S = R3, we find that the dual
of a cube centered at the origin is a regular octahedron centered at the origin.
The regular dodecahedron and icosahedron are similarly dual to one another.

Example 6.5.8. Let S = T be a group, semigroup, or ring, and for elements
s and t of that object, let sR t denote the commutativity relation st = ts.
Then for every subset X of S, the set X∗ will be a subring, subgroup, or
subsemigroup, called the “centralizer” or the “commutant” of X, and X∗∗

is called the bicommutant of X.
In particular, if S = T = the ring of endomorphisms of an abelian group

M (or more generally, the k-algebra of endomorphisms of a k-module M,
for some commutative ring k), and if, for X a subring of S, we regard M
as an X-module, then X∗ is the ring (respectively, k-algebra) of X-module
endomorphisms of M.

Example 6.5.9. Let S be a set of mathematical objects, T a set of propo-
sitions about an object of this sort, and sR t the relation “the object s
satisfies the proposition t ”; in logician’s notation, s |= t. Then the closed
subsets of S are those sets of objects definable by sets of propositions from
T, what model theorists call axiomatic classes, while the closed subsets of
T are what they call theories. The theory B∗∗ generated by a set B of
propositions consists of those members of T that are consequences of the
propositions in B, in the sense that they hold in all members of S satisfying
the latter.

(Actually, in the naturally occurring cases of this example, S is often a
proper class rather than a set of mathematical objects; e.g., the class of all
groups. We will see how to deal comfortably with such situations in the next
chapter.)
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There are cases where it is preferable to use symbols other than “ ∗ ” for
the operators of a Galois connection. In Example 6.5.5, it is usual to write
the set obtained from a set A as Ann(A) or A◦ or A⊥ (the annihilator
or null space of A) because “ ∗ ” is commonly used for the dual space. More
seriously, whenever S = T but R is not a symmetric relation on S, the
two constructions {s′ | (∀ s ∈ A) s′Rs} and {s′ | (∀ s ∈ A) sR s′} will be
distinct, so one must denote them by different symbols, such as A∗ and A∗.
An example of such a case is

Exercise 6.5:4. (i) If S = T = Q, the set of rational numbers, and R
is the relation ≤, characterize the two systems of closed subsets of Q.
Describe in as simple a way as possible the structure of the lattices of
closed sets.
(ii) Same question with “< ” in place of “≤ ”.

Exercise 6.5:5. (i) Let X be a set, S = T = P(X), the set of all subsets
of X, and let R be the relation of having nonempty intersection. Since
this is a symmetric relation, the two closure operators it induces are the
same. Show that this operator ∗∗ takes A ⊆ P(X) to the set of those
subsets of X that contain a member of A.

Deduce that under this Galois connection, the closed sets which are
completely join-irreducible (cannot be written as a finite or infinite join of
strictly smaller closed sets) are in natural one-to-one correspondence with
the elements of P(X), and that the general closed sets are precisely the
unions of such closed sets.
(ii) Suppose X is a topological space, S = T = {open subsets of X},
and again let R be the relation of having nonempty intersection. Can you
characterize the resulting closure operator in this case? Can you get analogs
of the remaining statements of part (i)?

The next exercise gives, as promised, some details on the infinite-
dimensional case of Example 6.5.5. The one following it is related to Ex-
ample 6.5.8.

Exercise 6.5:6. Let K be a field, S a K-vector-space, and T its dual
space.

(i) Show that the subsets of S closed under the Galois connection of
Example 6.5.5 are indeed all the vector subspaces of S.

To characterize the subsets of T closed under this connection, let us,
for each s ∈ S and c ∈ K, define Us, c = {t ∈ T | t(s) = c}, and
topologize T by making the Us, c a subbasis of open sets.

(ii) Show that the resulting topology is the weakest such that for each
s ∈ S, the evaluation map t 7→ t(s) is a continuous map from T to the
discrete topological space K.
(iii) Show that the subsets of T closed under the Galois connection de-
scribed above are the vector subspaces of T closed in the above topology.

(There is an elegant characterization of the class of topological vector
spaces that arise in this way. They are called linearly compact vector spaces.
See [108, Chapter II, 27.6 and 32.1], or for a summary, [3, first half of §24].)
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Exercise 6.5:7. Let M be the underlying abelian group of the polynomial
ring Q[t] in one indeterminate t, let x : M → M be the abelian group
endomorphism given by multiplication by t, and d : M → M the endo-
morphism given by differentiation with respect to t. Find the commutant
and bicommutant (as defined in Example 6.5.8) of each of the following
subrings of End(M) :
(i) Z[x].

(ii) Z[x2, x3].
(iii) Z[d].
(iv) Z x, d (the ring generated by x and d. Angle brackets are used to
indicate generators of not necessarily commutative rings.)

Exercise 6.5:8. If G is a group and X a subset of G, then

{g ∈ G | (∀x ∈ X) g x = x g}

is called the centralizer of X in G, often denoted CG(X). This is easily
seen to be a subgroup of G.
(i) Show that if H is a subgroup of a group G then the following con-
ditions are equivalent: (a) H is commutative, and is the centralizer of its
centralizer. (b) H is the intersection of some nonempty family of maximal
commutative subgroups of G.
(ii) Give a result about Galois connections of which the above is a par-
ticular case.

(You may either state and prove in detail the result of (i), and then
for (ii) formulate a general result which can clearly be proved the same
way, in which case you need not repeat the argument; or do (ii) in detail,
then note briefly how to apply your result to get (i).)

We recall that for a general closure operator on a set S, the union of two
closed subsets of S is not in general closed; their join in the lattice of closed
sets is the closure of this union. However, if we consider the Galois connection
between a set of objects and a set of propositions, and if these propositions
are the sentences in a language that contains the operator ∨ (“or”), then
the set of objects satisfying the proposition s ∨ t will be precisely the union
of the set of objects satisfying s and the set satisfying t :

{s ∨ t}∗ = {s}∗ ∪ {t}∗.

Likewise, if the language contains the operator ∧ (“and”), then

{s ∧ t}∗ = {s}∗ ∩ {t}∗.

In fact, the choice of the symbols ∨ and ∧ (modifications of ∪ and ∩) by
logicians to represent these operators was probably suggested by these prop-
erties of the sets of objects satisfying such relations. (At least, so I thought
when I wrote this. But a student told me he had heard a different expla-
nation: that ∨ is an abbreviation of Latin vel “or”, and ∧ was formed by
inverting it. If so, ∪ and ∩ may have been created as modifications of ∨
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and ∧, and the fact that ∪ looks like an abbreviation of “union” may be a
coincidence.)

If we look at closed sets of propositions rather than closed sets of objects,
these are, of course, ordered in the reverse fashion: The set of propositions
implied by a proposition s ∨ t is the intersection of those implied by s and
those implied by t, while the set implied by s∧ t is the closure of the union
of the sets implied by s and by t. Thus the use of the words “and” (which
implies something “bigger”) and “or” (which suggests a weakening) is based
on the proposition-oriented viewpoint, while the choice of symbols ∧ and ∨
corresponds to the object viewpoint.

The conflict between these two viewpoints explains the problem students in
precalculus courses have when they are asked, say, to describe by inequalities
the set of real numbers x satisfying x2 ≥ 1. We want the answer “x ≤ −1
or x ≥ 1 ”, meaning {x | x ≤ −1 or x ≥ 1}. But they often put “x ≤ −1
and x ≥ 1 ”. What they have in mind could be translated as “ {x | x ≤ −1}
and {x | x ≥ 1} ”. We can hardly tell them that their difficulty arises from
the order-reversing nature of the Galois connection between propositions and
objects! But the more thoughtful students might be helped if, without going
into the formalism, we pointed out that there is a kind of “reverse relation”
between statements and the things they refer to: the larger a set of statements,
the smaller the set of things satisfying it; the larger a set of things, the smaller
the set of statements they all satisfy; so that “and ” for sets of real numbers
translates to “or” among formulas defining them.

I point out this “reverse relation” in a handout on set theory and mathe-
matical notation that I give out in my upper division courses [54, in particular,
§2]. Whether it helps, I don’t know.

Logicians often write the propositions (∀x ∈ X) P (x) and (∃x ∈ X) Q(x)
as
∧
x∈X P (x) and

∨
x∈X Q(x). Here the universal and existential quantifi-

cations are being represented as (generally infinite) conjunctions and disjunc-
tions, corresponding to intersections and unions respectively of the classes of
models defined by the given families of conditions P (x) and Q(x), as x
ranges over X.

We have noted that for many naturally arising types of closure operators
cl, the closure of a set X can be constructed both “from above” and “from
below” – either by taking the intersection of all closed sets containing X,
or by “building” elements of cl(X) from elements of X by iterating some
procedure in terms of which cl was defined. Closure operators determined by
Galois connections are born with a construction “from above”: for X ⊆ S,
X∗∗ is the intersection of those sets {t}∗ (t ∈ T ) which contain X. The
definition of a Galois connection does not provide any way of constructing this
set “from below”; rather, this is a recurring type of mathematical problem for
the particular Galois connections of mathematical interest! Typically, given
such a Galois connection, one looks for operations that all the sets {t}∗
(t ∈ Y ) are closed under, and when one suspects one has found enough of
these, one seeks to prove that for every X, the set X∗∗ is the closure of
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X under these operations. For instance, the fixed set of an automorphism
of a field extension F/K is easily seen to contain all elements of K and
to be closed under the field operations of F ; the Fundamental Theorem of
Galois Theory says that under appropriate hypotheses, the closed subsets of
F are precisely the subsets closed under these operations. For the case of
the Galois connection between mathematical objects and propositions, the
problem of finding a way to “build up” the closure of a set of propositions is
that of finding an adequate set of rules of inference for the type of proposition
under consideration, while to construct the closure operator on objects is to
characterize intrinsically the axiomatic model classes.

We remark that for a relation R on a pair of sets X and Y, there is
in general no close connection between the Galois connections determined
by R and by its negation ¬R (set-theoretically, the complement of R in
X × Y ). Typically, when one of the two relations is given by equalities (e.g.,
the relation g(a) = a on Galois connections representing automorphisms and
elements of a field), that relation tends to yield a Galois connection of more
mathematical interest than the connection determined by its complement (in
the above case, the relation g(a) 6= a).

The definition of Galois connection is, unfortunately, seldom presented
in courses, and many mathematicians who discover examples of it have not
heard of the general concept. Of course, Lemma 6.5.1 is a set of easy obser-
vations which can be verified in any particular case without referring to a
general result. But it is useful to have the general concept as a guide; and
once one has proved Lemma 6.5.1, one can skip those trivial verifications
from then on.



Chapter 7

Categories and functors

7.1. What is a category?

Let us lead up to the concept of category by first recalling the motivations
for some more familiar mathematical concepts:

(a) Groups. The definition of a group is motivated by considering the struc-
ture on the set Aut(X) of all automorphisms of a mathematical object X.
Given a, b ∈ Aut(X), the composite map ab lies in Aut(X); for every
a ∈ Aut(X), its inverse a−1 is a member of Aut(X), and, of course, the
identity map idX always belongs to Aut(X). Thus, Aut(X) is a set with
a binary operation of composition, a unary operation “−1 ”, and a zeroary
operation idX . When one examines the conditions these operations satisfy,
one discovers the associative law, the inverse laws, and the neutral-element
laws.

These laws and their consequences turn out to be fundamental to con-
siderations involving automorphisms, so one makes a general definition: A
4-tuple G = (|G|, ·, −1, 1), where |G| is a set and ·, −1, 1 are operations
on |G| satisfying the above laws, is called a group.

Let me point out something which is obvious today, but took getting used
to for the first generation to see the above definition: The definition does not
say that G actually consists of automorphisms of an object X – only that it
has certain properties we have abstracted from that context. In fact, systems
with these properties are also found to arise in other ways:

The additive structures of the sets of integers, rational numbers, and real
numbers form groups.

If (X, x0) is a topological space with basepoint, the set of homotopy
classes of closed curves beginning and ending at x0 forms a group, π1(X, x0).

And there are groups that are familiar, not because of a particular way
they occur, but because of their importance as basic components in the study
of other groups. The finite cyclic groups Zn are the simplest examples.

199
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Despite our abstract definition, and the existence of groups arising in
these different ways, the original motivation of the group concept should not
be forgotten. A natural question is: Which abstract groups can be represented
concretely, that is, are isomorphic to a family of permutations of a set X
under the operations of composition, inverse map, and identity permutation?
As we learn in undergraduate algebra, the answer is that every group has
this property (Cayley’s Theorem). Let us rederive the well-known proof.

The idea is to use the simplest nontrivial construction of a G-set X :
Introduce a single generating element x ∈ X, and let all the elements g x
(g ∈ |G|) be distinct. Formally we may define X to be the set of symbols
“ g x ”, where x is a fixed symbol and g ranges over |G|. We let G act on
X in the appropriate way to make this a G-action, namely by the law

h (g x) = (h g)x (g, h ∈ |G|).

The permutations of the set X given by the elements of G are seen to form a
“concrete” group isomorphic to G. One then observes that the symbol “x ”
is irrelevant to the proof. Stripping it away, we get the textbook proof: “Let
G act on |G| by left multiplication . . . ” ([25, p. 62], [28, p. 121], [29, p. 9],
[31, p. 90], [34, p. 52]).

(b) Monoids. Suppose we consider not just the automorphisms of a mathe-
matical object X but all its endomorphisms, that is, homomorphisms into
itself. The set End(X) is closed under composition and contains the identity
map, but there is no inverse operation. The operations of composition and
identity still satisfy associative and neutral-element laws, and one calls any
set with a binary operation and a distinguished element 1 satisfying these
laws a monoid. Like the definition of a group, this definition does not require
that a monoid actually consist of endomorphisms of an object X.

And indeed, there are again examples which arise in other ways than
the one which motivated the definition. The nonnegative integers form a
monoid under multiplication (with 1 as neutral element), and also under the
operation max (with 0 as neutral element). Isomorphism classes of (say)
finitely generated abelian groups form a monoid under the operation induced
by “⊕ ”, or alternatively under the operation induced by “⊗ ”. (One may
remove some set-theoretic difficulties from this example by restricting oneself
to a set of finitely generated abelian groups with exactly one member from
each isomorphism class.)

One has the precise analog of Cayley’s Theorem: Every monoid S is
isomorphic to a monoid of maps of a set into itself, and this is proved the
same way, by letting S act on |S| by left multiplication.

(c) Partially ordered sets. Again let X be any mathematical object, and
now let us consider the set Sub(X) of all subobjects of X.

In general, we do not have a way of defining interesting operations on
this set. (There are often operations of “least upper bound” and “greatest
lower bound”, but not always.) However, Sub(X) is not structureless; one



7.1 What is a category? 201

subobject of X may be contained in another, and this inclusion relation is
seen to satisfy the conditions of reflexivity, antisymmetry and transitivity.

Again we abstract the situation, calling an arbitrary pair P = (|P |, ≤),
where |P | is a set, and ≤ is a binary relation on |P | satisfying the above
three laws, a partially ordered set.

Examples of partial orderings arising in other ways than the above “pro-
totypical” one are the relation “≤ ” on the integers or the real numbers, and
the logical relation “=⇒” on a family of inequivalent propositions. Partially
ordered sets are also natural models of various hierarchical and genealogical
structures in nature, language, and human society.

Given an arbitrary partially ordered set P, will P be isomorphic to a
“concrete” partially ordered set – a family of subsets of a set X, ordered
by inclusion? Again, let us try to build such an X in as simple-minded a
way as possible. We want to associate to every p ∈ |P | a subset p of a
set X, so as to duplicate the order relation among elements of P. To make
sure all these sets are distinct, let us introduce for each p ∈ |P | an element
xp ∈ X belonging to p, and hence necessarily to every q with q ≥ p, but
not to any of the other sets q (q 6≥ p). It turns out that this works – if we
define X to be the set of symbols {xp | p ∈ |P |}, and if for p ∈ |P | we
set p = {xq | q ≤ p} ⊆ X, we find that {p | p ∈ |P |}, under the relation
“⊆ ”, forms a partially ordered set isomorphic to P. Again, the symbol “x ”
is really irrelevant, so we can get a simplified construction by taking X = |P |
and p = {q | q ≤ p} (p ∈ |P |). Thus we have “Cayley’s Theorem for partially
ordered sets”.

(d) “Bimonoids.” Let us go back to the idea that led to the definition of a
monoid, but make a small change. Suppose that X and Y are two mathe-
matical objects of the same sort (two sets, two rings, etc.), and we consider
the family of all homomorphisms among them. What structure does this
system have?

First, it is a system of four sets:

Hom(X, X), Hom(X, Y ), Hom(Y, X), Hom(Y, Y ).

Elements of certain of these sets can be composed with elements of others,
giving us eight composition maps:

µXXX : Hom(X, X)×Hom(X, X) → Hom(X, X),

µXXY : Hom(X, Y )×Hom(X, X) → Hom(X, Y ),q q q
µY Y Y : Hom(Y, Y )×Hom(Y, Y ) → Hom(Y, Y ).

(There is no composition on the remaining eight pairs, e.g., Hom(X, Y ) ×
Hom(X, Y ).)
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These composition operations are associative – we have sixteen associa-
tive laws; namely, for every 4-tuple (Z0, Z1, Z2, Z3) of objects from {X, Y }
(e.g., (Y, Y, X, Y )) we get the law

(7.1.1) (a b) c = a (b c)

for maps:

Z0
c−→ Z1

b−→ Z2
a−→ Z3.

(We could write (7.1.1) more precisely by specifying the four µ ’s in-
volved.) We also have two neutral elements, idX ∈ Hom(X, X) and idY ∈
Hom(Y, Y ), satisfying eight neutral element laws, which you can write down.

Cumbersome though this description is, it is clear that we have here a
fairly natural mathematical structure, and we might abstract these conditions
by defining a bimonoid to be any system of sets and operations

S =
(
(|S|ij)i, j∈{0,1} , (µijk)

i, j, k∈{0,1} , (1i)i∈{0,1}
)

such that the |S|ij are sets, the µijk are maps

µijk : |S|jk × |S|ij −→ |S|ik,

satisfying associative laws (ab)c = a(bc) on 3-tuples (a, b, c) ∈ |S|jk×|S|ij×
|S|hi for all h, i, j, k ∈ {0, 1}, and such that the 1i are elements of |S|ii
(i ∈ {0, 1}) satisfying

1j a = a = a 1i (a ∈ |S|ij).

Again, these objects can arise in ways other than the one just indicated:
We can get an analog of the “π1 ” construction for groups: If X is a

topological space and x0, x1 are two points of X, then the set of homotopy
classes of paths in X whose initial and final points both lie in {x0, x1} is
easily seen to form a “bimonoid” which we might call π1(X; x0, x1).

Readers familiar with the ring-theoretic concept of a Morita context
(R, S; RPS , SQR; τ, τ ′) will see that it also has this form: The underlying
sets of the rings R and S play the roles of |S|00 and |S|11, the underly-
ing sets of the bimodules P and Q give |S|01 and |S|10, and the required
eight multiplication maps are given by the internal multiplication maps of
R and S, the bimodule structures of P and Q, and the bilinear maps
τ : P ×Q→ R, and τ ′ : Q× P → S.

Finally, if K is a field and for any two integers i and j we write Mij(K)
for the set of i×j matrices over K, then for any m and n, the four systems
of matrices Mmm(K), Mnm(K), Mmn(K), Mnn(K), form a “bimonoid”
under matrix multiplication. (The astute reader will notice that this is really
a disguised case of “two mathematical objects and maps among them”, since
matrix multiplication is designed precisely to encode composition of linear



7.1 What is a category? 203

maps between vector spaces Km and Kn. And the ring-theorist will note
that this matrix example is a Morita context.)

Is there a “Cayley’s Theorem for bimonoids”, saying that any bimonoid
S is isomorphic to a subbimonoid of the bimonoid of all maps between two
sets X and Y ? Following the models of the preceding cases, our approach
should be to introduce a small number of elements in X and/or Y, and use
them to “generate” the rest of X and Y under the action of elements of
S. Will it suffice to introduce a single generator x ∈ X, and let X and Y
consist of elements obtained from x by application of the elements of the
|S|0j ? In particular, this would mean taking for Y the set {t x | t ∈ |S|01}.
For some bimonoids S this will work; but in general it will not. For example,
one can define a bimonoid S by taking any two monoids for |S|00 and
|S|11, and using the empty set for both |S|01 and |S|10. For such an S, the
above construction gives empty Y, though if the monoid |S|11 is nontrivial
it cannot be represented faithfully by an action on the empty set. Likewise,
it will not suffice to take only a generator in Y.

Let us, therefore, introduce as generators one element x ∈ X and one
element y ∈ Y, and let X be the set of all symbols of either of the forms
s x or t y with s ∈ |S|00, t ∈ |S|10, and Y the set of symbols ux or v y
with u ∈ |S|01, v ∈ |S|11. If we let S “act on” this pair of sets by defining

a (b z) = (a b) z,

whenever z ∈ {x, y}, and a and b are members of sets |S|ij such that these
symbolic combinations should be meaningful, then we find that this yields an
embedding of S in the bimonoid of all maps between X and Y, as desired.
The interested reader can work out the details.

(e) Categories. We could go on in the same vein, looking at maps among
three, four, etc., mathematical objects, and define “trimonoids”, “quadri-
monoids” etc., with larger and larger collections of operations and identities.

But clearly it makes more sense to treat these as cases of one general
concept! Let us now, therefore, try to abstract the algebraic structure we
find when we look at an arbitrary family X of mathematical objects and the
homomorphisms among them.

In the above development of “bimonoids”, the index set {0, 1} that ran
through our considerations was the same for all bimonoids. But in the general
situation, the corresponding index set must be specified as part of the object.
This is the first component of the 4-tuple described in the next definition.

Definition 7.1.2 (provisional). A category will mean a 4-tuple

C = (Ob(C), Ar(C), µ(C), id(C)),

where Ob(C) is any collection of elements, Ar(C) is a family of sets
C(X, Y ) indexed by the pairs of elements of Ob(C) :
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Ar(C) = (C(X, Y ))X,Y ∈Ob(C),

µ(C) is a family of operations

µ(C) = (µXY Z)X,Y, Z∈Ob(C)

µXY Z : C(Y, Z)×C(X, Y )→ C(X, Z),

and id(C) is a family of elements

id(C) = (idX)X∈Ob(C)

idX ∈ C(X, X),

such that, using multiplicative notation for the maps µXY Z , the associative
identity

a (b c) = (a b) c

is satisfied for all elements

a ∈ C(Y, Z), b ∈ C(X, Y ), c ∈ C(W, X) (W, X, Y, Z ∈ Ob(C)),

and the identity laws
a idX = a = idY a

are satisfied for all a ∈ C(X, Y ) (X, Y ∈ Ob(C)).

The above definition is labeled “provisional” because it avoids the question
of what we mean by a “collection of elements Ob(C) ”. If we hope to be able
to deal with categories within set theory, we should require Ob(C) to be a
set. Yet we will find that the most useful applications of category theory are to
cases where Ob(C) consists of all algebraic objects of a certain type (e.g., all
groups), which calls for larger “collections”. We will deal with this dilemma
in §7.4. In the next section, where we will give examples of categories, we will
interpret “collection” broadly or narrowly as the example requires.

I mentioned that the concept of an “abstract group” – a group given as
a set of elements with certain operations on them, rather than as a concrete
family of permutations of a set – was confusing to people when it was first
introduced. The “abstract” concept of a category still causes many people
problems – there is a great temptation for beginning students to imagine
that the members of C(X,Y ) must be actual maps between sets X and Y.

One reason for this confusion is that the terminology of category theory
is set up to closely mimic the situation which motivated the concept. The
word “category” is suggestive to begin with; “ Ob(C) ” stands for “objects of
C ”, and this is what elements of Ob(C) are called; elements f ∈ C(X,Y )
are called “morphisms” from X to Y, the objects X and Y are called
the “domain” and “codomain” of f, these morphisms are often denoted

diagrammatically by arrows, X
f−→ Y, and objects and morphisms are shown
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Summary of §7.1
(Read across rows, referring to headings at top, then compare downwards)

Consider: Structure: Properties:

Abstracted

concept:

Other

examples

Can be repre-

sented by:

All auto-

morphisms of a

mathematical

object X .

Set with

composition,

inverse

operation, and

identity element.

(a b) c = a (b c),

a−1a=id=aa−1,

a id = a = id a.

group

(same properties,

but not assumed

to arise as at left)

(Z, +, −, 0),

π1(X, x0),

Zn.

permutations

of a set

(Cayley’s

Theorem).

All endo-

morphisms of a

mathematical

object X.

Set with

composition

and identity

element.

(a b) c = a (b c),

a id = a = id a.

monoid

(same properties,

but not assumed

to arise as at left)

(N, ·, 1),

(N,max, 0),

({f. g. ab. gps.},

⊗, Z).

maps

of a set

into

itself.

All sub-

objects of a

mathematical

object X .

Set

with

relation

⊆

transitive,

antisymmetric,

reflexive.

partially
ordered set

(same properties,

but not assumed

to arise as at left)

(Z, ≤),

=⇒ ,

genealogies.

subsets

of a set,

under

⊆ .

All homo-

morphisms

between two

mathematical

objects

X and Y.

Four sets,

|S|00, |S|01, |S|10, |S|11 ,

with composition

maps |S|ij → |S|ik
and identity

elements

id0, id1.

(a b) c = a (b c)

(when

defined);

a idi=a=idja

(a ∈ |S|ij).

“bimonoid”

(same properties,

but not assumed

to arise as at left)

“ π1(X; x0, x1) ”,

Morita contexts,

matrices.

maps

between

two

sets.

All homo-

morphisms

among a

family X of

mathematical

objects.

Family of sets

Hom(X,Y ) (X,Y ∈X)

with composition maps

Hom(X1, X2)× Hom(X0, X1)

→ Hom(X0, X2) and

identity elements

idX ∈ Hom(X,X).

(ab)c = a(bc)

for X0
c→ X1

b→

X2
a→ X3;

a idX=a=idY a

for X
a→ Y.

category

(same properties,

but not assumed

to arise as at left)

coming

up, in

§7.2.

family

of sets

and maps

among

them

(if Ob(C)

is a set).
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together in the sort of diagrams that are used to represent objects and maps in
other areas of mathematics. In place of C(X, Y ), the notation Hom(X, Y )
is very common. And µXY Z(f, g) is generally written f g or f · g or f ◦ g,
and so looks just like a composite of functions.

So I urge you to note carefully the distinction between the situation that
motivated our definition, and the definition itself. Within that definition, the
collection Ob(C) is simply an “index set” for the families of elements on
which the composition operation is defined. Hence in discussing an abstract
category C, one cannot give arguments based on considering “an element
of the object X ”, “the image of the morphism a ”, etc.; any more than
in considering a member g of an abstract group G one can refer to such
concepts as “the set of points left fixed by g ”. (However, the latter concept
is meaningful for concrete groups of permutations, and the former concepts
are likewise meaningful for “concrete categories”, a concept we will define in
§7.5.)

Of course, the motivating situation should not be forgotten, and a nat-
ural question is: Is every category isomorphic to a system of maps among
some sets? We can give a qualified affirmative answer. The complete answer
depends on the set-theoretic matters that we have postponed to §7.4, but if
Ob(C) is actually a set, then we can indeed construct sets (X)X∈Ob(C), and
set maps among these, including the identity map of each of these sets, which
form, under composition of maps, a category isomorphic to C. The proof is
the analog of the one we sketched for “bimonoids”.

Exercise 7.1:1. Write out the argument indicated above – “Cayley’s The-
orem” for a category with only a set of objects.

Incidentally, we will now discard the term “bimonoid”, since the structure
it described was, up to notational adjustment, simply a category having for
object-set the two-element set {0, 1}.

7.2. Examples of categories

To describe a category, one should, strictly, specify the class of objects, the
morphism-set associated with any pair of objects, the composition operation
on morphisms, and the identity morphism of each object. In practice, some
of this structure is usually clear from context. When one is dealing with the
prototype situation – a family of mathematical objects and all homomor-
phisms among them – the whole structure is usually clear once the class of
objects is named. In other cases the morphism-sets must be specified as well;
once this is done the intended composition operation is usually (though not
always) obvious. As to the identity elements, these are uniquely determined
by the remaining structure (just as in groups or monoids), so the only task
is to verify that they exist, which is usually easy.
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Categories consisting of families of mathematical objects and the homo-
morphisms among them are generally denoted by boldface or script names
for the type of object (often abbreviated. The particular abbreviations may
vary from author to author.) Some important examples are:

Set, the category of all sets and set maps among them. (Another symbol
commonly used for this category is Ens, from the French ensemble.)

Group, the category whose objects are all groups, and whose morphisms
are the group homomorphisms; and similarly Ab, the category of abelian
groups.

Monoid, Semigroup, AbMonoid and AbSemigroup, the cate-
gories of monoids, semigroups, abelian monoids, and abelian semigroups.

Ring1, and CommRing1, the categories of associative, respectively as-
sociative commutative, rings with unity. (One can denote by the same sym-
bols without a superscript “ 1 ” the corresponding categories of nonunital
rings – i.e., 5-tuples R = (|R|,+, ·,−, 0), where |R| need not contain an
element 1 satisfying the neutral law for multiplication, and where, even if
rings happen to possess such elements, morphisms are not required to respect
them. But in these notes we will not refer to nonunital rings often enough to
need to fix names for these categories.)

If R is an associative unital ring, we will write the category of left
R-modules R-Mod and the category of right R-modules Mod-R. (Other
common notations are RMod and ModR.) Similarly, for G a group, the
category of (left) G-sets will be written G-Set; here the morphisms are the
set maps respecting the actions of all elements of G.

Top denotes the category of all topological spaces and continuous maps
among them. Topologists often find it useful to work with topological spaces
with basepoint, (X, x0), so we also define the category Toppt of pointed
topological spaces, the objects of which are such pairs (X, x0), and the mor-
phisms of which are the continuous maps that send basepoint to basepoint.
Much of topology is done under the assumption that the space is Hausdorff;
thus one considers the subcategory HausTop of Top whose objects are the
Hausdorff spaces.

We shall write POSet for the category of partially ordered sets, with
isotone maps for morphisms. If we want to allow only strict isotone maps,
i.e., maps preserving the relation “< ”, we can call the resulting category
POSet<.

We have mentioned that our concept of “bimonoid” is a special case of the
concept of category. Let us formalize this idea. The definition of a category
requires specification of the object-set, whereas for bimonoids the implicit
object-set was always {0, 1}. So given a bimonoid S = ((|S|ij), (µijk), (1i)) ,
to translate it to a category C, we throw in a formal first component
Ob(C) = {0, 1}. We can then define C(i, j) = |S|ij , getting the category
({0, 1}, (|S|ij), (µijk), (1i)) , which we may denote Scat.
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This works because the situation from which we abstracted the concept of
a bimonoid was a special case of the situation from which we abstracted the
concept of a category. Now in fact, the situations from which we abstracted
the concepts of group, monoid, and partially ordered set were also special
cases of that situation! Can objects of these types similarly be identified with
certain kinds of categories?

The objects most similar to bimonoids are the monoids. Since they are
modeled after the algebraic structure on the set of endomorphisms of a single
algebraic object, let us associate to an arbitrary monoid S a one-object cate-
gory Scat, with object-set {0}. The only morphism-set to define is Scat(0, 0);
we take this to be |S|. For the composition map on pairs of elements of
Scat(0, 0), we use the composition operation of S, and for the identity mor-
phism, the neutral element of S.

Conversely, if C is any category with only one object, X, then the unique
morphism set C(X,X), with its identity element, will form a monoid S
under the composition operation of C, such that the category Scat formed
as above is isomorphic to our original category C, the only difference being
the name of the one object (originally X, now 0). Thus, a category with
exactly one object is “essentially” a monoid.

If we start with a group G, we can similarly form a category Gcat with
just one object, 0, whose morphisms are the elements of G and whose com-
position operation is the composition of G. We cannot incorporate the inverse
operation of G as an operation of the category; in fact, what we are doing is
essentially forgetting the inverse operation, i.e., forming from G the monoid
Gmd, and then applying the previous construction; thus Gcat = (Gmd)cat.
We see that via this construction, a group is equivalent to a category which
has exactly one object, and in which every morphism is invertible.

Note that for G a group, the one member of Ob(Gcat) should not be
thought of as the group G; intuitively it is a fictitious mathematical object
on which G acts. Thus, morphisms in this category from that one object
to itself do not correspond to endomorphisms of G, as students sometimes
think, but to elements of G. (One can also define a category with one object
whose morphisms comprise the monoid of the endomorphisms of G; that is
the category End(G)cat; but Gcat is a more elementary construction.)

The case of partially ordered sets is a little different. In the motivating
situation, though we started with a single object X, we considered a family
of objects obtained from it, namely all its subobjects. Although there might
exist many maps among these objects, the structure of partially ordered
set only reveals a certain subfamily of these: the inclusion maps. (In fact,
since a “homomorphism” means a map which respects the kind of structure
being considered, and we are considering these objects as subobjects of X,
one could say that a homomorphism as subobjects should mean a set map
which respects the way the objects are embedded in X, i.e., an inclusion
map; so from this point of view, these really are the only relevant maps.)
A composite of inclusion maps is an inclusion map, and identity maps are
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(trivial) inclusions, so the subobjects of X with the inclusion maps among
them form a category. In this category there is a morphism from A to B if
and only if A ⊆ B, and the morphism is then unique, so the partial ordering
of the subobjects determines the structure of the category.

If we start with an abstract partially ordered set P = (|P |, ≤), we can
construct from it an abstract category Pcat in the way suggested by this
concrete prototype: Take Ob(Pcat) = |P |, and for all A, B ∈ |P |, define
there to be one morphism from A to B if A ≤ B in P, none otherwise.
What should we take this one morphism to be? This is like asking in our
construction of Gcat what to call the one object. The choice doesn’t really
matter. Since we want to associate to each ordered pair (A, B) with A ≤
B in P some element, the easiest choice is to take for that element the
pair (A, B) itself. Thus, we can define Pcat to have object-set |P |, and for
A, B ∈ |P |, take Pcat(A, B) to be the singleton {(A, B)} if A ≤ B, the
empty set otherwise. The reader can easily describe the composition operation
and identity elements of Pcat.

Incidentally, we see that this construction works equally well if ≤ is a
preordering rather than a partial ordering.

Exercise 7.2:1. Let C be a category.
(i) Show that C is isomorphic to Pcat for some partially ordered set
P if and only if “there is at most one morphism between any unordered
pair of objects”; in the sense that each hom-set C(X, Y ) has cardinality
at most 1, and the hom-sets C(X, Y ) and C(Y, X) do not both have
cardinality 1 unless X = Y.
(ii) State a similar condition necessary and sufficient for C to be isomor-
phic to Pcat for P a preorder. (No proof required.)

We mentioned that some groups, such as the cyclic groups Zn, are of
interest as “pieces” in terms of which we look at general groups. Thus, to give
an element of order n in a group G is equivalent to displaying an isomorphic
copy of Zn in G, and to give an element satisfying xn = e is equivalent to
displaying a homomorphic image of Zn in G. Various simple categories are
of interest for essentially the same reason. For instance a commutative square

qq? qq?-

-
of objects and morphisms in a category C corresponds to an image in

C of a certain category having four objects, which we can name 0, 1, 2 and
3, and, aside from their four identity morphisms, five arrows, as shown below:

? ?
-

-

@
@
@R

0 1

2 3

Here the diagonal arrow is both the composite of the morphisms from 0
to 1 to 3, and the composite of the morphisms from 0 to 2 to 3. This

“diagram category” might be conveniently named “ qq? qq?-

-
”.
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A simpler example is the diagram category ·⇒ · with two objects and
only two nonidentity morphisms, which go in the same direction. Copies of
this in a category C correspond to the type of data one starts with in the
definitions of equalizers and coequalizers. Still simpler is ·→ ·, which is
often called “ 2 ”; an image of this in a category corresponds to a choice of
two objects and one morphism between them. (So the category 2 takes its
place in our vocabulary beside the ordinal 2, the Boolean ring 2, the lattice
2, and the partially ordered set 2 !) A larger diagram category is

· −→ · −→ · −→ · −→ · . . . ,

images of which in C correspond to right-infinite chains of morphisms. The
morphisms of this diagram category are the identity morphisms, the arrows
shown in the picture, and all composites of these arrows, of which there is
exactly one from every object to every object to the right of it. Finally, one

might denote by ����q� a category having one object 0, and, aside from the

identity morphism of 0, one other morphism x, and all its powers, x2, x3,
etc.. An image of this in a category C will correspond to a choice of an object
and a morphism from this object to itself.

(In the above discussion I have been vague about what I meant by an
“image” of one category in another. In §7.5 we shall introduce the category-
theoretic concept analogous to that of homomorphism, in terms of which this
can be made precise. At this point, for the sake of giving you some broad
classes of examples to think about, I have spoken without having the formal
definition at hand.)

The various types of examples we have discussed are by no means disjoint.
Three of the above “diagram categories” can be recognized as having the
form Pcat, where P is respectively, a 4-element partially ordered set, the
partially ordered set 2, and the partially ordered set of nonnegative integers,
while the last example is Scat, for S the free monoid on one generator x.

Many of the other “nonprototypical” ways in which we saw that groups,
etc., arise also have generalizations to categories:

If R is any ring, we see that multiplication of rectangular matrices over
R satisfies precisely the laws for composition of morphisms in a category.
Thus, we get a category MatR by defining the objects to be the nonnegative
integers, the morphism-set MatR(m, n) to be the set of all n×m matrices
over R, the composition µ to be matrix multiplication, and the morphisms
idn to be the identity matrices In. This is not very novel, since as we observed
before, matrix multiplication is defined to encode composition of linear maps
among free R-modules. But it is interesting to note that the abstract system
of matrices over R is not limited to serving that function; if M is any left
R-module, one can use n×m matrices over R to represent operations which
carry m-tuples of elements of M to n-tuples formed from these elements
using linear expressions with coefficients in R.
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This line of thought suggests similar constructions for other sorts of alge-
braic objects. For instance, we can define a category C whose objects are
again the nonnegative integers, and such that C(m, n) represents all ways
of getting an n-tuple of elements of an arbitrary group from an m-tuple us-
ing group operations. Precisely, we can define C(m, n) to be the set of all
n-tuples of derived group-theoretic operations in m variables. The composi-
tion maps

(7.2.1) C(n, p) × C(m, n) −→ C(m, p)

can be described in terms of substitution of derived operations into one an-
other.

Generalizing the construction of the fundamental group of a topological
space with basepoint (X, p), one can associate to any topological space X a
category π1(X) whose objects are all points of X, and where a morphism
from x0 to x1 means a homotopy class of paths from one point to the other.

We can also define categories which have familiar mathematical entities for
their objects, but put unexpected twists into the definitions of the morphism-
sets. Recall that in the category Set, the morphisms from the set X to the
set Y are all functions from X to Y. Now formally, a function is a relation
f ⊆ X×Y such that for every x ∈ X there exists a unique y ∈ Y such that
(x, y) ∈ f. Suppose we drop this restriction, and consider arbitrary relations
R ⊆ X × Y. One can compose these using the same formula by which one
composes functions: If R ⊆ X × Y and S ⊆ Y × Z, one defines

S ·R = {(x, z) ∈ X × Z | (∃ y ∈ Y ) (x, y) ∈ R, (y, z) ∈ S}.

This operation of composing relations is associative, and the identity relations
satisfy the identity laws; hence one can define a category RelSet, whose ob-
jects are ordinary sets, but such that RelSet(X, Y ) is the set of all relations
in X × Y.

Algebraic topologists work with topological spaces, but instead of individ-
ual maps among them, they are concerned with homotopy classes of maps.
Thus, they use the category HtpTop whose objects are topological spaces,
and whose morphisms are such homotopy classes. Composition of continuous
maps respects homotopy, allowing one to define the composition operation of
this category.

In complex variable theory, one often fixes a point z of the complex plane
and considers all analytic functions defined on neighborhoods of z. Different
functions in this set are defined on different neighborhoods of z, so these
functions do not all have any domain of definition in common. Further, func-
tions which are the same in a neighborhood of z may not agree on the full
intersection of their domains, if this intersection is not connected. E.g., the
natural logarithm function ln(z) with value zero at z = 1 extends to some
connected regions of the plane so as to assume the value πi at the point −1,
and to other such regions so as to assume the value −πi at that point. To
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eliminate distinctions which are not relevant to the behavior of functions in
the vicinity of the specified point z, one introduces the concept of a germ of
a function at z. This is an equivalence class of functions defined on neigh-
borhoods of z, under the relation making two functions equivalent if they
agree on some common neighborhood of z.

An apparent inconvenience of this concept is that for germs of functions at
z, one does not have a well-defined operation of composition. For instance,
if f and g are germs of analytic functions at z = 0, one cannot generally
attach a meaning to g f unless f(0) = 0, because g does not have a well-
defined “value” at f(0). (This is the analog of the algebraic problem that
given formal power series f(z) = a0 + a1z + . . . and g(z) = b0 + b1z + . . . ,
one cannot in general “substitute f into g ” to get another formal power
series in z, unless a0 = 0.) But this ceases to be a problem if we define a
category GermAnal, whose objects are the points of the complex plane,
and where a morphism from z to w means a germ of an analytic function
at z whose value at z is w. Then for any three points z0, z1, z2, one sees
that one does indeed have a well-defined composition operation

GermAnal(z1, z2)×GermAnal(z0, z1) −→ GermAnal(z0, z2).

I.e., the partial operation of composition of germs of analytic functions is
defined in exactly those cases needed to make these germs the morphisms of
a category.

These examples allow endless modification as needed. A topologist may
impose the restriction that the topological spaces considered in a given con-
text be Hausdorff, be locally compact, be given with basepoint, etc., and
modify the category he or she uses accordingly. The definition of a germ of a
function is not limited to complex variable theory, so analogs of GermAnal
can be set up wherever needed. Here is an interesting case:

Exercise 7.2:2. If G and H are groups, let us define an almost-homomor-
phism from G to H to mean a homomorphism f :Gf → H, whose domain
Gf is a subgroup of finite index in G. Given two almost-homomorphisms
f and g from G to H, with domains Gf and Gg, let us write f ≈ g
if the subgroup {x ∈ |Gf | ∩ |Gg| | f(x) = g(x)} also has finite index
in G.
(i) Show that ≈ is an equivalence relation on the set of almost-
homomorphisms from G to H.
(ii) Show how one may define a category C whose objects are all
groups, and whose morphisms are the equivalence classes of almost-
homomorphisms, under ≈.
(iii) Describe the endomorphism-monoid C(Z, Z), where C is the cate-
gory described above, and Z is the additive group of integers.

We noted earlier that isomorphism classes of abelian groups formed a
monoid under ⊗. The reader familiar with bimodules and the tensor oper-
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ation on these might like the following generalization of this monoid to a
category.

Exercise 7.2:3. Show that one can define a category C such that Ob(C)
is the class of all rings, for each R, S ∈ Ob(C), C(R, S) is the family
of all isomorphism-classes [P ] of (S, R)-bimodules P, and for each [P ] ∈
C(S, T ), [Q] ∈ C(R, S), the composite [P ][Q] is the isomorphism class of
the tensor product, [P ⊗S Q]. (Either ignore the problem that the classes
involved in this definition are not sets, or modify the statement in some
reasonable way to avoid this problem.)

(If you are familiar with Morita equivalence, you will find that two
objects are isomorphic in this category if and only if they are Morita equiv-
alent as rings.)

The following example shows that not every plausible definition works:

Exercise 7.2:4. Suppose one attempts to define a category C by taking
all sets for the objects, and letting C(X, Y ) consist of all equivalence
classes of set maps X → Y, under the relation that makes f ≈ g if
{x ∈ X | f(x) 6= g(x)} is finite.
(i) Show that this does not work, i.e., that composition of set maps does
not induce a composition operation on equivalence classes of set maps.

On the other hand
(ii) Find the least equivalence relation ∼ on set maps which contains the
above equivalence relation ≈, and has the property that composition of
set maps does induce a composition operation on equivalence classes of set
maps under ∼ .

(Precisely, ∼ will be a family of equivalence relations: a relation ∼X,Y
on C(X, Y ) for each pair of sets X and Y. So what you should show is
that among such families of equivalence relations, there is a least ∼ such
that composition of set maps induces composition operations on the factor
sets C(X, Y )/∼X,Y , and such that f ≈ g =⇒ f ∼ g for all f and g;
and describe these relations ∼X,Y .)

Here is an interesting variant of the construction Scat, for S a monoid.
(For an application, see [49].)

Exercise 7.2:5. Let S be a monoid, and X an S-set. One can define a
category whose objects are the elements of X, and such that a morphism
x→ y (x, y ∈ |X|) is an element s ∈ |S| such that s x = y. However, to
help remind us of the intended domain and codomain of each morphism,
let us, rather, take the morphisms x→ y to be all 3-tuples (y, s, x) such
that s ∈ |S| and s x = y. We define composition by (z, t, y)(y, s, x) =
(z, t s, x); the definition of the identity morphisms should be clear.
(i) Show that the construction Scat is a special case of this construction.
(ii) In general, can one reconstruct the monoid S and the S-set X from
the structure of the category Xcat ?

I don’t know the answer to the first part of
(iii) Given a category C, is there a nice necessary and sufficient condition
for there to exist a monoid S and an S-set X such that C ∼= Xcat ? For
there to exist a group G and a G-set X such that this isomorphism holds?
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7.3. Other notations and viewpoints

The language and notation of category theory are still far from uniform.
Let me note some of the commonest variations on the conventions I have
presented.

I have mentioned that what we are writing C(X, Y ) is often written
Hom(X, Y ); this may be made more explicit as HomC(X, Y ); there is also
the shorter notation (X, Y ). Even though we shall not use the notation
Hom(X, Y ), we shall often call these sets “hom sets”.

More problematically, some authors reverse the order in which the objects
are written; i.e., they write the set of morphisms from X to Y as C(Y, X),
Hom(Y, X), etc.. There are advantages to each choice: The order we are using
matches the order of words when we speak of going “from X to Y ”, and the
use of arrows drawn from left to right, X −→ Y, but has the disadvantage
that composition of morphisms X → Y → Z must be described as a map
C(Y, Z) ×C(X, Y ) → C(X, Z), while under the reversed notation, it goes
more nicely, C(Z, Y )×C(Y, X)→ C(Z, X). A different cure for the same
problem is to continue to think of elements of C(X, Y ) as morphisms from
X to Y (as we are doing), but reverse the way composition is written, letting

the composite of X
a→ Y

b→ Y be denoted a b ∈ C(X, Z), rather than b a.
However if one does this, then when writing functions on sets, one is more
or less forced to abandon the conventional notation f(x), which leads to the
usual order of composition, and write x f instead.

Note that the above difficulties in category-theoretic notation simply mir-
ror conflicts of notation already existing within mathematics! (Cf. [55].)

The elements of C(X, Y ), which we call “morphisms”, are called “arrows”
by some. Our notation Ar(C) for the family of morphism-sets is based on
that word; some authors write Fl(C), based on the French flèche (arrow).
Colloquially they are also called “maps” from X to Y, and I may allow
myself to fall into this easy usage at times, hoping that you understand by
now that they are not maps in the literal sense, i.e., functions.

The identity element in C(X, X) which we are writing idX is also written
IX (like an identity matrix) or 1X (just as the identity element of a group
is often written 1).

The student has probably noticed at some point in his or her study of
mathematics the petty but vexing question: If X is a subset of Y, is the
inclusion map of X into Y the “same” as the identity map of X ? If we
follow the convenient formalization of a function as a set of ordered pairs
(x, f(x)), then they are indeed the same. But this means that a question like
“Is f surjective?” is meaningless; one can only ask whether f is surjective
as a map from X to Y, as a map from X to X, etc.. A formalization more
in accord with the way we think about these things might be to define a
function f : X → Y as a 3-tuple (X, Y, |f |), where |f | is the set of ordered
pairs used in the usual definition. Then f is surjective if and only if the set
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of second components of members of |f | equals the whole set Y. (Since X
is determined by |f |, our making X a component of the 3-tuple is, strictly,
unnecessary; but it seems worth doing for symmetry. Note that if one wants
to use a similar notation for general relations |R| ⊆ X × Y, then neither X
nor Y will be determined by |R|, so one needs both of these in the tuple
describing the relation. Having both in the tuple describing a function then
allows one to continue to regard the functions from X to Y as a subset of
the relations between these sets.)

The same problem arises when we abstract our functions in the definition
of a category: Can an element be a member of two different morphism-sets,
C(X, Y ) and C(X ′, Y ′), with (X, Y ) 6= (X ′, Y ′) ? Under our definitions,
yes. However, some authors add to the definition of a category the condition
that the sets of morphisms between distinct pairs of objects be disjoint.

Let us note what such a condition would entail. In the category Group,
as an example, a group homomorphism f : G→ H would have to determine
not merely its set-theoretic domain and codomain |G| and |H|, but the full
group structures G = (|G|, µG, ιG, eG) and H = (|H|, µH , ιH , eH). When
one thinks about it, this makes good sense, not only from the point of view of
category theory but from that of group theory; for without knowing the group
structures on |G| and |H|, one cannot say whether a map f : |G| → |H|
is a homomorphism, let alone answer such group-theoretic questions as, say,
whether its kernel contains all elements of order 2.

In set theory, when one defines a function as a set of ordered pairs, though
its codomain is not uniquely determined, most other things one would want
to know about it are; for example, the composite f g of two composable
functions can be constructed from those functions. But there is nothing in
the definition we have given of a category that says that if g lies in both
C(X, Y ) and C(X ′, Y ′), while f lies in both C(Y, Z) and C(Y ′, Z ′),
then the composites µXY Z(f, g) and µX′ Y ′ Z′(f, g) must be the same; so
even the symbol “ f g ” is formally ambiguous.

On the whole, I think it desirable to include in the definition of a category
the condition that morphism-sets be disjoint. However, we shall not do so in
these notes, largely because it would increase the gap between our category
theory and ordinary mathematical usage. So the difficulties mentioned above
mean that we have to be careful, understanding for instance that in a given
context, we are using f g as a shorthand for µXY Z(f, g), which is the only
really unambiguous expression. Note that given any structure which is a
category C under our definition, we can form a new category Cdisj with
disjoint morphism-sets, by using the same objects, and letting Cdisj(X, Y )
consist of all 3-tuples f = (X, Y, |f |) with |f | ∈ C(X, Y ), and composition
operations obtained in the obvious way from those of C.

Authors who require morphism-sets to be disjoint can play some interest-
ing variations on the definition of category. Instead of defining Ar(C) to be
a family of sets, Ar(C) = (C(X, Y ))X,Y ∈Ob(C), they can take it to be a
single set (or class), the union of all the C(X, Y ) ’s. To recover domains and
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codomains of morphisms, they then add to the definition of a category two
operations, dom, cod : Ar(C) → Ob(C). They can then make composition
of morphisms a single map

µ : {(f, g) ∈ Ar(C)2 | cod(g) = dom(f)} −→ Ar(C).

One can be even more radical and eliminate all reference to objects, as
sketched in the next exercise.

Exercise 7.3:1. (i) Let C be a category such that distinct ordered pairs
of objects (X, Y ) have disjoint morphism-sets. Let A =

⋃
X,Y C(X, Y ),

and let µ denote the composition operation in A, considered now as a
partial map from A×A to A, i.e., a function from a subset of A×A to
A. Show that the pair (A, µ) determines C up to isomorphism.
(ii) Find conditions on a pair (A, µ), where A is a set and µ a partial
binary operation on A, which are necessary and sufficient for it to arise, as
above, from a category C with disjoint morphism sets. (Try to formulate
these conditions so that they give a nice self-contained characterization of
the sort of structure in question.)

One gets a still nicer structure by combining the above approach with
the idea of giving functions specifying the domain and codomain of each
morphism. Namely, given a category C with disjoint morphism-sets, let A
be defined as in (i), let dom : A→ A be the map associating to each mor-
phism f the identity morphism of its domain, and similarly let cod :A→ A
associate to each morphism the identity morphism of its codomain. Since
the pair (A, µ) determines C up to isomorphism, the same will be true,
a fortiori, of the 4-tuple (A, µ, dom, cod).
(iii) Find simple necessary and sufficient conditions on a 4-tuple (A, µ,
dom, cod) for it to arise as above from a category C with disjoint
morphism-sets.

So one could redefine a category as an ordered pair (A, µ) or 4-tuple
(A, µ, dom, cod) satisfying appropriate conditions.

These differences in definition do not make a great difference in how one
actually works with categories. If, for instance, one defines a category as
a 5-tuple C = (Ob(C), Ar(C), domC, codC, idC), one then immediately
makes the definition

C(X, Y ) = {f ∈ Ar(C) | (dom(f) = X) ∧ (cod(f) = Y )},

and works with these morphism sets as other category-theorists do. (But
I will mention one notational consequence of the morphisms-only approach
that can be confusing to the uninitiated: the use, by some categorists, of the
name of an object as the name for its identity morphism as well.)

Changing the topic from technical details to attitudes, category theory has
been seen by some as the new approach that would revolutionize, unify, and
absorb all of mathematics; by others as a pointless abstraction whose content
is trivial where it is not incomprehensible.
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Neither of these characterizations is justified, but each has a grain of truth.
The subject matter of essentially every branch of mathematics can be viewed
as forming a category (or a family of categories); but this does not say how
much value the category-theoretic viewpoint will have for workers in a given
area. The actual role of category theory in mathematics is like that of group
theory: Groups come up in all fields of mathematics because for every sort
of mathematical object, we can look at its symmetries, and generally make
use of them. In some situations the contribution of group theory is limited to
a few trivial observations, and to providing a language consistent with that
used for similar considerations in other fields. In others, deep group-theoretic
results are applicable. Finally, group theory is a branch of algebra in its own
right, with its own intrinsically interesting questions. All the corresponding
observations are true of category theory.

As with the concept of “abstract group” for an earlier generation, many
people are troubled by that of an “abstract category”, whose “objects” are
structureless primitives, not mathematical objects with “underlying sets”, so
that in particular, one cannot reason by “chasing elements” around diagrams.
I think the difficulty is pedagogic. The problem comes from expecting to be
able to “chase elements”. As one learns category theory (or a given branch
thereof), one learns the techniques one can use, which is, after all, what one
needs to do before one can feel at home in any area of mathematics. These
include some reasonable approximations of element-chasing when one needs
them.

And there is no objection to sometimes using a mental image in which
objects are sets and morphisms are certain maps among them, since this is
an important class of cases. One must merely bear in mind that, like all the
mental images we use to understand mathematics, it is imperfect.

(Of course, strictly speaking, the objects of a category are sets, since in
ZFC there are no “primitive objects”. But the morphisms of a category are
not in general maps between these sets, and the set-theoretic structure of
these objects is of no more relevance to the concept of category than the
set-theoretic structure of “ 1/2 ” is to the functional analyst.)

When one thinks of categories as algebraic entities themselves, one should
note that the item in the definition of a category analogous to the element
in the definition of a group, monoid etc., is the morphism. It is on these that
the composition operation, corresponding to the multiplication in a group or
monoid, is defined. The object-set of C, which has no analog in groups or
monoids, is essentially an index set, used to classify these elements.

While on the subject of terminology, I will mention one distinction among
words (relevant to, but not limited to category theory) which many math-
ematicians are sloppy about, but which I try to maintain: the distinction
between composite and composition. If f and g are maps of sets, or mor-
phisms in a category, such that g f makes sense, it is their composite. The
operation carrying the pair (f, g) to this element g f is composition. This
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is analogous to the distinction between the sum of two integers, a + b, and
the operation of addition.

7.4. Universes

Let us now confront the problem we postponed, of how we can both en-
compass category theory within set theory, and have category theory include
structures like “the category of sets”.

One approach is the following. One formulates the general definition of a
category C so that Ob(C), and even the families C(X, Y ), are classes. One
does as much as one can in that context – the resulting animals are called
large categories. One then goes on to consider those categories in which, at
least, every morphism-class C(X, Y ) is a set, and proves better results about
these – they are called legitimate categories; note that most of the examples
of §7.2 were of this sort. Finally, one considers categories such that both
the class Ob(C) and the classes C(X, Y ) are sets. One calls these small
categories, and in studying them one can use the full power of set theory.

Unfortunately, in conventional set theory one has one’s hands tied behind
one’s back when trying to work with large, or even legitimate categories, for
there is no concept of a collection of classes. To get around this, one might try
extending set theory. One could remove the assumption that every member
of a class must be a set, so as to allow certain classes of proper classes, and
extend the axioms to apply to such classes as well as sets – and one would
find essentially no difficulty – except that what one had been calling “classes”
are looking more and more like sets!

So suppose we changed their names, and called our old sets small sets,
and introduce the term large set to describe the things we have been calling
classes (our original sets and classes, collections of those, etc.. The word
“class” itself we would then restore to the function of referring to arbitrary
collections of the sets, large and small, in our new set theory. This includes
the class of all sets, which again would not itself be a member of that theory.)
We would assume the axioms of ZFC for arbitrary sets, large or small. Thus,
no distinction between large and small sets would appear in our axioms.

Note, however, that not only would those axioms be satisfied by the col-
lection of all sets; they would also be satisfied by the subcollection consisting
of the small sets. It is not hard to see that this is equivalent to saying that
the set U of all small sets would have the properties listed in the following
definition.

Definition 7.4.1. A universe is a set U satisfying

(i) X ∈ Y ∈ U =⇒ X ∈ U.
(ii) X,Y ∈ U =⇒ {X, Y } ∈ U.
(iii) X ∈ U =⇒ P(X) ∈ U.
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(iv) X ∈ U =⇒ (
⋃
A∈X A) ∈ U.

(v) ω ∈ U.
(vi) If X ∈ U and f : X → U is a function, then {f(x) | x ∈ X} ∈ U.

The axioms of ZFC introduced in §5.4 do not guarantee the existence of
a set with the above properties. However, if a universe U is assumed given,
the above discussion suggests that we give members of U the name “small
sets”, call arbitrary sets “large sets”, and, in terms of these kinds of sets,
define “small category”, “legitimate category” and “large category” as above.
We would define “group”, “ring”, “lattice”, “topological space”, etc., as we
always did; we would further define one of these objects to be “small” if it
is a member of U. Although all groups would still not form a set, all small
groups would (though not a small set!) We would then define Set, Group,
etc., to mean the categories of all small sets, all small groups, etc., make
the tacit assumption that small objects are all that “ordinary mathematics”
cares about, and use large categories to study them! All that needs to be
added to ZFC is an axiom saying that there exists a universe U; and such an
axiom is considered reasonable by set-theorists. (Note that the operations of
power set, direct product, etc., will be the same within the “sub–set-theory”
of members of U as in the total set theory.)

The above is the approach used by Mac Lane [19, pp. 21-24]. However one
can go a little further, and, following A. Grothendieck [78, §1.1], use ZFC plus
an assumption that seems no less reasonable than the existence of a single
universe, and more elegant. Namely,

Axiom of Universes. Every set is a member of a universe.

So in particular, under this assumption every universe is a member of a
larger universe.

Convention 7.4.2 We shall assume ZFC with the Axiom of Universes from
now on.

Given this set of axioms, we no longer have to think in terms of a 2-tiered
set theory such that “ordinary” mathematicians work in the lower tier of small
sets, and category theorists have access to the higher tier of large sets. Rather,
categories, just like other mathematical objects, can exist “at any level”. But
when we want to use categories to study a given sort of mathematical object,
we study the category of these objects at a fixed level (i.e., belonging to a
fixed universe U), while that category itself lies at every higher level (in every
universe having U as a member).

Let us make this formal.

Definition 7.4.3. The concept of category will be defined as in the provi-
sional Definition 7.1.2, but with the “system” of objects Ob(C) explicitly
meaning a set.
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Definition 7.4.4. If U is a universe, a set X will be called U-small if X ∈ U.
A mathematical object (e.g., a group, a ring, a topological space, a category)
will be called U-small if it is so as a set. In addition, a category C will
be called U-legitimate if Ob(C) ⊆ U and for all X, Y ∈ Ob(C) one has
C(X, Y ) ∈ U.

The categories of U-small sets, U-small groups, etc., will be denoted
Set(U), Group(U), etc..

Thus, Set(U), Group(U) etc., are U-legitimate categories. Note that this
implies that for every universe U′ having U as a member, they are U′-small
categories.

But we don’t want to encumber our notation with these subscripts “ (U) ”,
so we agree to suppress them most of the time:

Definition 7.4.5. When we are not discussing universes, some chosen uni-
verse U will be understood to be fixed, and the terms “small” and “legit-
imate” will mean “U-small” and “U-legitimate”. When we speak of math-
ematical objects (sets, groups, rings, topological spaces etc.), these will be
assumed small if the contrary is not stated. As an exception, “category” will
mean legitimate category if the contrary is not stated; and sets used to index
the objects of categories will merely be assumed to be subsets of U un-
less otherwise specified. In particular, symbols such as Set, Group, Top
etc., will denote the legitimate categories of all small sets, groups, topological
spaces, etc..

Large (referring to sets or categories) will mean “not necessarily small or
legitimate”.

Thus, the term “large” does not specify any conditions on a set; it simply
removes the assumption of smallness.

Things now look more or less as they did before, except that we know
what we are doing!

The distinctions between small and large objects will come into our consid-
erations from time to time. For instance, when we generalize the construction
of free groups and other universal objects as subobjects of direct products, we
will see that the key condition we need is that we be able to choose an ap-
propriate small set of objects over which to take the direct product.

Exercise 7.4:1. Assume a universe U is given.
(Results such as those asked for below will in general be taken for

granted in this course; but in doing this exercise, you are asked to show
detailed deductions. For this purpose, recall that functions are understood
to be appropriate sets of ordered pairs, where such pairs are taken to be sets
of the form {{X}, {X,Y }} as discussed in the paragraph following (5.4.1);
but that aside from that case, n-tuples of elements of a set S are defined
to be functions n→ S.)
(i) Let S be a large set (a set not necessarily in U), and let f : S → U
be a function. Show that f ∈ U ⇐⇒ S ∈ U. (So in particular, any map
from a member of U to U is a member of U, but no map U→ U is.)
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(ii) Show that a large group G is small if and only if |G| is small.
(iii) Show that a large category C is small if and only if Ob(C) is small,
and for all X, Y ∈ Ob(C), the set C(X, Y ) is small.

Although, as we have seen, one uses non-small categories to study small
mathematical objects of other sorts, the tables can be turned. For instance, we
may consider closure operators on classes of small (or legitimate) categories,
and the lattice of closed sets of such an operator will then be a large lattice.

The next couple of exercises show some properties of the class of universes.
(The Axiom of Universes is, of course, to be assumed if the contrary is not
stated.)

Exercise 7.4:2. (i) Show that the class of universes is not a set.
(ii) Will this same result hold if we weaken the Axiom of Universes to the
statement that there is at least one universe (as in Mac Lane)? What if
we use the intermediate statement that there is a universe, and that every
universe is a member of a larger universe? (In answering these questions,
you may assume that there exists a model of set theory satisfying the full
Axiom of Universes.)

Exercise 7.4:3. Let us, one the one hand, recursively define the rank of a
set by the condition that rank(X) is the least ordinal greater than all the
ordinals rank(Y ) for Y ∈ X, and on the other hand, define the hereditary
cardinality of a set by the condition that her.card(X) is the least cardinal
that is both ≥ card(X) and ≥ her.card(Y ) for all Y ∈ X.
(i) Explain why we can make these definitions. (Cf. Exercise 5.4:1.)
(ii) Show that for every universe U there exists a cardinal α such that
U consists of all sets of hereditary cardinality < α, and/or show that for
every universe U there exists a cardinal α such that U consists of all sets
of rank < α.
(iii) Obtain bounds for the hereditary cardinality of a set in terms of its
rank, and vice versa, and if you only did one part of the preceding point,
deduce the other part.
(iv) Characterize the cardinals α which determine universes as in (ii).

Do the arguments you have used require the Axiom of Universes?

(Incidentally, the term “rank” is used as above by set theorists, who
write Vα for the class of sets of rank < α; but my use of “hereditary
cardinality” above is a modification of their usage, which speaks of sets as
being “hereditarily of cardinality < α ”. The class of sets with this property
is denoted Hα.)

Exercise 7.4:4. Show that if U 6= U′ are universes, then either U ∈ U′
or U′ ∈ U. Deduce that the relation “∈ or = ” is a well-ordering on the
class of universes. (You may wish to use some results from the preceding
exercise.)

Exercise 7.4:5. Suppose that we drop from our axioms for set theory the
Axiom of Infinity, and in our definition of “universe” replace the condi-
tion that a universe contain ω by the condition that it contain ∅. Show
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that under the new axiom-system, one can recover the Axiom of Infinity
using the Axiom of Universes. Show that all but one of the sets which are
“universes” under the new definition will be universes under our existing
definition, and characterize the one exception.

Exercise 7.4:6. In Exercise 5.5:15 we found that “most” infinite cardinals
were regular, namely, that all singular cardinals were limit cardinals; but
we also saw that among limit cardinals, regular cardinals were rare, and we
found no example but ℵ0. Show now that the cardinality of any universe
is a regular limit cardinal.

Remarks: Set-theorists call a regular limit cardinal a weakly inaccessible
cardinal, because it cannot be “reached” from lower cardinals using just the
cardinal successor operation and the operation of taking the union of a chain
of cardinals indexed by a lower cardinal. The inaccessible cardinals, which
are the cardinalities of universes, are the cardinals which cannot be reached
from lower cardinals using all of the constructions of ZFC; i.e., the above two
constructions together with the power set construction, and the Axioms of
the Empty Set and Infinity, which hand us 0 and ℵ0. (Inaccessible cardinals
are sometimes called strongly inaccessible cardinals.) Whether every weakly
inaccessible cardinal is inaccessible depends on the assumptions one makes
on one’s set theory. The student familiar with the Generalized Continuum
Hypothesis will see that this assumption implies that these two concepts do
coincide. Discussions of inaccessible cardinals can be found in basic texts on
set theory. (For their relation to universes, cf. [5], [105]; for some alternative
proposals for set-theoretic foundations of category theory, [112] and [77]; and
for a proposal in the opposite direction, [17].)

Notice that introducing “large sets” has not eliminated the need for the
concept of a “class”. In discussing set theory, one wants to refer to the col-
lection of all sets; and one of the above exercises refers to the class of all
universes. However, the need to work with classes, and the difficulties arising
from not being able to use set-theoretic techniques in doing so, is greatly
reduced, because for many purposes, references to large sets will now do.

We cannot be sure that the axiomatization we have adopted will be satis-
factory for all the needs of category theory. It is based on the assumption that
“ordinary mathematics” can be done within any universe U, so that the set of
all U-small objects is a reasonable substitute for what was previously treated
as the class of all objects. If some area of mathematics studied using category
theory should itself require the full strength of the Axiom of Universes, then
to get an adequate version of the category of “all” objects in that area, one
might want to define a “second-order universe” to mean a universe U′ such
that every set X ∈ U′ is a member of a universe U ∈ U′, and introduce a
Second Axiom of Universes, saying that every set belongs to a second-order
universe! However, the fact that for pre-category-theoretic mathematics, ZFC
seemed an adequate foundation suggests that the set theory we have adopted
here should be good for a while.
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Concerning the basic idea of what we have done, namely to assume a set
theory that contains “sub–set-theories” which themselves look like traditional
set theory, let us note that these are “sub–set-theories” in the strongest sense:
They involve the same membership relation, the same power set operation,
etc.. Set theorists often work with “sub–set-theories” in weaker senses; for
example, allowing certain sets X to belong to the sub–set-theory without
making all subsets of X members of the sub–set-theory. (E.g., they may
allow only those that are “constructible” in some way.) The resulting model
may still satisfy general axioms such as ZFC, but have other properties signif-
icantly different from those of the set theory one started with. This technique
is used in proving results of the sort, “If a certain set of axioms is consistent,
so is a modified set of axioms”. The distinction in question can be compared
with the difference between considering a sublattice of a lattice, which by
assumption has the same meet and join operations, and considering a subset
which also has least upper bounds and greatest lower bounds, and hence can
again be regarded as a lattice, but where these least upper and greatest lower
bounds are not the same as in the original lattice, so that the object is not a
sublattice.

We will find the following concept useful at times.

Definition 7.4.6. A mathematical object will be called quasi-small if it is
isomorphic to a small object.

Here “isomorphic” is to be understood in the sense of the sort of object in
question. Thus, a quasi-small set means a set with the same cardinality as a
small set. A quasi-small group is easily seen to be a group whose underlying
set is a quasi-small set.

We shall now return to category theory proper. Our language will in gen-
eral be, superficially, as before; but as stated in Definition 7.4.5, there is now
a fixed universe U in the background, and when the contrary is not stated,
words such as “group” etc. now mean “U-small group”, etc., while “category”
means “U-legitimate category”.

7.5. Functors

Since categories are themselves a sort of mathematical object, we should have
a concept of “subcategory”, and some sort of concept of “homomorphism”
between categories. The first of these concepts is described in

Definition 7.5.1. If C is a category, a subcategory of C means a category
S such that (i) Ob(S) is a subset of Ob(C), (ii) for each X, Y ∈ Ob(S),
S(X, Y ) is a subset of C(X, Y ), and (iii) the composition and identity
operations of S are the restrictions of those of C.
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Examples are clear: The category Ab of abelian groups is a subcategory
of Group. Within Monoid, we can look at the subcategory whose objects
are monoids all of whose elements are invertible (and whose morphisms are
still all monoid-homomorphisms between these); this will be isomorphic to
Group. Lattice is likewise isomorphic to a subcategory of POSet; here
the lattice homomorphisms form a proper subset of the isotone maps. A
subcategory of POSet with the same objects as the whole category, but a
smaller set of morphisms, is the one we called POSet<. Similarly, Set is a
subcategory of RelSet with the same set of objects, but a more restricted
set of morphisms. The empty category (no objects, and hence no morphisms)
is a subcategory of every category.

The analog of homomorphism for categories is defined in

Definition 7.5.2. If C and D are categories, then a functor F : C → D
means a pair (FOb, FAr), where FOb is a map Ob(C)→ Ob(D), and FAr

is a family FAr = (F (X, Y ))X,Y ∈Ob(C) of maps

F (X, Y ) : C(X, Y ) −→ D(FOb(X), FOb(Y )) (X, Y ∈ Ob(C)),

such that

(i) for any two composable morphisms X
g→ Y

f→ Z in C, one has

F (X, Z)(f g) = F (Y, Z)(f) F (X, Y )(g),

and

(ii) for every X ∈ Ob(C),

F (X, X)(idX) = idFOb(X).

When there is no danger of ambiguity, FOb, FAr, and F (X, Y ) are gen-
erally all abbreviated to F. Thus, in this notation, the last three displays
become (more readably)

F : C(X, Y ) −→ D(F (X), F (Y )) (X, Y ∈ Ob(C)) ,

F (f g) = F (f)F (g),

F (idX) = idF (X).

How do functors arise in the prototypical situation where C and D consist
of mathematical objects and homomorphisms among them? Since we must
first specify the object of D to which each object of C is carried, such a
functor typically starts with a construction which gives us for each object of
C an object of D. And in fact, most mathematical constructions, though
often discussed as merely associating to each object of one sort an object
of another, also have the property that to every morphism of objects of the
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first sort there corresponds naturally a morphism between the constructed
objects, in a manner which satisfies the conditions of the above definition.

Consider, for example the construction of the free group, with which we
began this course. To every X ∈ Ob(Set) this associates a group F (X),
together with a map uX : X → |F (X)| having a certain universal property.
Now if f : X → Y is a set map, it is easy to see how to get a homomorphism
F (f) : F (X) → F (Y ). Intuitively, F (f) acts by “substituting f(x) for x ”
in elements of F (X) and evaluating the results in F (Y ). Recall that in terms
of the universal property of F (X), “substituting values in a group G for the
generators of F (X) ” means determining a group homomorphism F (X)→ G
by specifying its composite with the set map uX : X → |F (X)|. In particular,
for f : X → Y, our above description of F (f) translates to say that it is the
unique group homomorphism F (X)→ F (Y ) such that F (f) · uX = uY · f :

? ?

uX uY

-

-X Y
f

|F (X)| |F (Y )|
F (f)

It is easy to check that if we define F (f) in this way for each set-map f,
we get F (f g) = F (f)F (g) and F (idX) = idF (X). Hence the free group
construction gives a functor F : Set→ Group.

Looking in the same way at the construction of abelianization, associating
to each group G the abelian group Gab = G/[G, G], we see that every group
homomorphism f : G→ H yields a homomorphism of abelian groups fab :
Gab → Hab (Exercise 4.4:3), describable either concretely in terms of cosets,
or by a commutative diagram construction using the universal property of the
canonical homomorphism G → Gab. The constructions of free semilattices,
universal abelianizations of rings, etc., give similar examples.

Like most mathematical concepts, the concept of functor also has “triv-
ial” examples, that by themselves would not justify the general definition,
yet which play important roles in the theory. The “construction” associat-
ing to every group G its underlying set |G| is a functor Group → Set,
since homomorphisms of groups certainly give maps of underlying sets. One
similarly has underlying-set functors from Ring1, Lattice, Top, POSet,
etc., to Set. These all belong to the class of constructions called “forgetful
functors”. Those listed above “forget” all structure on the object, and so give
functors to Set; other forgetful functors we have seen are the construction
G 7→ Gmd of §4.11, taking a group (|G|, ·, −1, e) to the monoid (|G|, ·, e),
which “forgets” the inverse operation, and the construction taking a ring to
its underlying additive group, or to its underlying multiplicative monoid.

The term “forgetful functor” is not a technical one, so one cannot say
precisely whether it should be applied to constructions like the one taking
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a lattice to its “underlying” partially ordered set (“underlying” in quotes
because the partial ordering is not part of the 3-tuple formally defining the
lattice); but in any case, this is another example of a functor. I likewise don’t
know whether one would apply the term “forgetful” to the inclusion of the
subcategory Ab in the category Group, which might be said to “forget”
that the groups are abelian, but this too, and indeed, the inclusion of any
subcategory in any category, is easily seen to be a functor. In particular, the
inclusion of any category C in itself is the identity functor, IdC, which takes
each object and each morphism to itself.

If, instead of looking at the whole underlying set of a group, we consider
the set of its elements of exponent 2, we get another example of a functor
Group → Set. (Clearly every group homomorphism gives a map between
the corresponding sets.)

If R is a ring, the opposite ring Rop is defined to have the same underlying
set, and the same operations +,−, 0, 1 as R, but reversed multiplication:
x ∗ y = y x. A ring homomorphism f : R→ S will also be a homomorphism
Rop → Sop, and we see that this makes ( )op a functor Ring1 → Ring1;
one which, composed with itself, gives the identity functor. One has similar
opposite-multiplication constructions for monoids and groups. The definitions
of the opposite (or dual) of a partially ordered set or lattice give functors with
similar properties.

Recall that HtpTop is defined to have the same objects as Top, but
has for morphisms equivalence classes of continuous maps under homotopy.
Thus we have a functor Top→ HtpTop which preserves objects, and sends
every morphism to its homotopy class.

We have mentioned diagram categories, such as the “commuting square

diagram” qq? qq?-

-
which is useful because “images” of it in any category C

correspond to commuting squares of objects and arrows in C. We can now
say this more precisely: Commuting squares in C correspond to functors
from this diagram-category into C.

Let us also note a few examples of mathematical constructions that are not
functors. These tend to be of two sorts: those in which morphisms from one
object to another may not preserve the properties used by the construction,
and those that involve arbitrary choices. We have noted that the construction
associating to every group G the set of elements of exponent 2, {x ∈ |G| |
x2 = e}, is a functor Group→ Set. However, if we define T (G) to be the
set of elements of order 2, {x ∈ |G| | x2 = e, x 6= e}, we find that a group
homomorphism f may take some of these elements to the identity element,
so there is no natural way to define “T (f) ”. Similarly, the important group-
theoretic construction of the center Z(G) of a group G (the subgroup of
elements a ∈ |G| that commute with all elements of G) is not functorial,
because if a is in the center of G and we apply a homomorphism f : G→ H,
some elements of H outside the image of G may fail to commute with f(a).
The construction Aut, taking a group G to its automorphism group, is also
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not a functor, roughly because when we map G into another group H, there
is no guarantee that H will have all the “symmetries” that G does.

Some constructions of these sorts can be “made into” functors by modi-
fying the choice of domain category so as to restrict the morphisms thereof
to maps that don’t “disturb” the structure involved. Thus, the construc-
tion associating to every group its set of elements of order 2 does give a
functor Groupinj → Set, if we define Groupinj to be the category whose
objects are groups and whose morphisms are injective (one-to-one) group
homomorphisms. The construction of the center likewise gives a functor
Groupsurj → Group, where the morphisms of Groupsurj are the surjec-
tive group homomorphisms. One may make Aut a functor by restricting
morphisms to isomorphisms of groups.

An example of the other sort, where a construction is not a functor because
it involves choices that cannot be made in a canonical way, is that of finding
a basis for a vector space. Even limiting ourselves to finite-dimensional vector
spaces, so that bases may be constructed without the Axiom of Choice, the
finitely many choices one must make are still arbitrary, so that if one chooses
a basis BV for a vector space V, and a basis BW for a vector space W,
there is no natural way to associate to every linear map V → W a set map
BV → BW .

In the above discussion, we have merely indicated where straightforward
attempts to make these constructions into functors go wrong. In the next
four exercises you are asked to prove more precise negative results.

Exercise 7.5:1. (i) Show that there can be no functor F : Group→ Set
taking each group to the set of its elements of order 2, no matter how F
is made to act on morphisms.

On the other hand,
(ii) Show how to define a functor Group→ RelSet taking every group
to its set of elements of order 2. (Since RelSet is an unfamiliar category,
verify explicitly all parts of the definition of functor.)

Exercise 7.5:2. (i) Show that there can be no functor F : Group →
Group taking each group to its center.
(ii) Can one construct a functor Group → RelSet taking every group
to the set of its central elements?

Exercise 7.5:3. (i) Give an example of a group homomorphism f : G →
H and an automorphism a of G such that there does not exist a unique
automorphism a′ of H such that a′f = f a. In fact, find such examples
with f one-to-one but not onto, and with f onto but not one-to-one, and
in each of these cases, if possible, an example where such a′ does not exist,
and an example where such a′ exists but is not unique. (If you cannot get
an example of one of the above combinations, can you show that it does
not occur?)
(ii) Find similar examples involving partially ordered sets in place of
groups.
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(iii) Prove that there is no functor from Group (alternatively, from
POSet) to Set (or even to RelSet) taking each object to its set of
automorphisms.

Exercise 7.5:4. If K is a field, let K denote the algebraic closure of K.
We recall that any field homomorphism f : K → L can be extended to a
homomorphism of algebraic closures, f : K → L.
(i) Show, however, that in general there is no way to choose an exten-
sion f of each field homomorphism f so as to make the algebraic closure
construction a functor.
(ii) If we remove the restriction that f be an extension of f, can we
make algebraic closure a functor?

The exercise below is instructive and entertaining. A full solution to the
second part is difficult, but one can get many interesting partial results.

Exercise 7.5:5. Let FSet denote the subcategory of Set having for ob-
jects the finite sets, and for morphisms all set maps among these.
(i) Show that every functor F from FSet to FSet determines a func-
tion f from the nonnegative integers to the nonnegative integers, such
that for every finite set X, card(F (X)) = f(card(X)).
(ii) Investigate which integer-valued functions f can occur as the func-
tions associated to such functors. If possible, determine necessary and suf-
ficient conditions on f for such an F to exist.

Note that given functors C
G→ D

F→ E between any three categories, we

can form the composite functor C
FG−→ E taking each object X to F (G(X))

and each morphism f to F (G(f)). Composition of functors is clearly asso-
ciative, and identity functors satisfy the identity laws, so we have a “category
of categories”! This is named in

Definition 7.5.3. Cat will denote the (legitimate) category whose objects
are all small categories, and where for two small categories C and D,
Cat(C, D) is the set of all functors C → D, with composition of func-
tors defined as above.

You might be disappointed with this definition, since only a few of the
categories we have mentioned have been small (the diagram-categories, and
the categories Scat and Pcat constructed from monoids S and partially
ordered sets P ). Thus, Cat would appear to be of limited importance. But
here the Axiom of Universes comes to our aid. The universe U relative to
which we have defined “small category” is arbitrary. If we want to study the
categories of all groups, rings, etc., belonging to a universe U, and functors
among these categories, we may choose a universe U′ having U as a member,
and note that the abovementioned categories, and indeed, all U-legitimate
categories, are U′-small, hence are objects of Cat(U′). Thus we can apply
general results about the construction Cat to this situation.
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(For some purposes, it might also be useful to have a symbol for the
category of all U-legitimate categories, which lies strictly between Cat(U)

and Cat(U′), but we shall not introduce one here.)

Considering functors as “homomorphisms” among categories, we should
like to define properties of functors analogous to “one-to-one-ness” and “onto-
ness”. The complication is that a functor acts both on objects and on mor-
phisms. We have observed that it is the morphisms in a category that are like
the elements of a group or monoid; this leads to the pair of concepts named
below. They are not the only analogs of one-one-ness and onto-ness that one
ever uses, but they are the most important:

Definition 7.5.4. Let F : C→ D be a functor.
F is called faithful if for all X, Y ∈ Ob(C), the map F (X, Y ) :

C(X, Y )→ D(F (X), F (Y )) is one-to-one.
F is called full if for all X, Y ∈ Ob(C), the map F (X, Y ) : C(X, Y )→

D(F (X), F (Y )) is onto.
A subcategory of C is said to be full if the corresponding inclusion functor

is full.

Thus, a full subcategory of C is determined by specifying a subset of
the object-set; the morphisms of the subcategory are then all the mor-
phisms among these objects. The subcategory Ab of Group is an ex-
ample. Some examples of nonfull subcategories are Set ⊆ RelSet and
POSet< ⊆ POSet. The inclusion of a full subcategory in a category is
a full and faithful functor, while the inclusion of a nonfull subcategory is a
faithful functor, but is not full. The reader should verify that most of our
examples of forgetful functors are faithful but not full, as is, also, the free-
group functor Set → Group. The functor Top → HtpTop which takes
every object (topological space) to itself, and each morphism to its homotopy
class, is an example of a functor that is full but not faithful. The functor
associating to every group the set of its elements of exponent 2 is neither
full nor faithful.

Exercise 7.5:6. Show that the abelianization construction, Group → Ab
is neither full nor faithful.

Exercise 7.5:7. Is the functor Monoid → Group associating to every
monoid its group of invertible elements full? Faithful?

Exercise 7.5:8. (i) Show that the construction associating to each par-
tially ordered set P the category Pcat can be made in a natural way into
a functor F : POSet→ Cat, and that as such it is full and faithful. This
says that the concept of functor, when restricted to the class of categories
that correspond to partially ordered sets, just gives the concept of isotone
map between these sets!
(ii) Which isotone maps between partially ordered sets correspond under
F to full functors? To faithful functors?
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(iii) Show similarly that the construction associating to each monoid S the
category Scat is a full and faithful functor E : Monoid → Cat. Which
monoid homomorphisms are sent by E to full, respectively faithful func-
tors?

Exercise 7.5:9. Show that for F : C→ D a functor, neither of the following
conditions implies the other: (a) F is full, (b) for all X, Y ∈ Ob(D) and
f ∈ D(X, Y ) there exist X0, Y0 ∈ Ob(C) and f0 ∈ C(X0, Y0) such that
F (X0) = X, F (Y0) = Y, and F (f0) = f.

In §7.1 we sketched a way of “concretizing” any small category C (Exer-
cise 7.1:1 and preceding discussion). Let us make the details precise now.

Definition 7.5.5. A concrete category means a category C given with a
faithful functor U : C → Set (a “concretization functor”). (More formally,
one would say that the concrete category is the ordered pair (C, U).)

So the result in question was that given any small category C, there exists
a faithful functor U : C→ Set. The idea was to let the family of representing
sets – in our present notation, the system of sets U(X) (X ∈ Ob(C)) – be
“generated” by a family of elements zY ∈ U(Y ), one for each Y ∈ Ob(C), so
that the general element of U(X) would look like U(a)(zY ) for Y ∈ Ob(C)
and a ∈ C(Y, X); and to impose no additional relations on these elements,
so that they are all distinct.

Let us use the ordered pair (Y, a) for the element that is to become
U(a)(zY ). Then we should define U to take X ∈ Ob(C) to {(Y, a) | Y ∈
Ob(C), a ∈ C(Y, X)}. Given b ∈ C(X, W ), we see that U(b) should take
(Y, a) ∈ U(X) to (Y, b a) ∈ U(W ). It is easy to verify that this defines a
faithful functor U : C→ Set, proving

Theorem 7.5.6 (Cayley’s Theorem for small categories). Every small
category admits a concretization, i.e., a faithful functor to the category of
small sets. ut

Exercise 7.5:10. Verify that the above construction U is a functor, and is
faithful. Which element of each set U(Y ) corresponds to the zY of our
motivating discussion?

Incidentally, if we had required that categories have disjoint morphism-
sets, we could have dropped the Y ’s from the pairs (Y, a), since each a
would determine its domain. Then we could simply have taken U(X) =⋃
Y ∈Ob(C) C(Y, X).
It is natural to hope for stronger results, so you can try

Exercise 7.5:11. (i) Does every legitimate category admit a concretiza-
tion – a faithful functor to the (legitimate) category of small sets? (Obvi-
ously, most of those we are familiar with do.)

Since this question involves “big” cardinalities, you might prefer to
examine a mini-version of the same problem:
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(ii) Suppose C is a category with countably many objects, and such that
for all X, Y ∈ Ob(C), the set C(X, Y ) is finite. Must C admit a faithful
functor into the category of finite sets?
(iii) If the answer to either question is negative, can you find necessary
and sufficient conditions on C for such concretizations to exist?

Of course, a given concretizable category will admit many concretizations,
just as a given group has many faithful representations by permutations.

Recall that the proof of Theorem 7.5.6 sketched above came out of our
proof of the corresponding result for “bimonoids”, and that in trying to prove
that result, we first wondered whether it would suffice to adjoin a generator
in just one of the two representing sets X and Y, but saw that the resulting
representation of our bimonoid might not be faithful. Given a category C
and an object Y of C, we can similarly construct a functor U : C→ Set by
introducing only one generator zY ∈ U(Y ), again with no relations imposed
among the elements U(a)(zY ). Though these functors also generally fail to
be faithful, they will play an important role in our subsequent work. Note that
each such functor is the “part” of the construction we used in Theorem 7.5.6
consisting of the elements U(a)(zY ) for one fixed Y. With Y fixed, each
such element is determined by a ∈ C(Y, X), so U may be described as
taking each object X to the hom-set C(Y, X); hence its name:

Definition 7.5.7. For Y ∈ Ob(C), the hom functor induced by Y,
hY : C→ Set, is defined on objects by

hY (X) = C(Y, X) (X ∈ Ob(C)),

while for a morphism b ∈ C(X, W ), hY (b) is defined to carry a ∈ C(Y, X)
to ba ∈ C(Y, W ).

(Some authors denote the above construction hY , with hY used for a
dual construction. I will address this point when we introduce that dual
construction, in Definition 7.6.3.)

Examples: Let Z denote the infinite cyclic group, with generator x.
Then on the category Group, the functor hZ takes each group G to
Group(Z, G). But a homomorphism from Z to G is determined by what
it does on the generator x ∈ |Z|, so the elements of hZ(G) correspond to
the elements of the underlying set of G; i.e., hZ is essentially the underlying
set functor. You should verify that its behavior on morphisms also agrees
with that functor. Similarly, writing Z2 for the cyclic group of order 2, the
functor hZ2 may be identified with the functor taking each group to the set
of its elements of exponent 2.

Recalling that 2 ∈ Ob(Set) is a 2-element set, we see that h2 : Set→ Set
is essentially the construction X 7→ X2.

For a topological example, consider the category of topological spaces
with basepoint, and homotopy classes of basepoint-preserving maps, and let
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(S1, 0) denote the circle with a basepoint chosen. Then h(S1, 0)(X, x0) =
|π1(X, x0)|. (Of course, the interesting thing about π1(X, x0) is its group
structure. How this can be described category-theoretically we shall discover
in Chapter 10!)

In the last few paragraphs, I have said a couple of times that a certain
functor is “essentially” a certain construction. What was meant should be
intuitively clear. We will see how to make these statements precise in §7.9.

7.6. Contravariant functors, and functors of several
variables

Consider the construction associating to every set X the additive group
ZX of integer-valued functions on X, with pointwise operations. This takes
objects of Set to objects of Ab, but given a set map f : X → Y, there is
not a natural map ZX → ZY – rather, there is a homomorphism ZY → ZX
carrying each integer-valued function a on Y to the function af on X.

There are many similar examples – the construction associating to any set
X the Boolean algebra (P(X), ∪, ∩, c, ∅, X) of its subsets, the construction
associating to a set X the lower semilattice (E(X), ∩) of equivalence rela-
tions on X, the construction associating to a vector space V its dual V ∗,
the construction associating to a commutative ring the partially ordered set
of its prime ideals. All have the property that a map going one way among
the given objects yields a map going the other way among constructed ob-
jects. It is clear that these constructions take identity maps to identity maps
and composite maps to composite maps (though the order of composition
must be reversed because of the reversal of the direction of the maps). These
properties look like the definition of a functor turned backwards. Let us set
up a definition to cover this:

Definition 7.6.1. If C and D are categories, then a contravariant functor
F : C→ D means a pair (FOb, FAr), where FOb (written F when there is
no danger of ambiguity) is a map Ob(C)→ Ob(D), and FAr is a family of
maps

F (X, Y ) : C(X, Y )→ D(F (Y ), F (X)) (X, Y ∈ Ob(C)),

such that (abbreviating these maps F (X, Y ) to F ),

(i) for any two composable morphisms X
g→ Y

f→ Z in C, one has

F (f g) = F (g)F (f) in D,

and

(ii) for every X ∈ Ob(C), one has
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F (idX) = idF (X).

Functors of the sort defined in the preceding section are called covariant
functors when one wants to contrast them with contravariant functors. But
when the contrary is not indicated, “functor” (unmodified) will still mean
covariant functor.

It is easy to see that a composite of two contravariant functors is a covari-
ant functor, while a composite of a covariant and a contravariant functor, in
either order, is a contravariant functor.

Contravariant functors can in fact be expressed in terms of covariant func-
tors, thus eliminating the need to prove results separately for them. We shall
do this with the help of

Definition 7.6.2. If C is a category, then Cop will denote the category
defined by

Ob(Cop) = Ob(C) Cop(X, Y ) = C(Y, X),

µ(Cop)(f, g) = µ(C)(g, f), id(Cop)X = id(C)X .

Thus, a contravariant functor C→ D is equivalent to a covariant functor
Cop → D. Of course, one could also describe it as equivalent to a covariant
functor C → Dop, and at this point we have no way of deciding which
reduction is preferable. However, we shall see soon that putting the “ op ” on
the domain category is more convenient.

As in the theory of partially ordered sets, the “opposite” construction al-
lows us to dualize results. Whenever we have proved a result about a general
category C, the statement obtained by reversing the directions of all mor-
phisms and the orders of all compositions is also a theorem, which may be
proved by applying the original theorem to Cop.

There is a slight notational difficulty in dealing with a category Cop, while
referring also to the original category C. Though in the formal definition
given above we could distinguish the two composition operations as µ(C)
and µ(Cop), the usual notation for composition, f ·g or f g, does not allow
such a distinction. There are various ways of getting around this. One can
use a modified symbol, such as ·op or ∗, for the composition of Cop. Or
one can continue to denote composition by juxtaposition, but use different
symbols for the same objects and morphisms when considered as elements of
C and of Cop; e.g., one can let the morphism written f ∈ C(X, Y ) also

be written f̃ ∈ Cop(Ỹ , X̃), so that one would have f̃ g = g̃ f̃ , relying on
the convention that the meaning of juxtaposition is determined by context –
specifically, by the structure to which the elements being juxtaposed belong.
Still other solutions are possible. E.g., one could be daring, and denote the
same composite by f g in both C and Cop, using different conventions,
f g = µ(f, g) in C and f g = µ(g, f) in Cop; i.e., writing morphisms
with domains “on the right” in one category and “on the left” in the other.
(Cf. [55].)
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Most often, one avoids the problem by not writing formulas in Cop. One
uses this category as an auxiliary concept in discussing contravariant func-
tors and in dualizing results, but avoids talking explicitly about objects and
morphisms inside it.

In these notes, we shall regularly write a contravariant functor from C to
D as F : Cop → D, where F is a covariant functor on Cop, and shall take
advantage of the principle of duality mentioned. These are the main uses we
shall make of the op construction; in the rare cases where we have to work
explicitly inside Cop, we will generally use modified symbols such as X̃, f̃
(or Xop, fop) for objects and morphisms in Cop.

Note that in the category of categories, Cat, the morphisms are the co-
variant functors.

Exercise 7.6:1. (i) Show how to make op a functor R from Cat to Cat.
Is R a covariant or a contravariant functor?
(ii) Let R : Cat→ Cat be as in part (i), let R′ : POSet→ POSet be
the functor taking every partially ordered set P to the opposite partially
ordered set P op, and let C : POSet → Cat denote the functor taking
each partially ordered set P to the category Pcat (§7.2). Show that RC ∼=
C R′.

Thus, the construction of the opposite of a partially ordered set is
essentially a case of the construction of the opposite of a category!
(iii) State the analogous result with monoids in place of partially ordered
sets.

We noted in earlier chapters that given a set map X → Y, there are ways
of getting both a map P(X)→ P(Y ) and a map P(Y )→ P(X) (where P
denotes the power-set construction). The next few exercises look at this and
some similar situations.

Exercise 7.6:2. (i) Write down explicitly how to get from a set map
f : X → Y a set map P1(f) : P(X) → P(Y ) and also a set map P2(f) :
P(Y ) → P(X). Show that these constructions make the power set con-
struction a functor P1 : Set → Set and a functor P2 : Setop → Set
respectively. (These are called the covariant and contravariant power set
functors.)
(ii) Examine what structure on P(X) is respected by maps of the form
P1(f) and P2(f) defined as above. In particular, determine whether each
sort of map always respects the operations of finite meets, finite joins,
empty meet, empty join, unions of chains, intersections of chains, comple-
ments, and the relations “⊆ ” and “⊂ ” in power-sets P(X). (Cf. Exer-
cise 6.1:11. If you are familiar with the standard topologization of P(X),
you can also investigate whether maps of the form P1(f) and P2(f) are
continuous.) Accordingly, determine whether the constructions P1 and
P2 which we referred to above as functors from Set, respectively Setop,
to Set, can in fact be made into functors from Set and/or Setop to
∨-Semilat, to Bool1 (the category of Boolean rings), etc.. In each case,
note only the strongest structure that you are showing. (E.g., there is no
need to note that you can make a functor ∨-semilattice-valued if you will
in fact make it lattice-valued.)
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Exercise 7.6:3. Investigate similarly the construction associating to every
set X the set E(X) of equivalence relations on X. I.e., for a set map
f : X → Y, look for functorial ways of inducing maps in one or both
directions between the sets E(X), E(Y ), and determine what structure
on these sets is respected by each such construction.

Exercise 7.6:4. (i) Do the same for the construction associating to every
group G the set of subgroups of G.
(ii) Do the same for the construction associating to every group G the
set of normal subgroups of G.

As with covariant functors, there is an important class of contravariant
functors which one can define on every category:

Definition 7.6.3. For any category C and any object Y ∈ Ob(C), the
contravariant hom functor induced by Y, hY : Cop → Set, is defined on
objects by

hY (X) = C(X, Y ) (X ∈ Ob(C)).

For a morphism b ∈ C(W, X), the morphism hY (b) : C(X, Y ) → C(W, Y )
is defined to carry a ∈ C(X, Y ) to a b ∈ C(W, Y ). (The functor hY which
we previously named “the hom functor induced by Y ” will henceforth be
called “the covariant hom functor induced by Y ”.)

(Note: Many authors, in particular, algebraic geometers, use hY for what
we call hY , and vice versa. The usage is divided; I have chosen the usage
given above because it matches the convention in homology and homotopy
theory, where subscripts appear on the covariant functors of homology and
homotopy, and superscripts on the contravariant cohomology and cohomotopy
functors.)

Examples: Let C = Set, and let Y be the set 2 = {0, 1}. Recall that
every map from a set X into 2 is the characteristic function of a unique
subset S ⊆ X. Hence Set(X, 2) can be identified with P(X). The reader
should verify that the behavior of h2 : Set → Set on morphisms is exactly
that of the contravariant power-set functor.

Let k be a field, and in the category k-Mod of k-vector spaces, let k
denote this field considered as a one-dimensional vector space. Then for any
vector space V, hk(V ) is the underlying set of the dual vector space, and
for any linear map b : V → W, hk(b) is the induced map from the dual of
the space W to the dual of the space V.

Let R ∈ Ob(Top) denote the real line. Then hR is the construction
associating to every topological space X the set of continuous real-valued
functions on X. One can vary this example using categories of differentiable
manifolds and differentiable maps, etc., in place of Top.

Here are three further examples for students familiar with the areas in
question.
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In the category of commutative algebras over the rational numbers, if C
denotes the algebra of complex numbers, then hC is the functor associat-
ing to every algebra R the set of its “complex-valued points”, its classical
spectrum. In particular, if R is presented by generators x0, . . . , xn−1 and
relations p0 = 0, . . . , pm−1 = 0, then hC(R) can be identified with the
solution-set, in complex n-space Cn, of the system of polynomial equations
p0 = 0, . . . , pm−1 = 0.

If LocCpAb is the category of locally compact topological abelian
groups, and S = R/Z is the circle group, then hS(A) is the underlying
set of the Pontryagin dual of the group A [130, §1.7]. (In the study of non-
topological abelian groups, Q/Z plays a somewhat similar role [33, p. 145,
Remark 2].)

Finally, in the category HtpTop, the set hS
n

(X) (where Sn denotes the
n-sphere) gives the underlying set of the n-th cohomotopy group, πn(X).

Exercise 7.6:5. Let 2 ∈ Ob(POSet) denote the set 2 = {0, 1}, ordered in
the usual way.
(i) Show that h2 : POSetop → Set is faithful.

(ii) Show that for P ∈ Ob(POSet), the set h2(P ) can be made a lat-
tice with a greatest and a least element, under pointwise operations. Show
that in this way h2 induces a functor A : POSetop → Lattice0,1, where
Lattice0,1 denotes the category of lattices with greatest and least ele-
ments, and lattice homomorphisms respecting these elements.

(iii) Let us also write 2 ∈ Ob(Lattice0,1) for the 2-element lattice! Thus
we get a functor h2 : (Lattice0,1)op → Set. Show that this functor is not
faithful.
(iv) Show that for L ∈ Ob(Lattice0,1), the set h2(L) is not in general
closed under pointwise meet or join, and may not contain a greatest or least
element, but that if we partially order lattice homomorphisms by pointwise
comparison, h2 yields a functor B : (Lattice0,1)op → POSet.
(v) Show that for P a finite partially ordered set, B(A(P )) ∼= P.

The above is just a teaser. The interested student might examine this
pair of functors further, and see what more he or she can prove; or wait
till we return to the topic in §10.12 with general tools at our disposal.

Exercise 7.6:6. Following up on the idea of Exercise 7.5:5, observe that
every contravariant functor from the category FSet of finite sets into itself
also determines a nonnegative integer-valued function on the nonnegative
integers. Investigate which functions on the nonnegative integers arise as
functions associated with contravariant functors.

Exercise 7.6:7. Let RelFSet denote the full subcategory of RelSet
whose objects are finite sets. Investigate similarly the integer-valued func-
tions associated with functors RelFSet→ FSet, FSet→ RelFSet, and
RelFSet→ RelFSet. In these cases, it does not matter whether we look
at covariant or contravariant functors – why not?



7.6 Contravariance, and functors of several variables 237

Exercise 7.6:8. We have noted that a composite of two contravariant func-
tors is a covariant functor, etc.. But in terms of the description of con-
travariant functors as covariant functors Cop → D, it is not clear how to
formally describe the composite of two contravariant functors (or a com-
posite of the form (contravariant functor) ·(covariant functor)). Show how
to reduce these cases to composition of covariant functors, with the help
of Exercise 7.6:1(i).

There are some types of well-behaved mathematical constructions which
we have not yet fitted into our functorial scheme: (a) Given a pair of sets
(A, B), we can form the product set A×B. We likewise have product con-
structions for groups, rings, topological spaces, etc., coproducts for most of
the same types of objects, and the tensor product construction on abelian
groups. (b) From two objects A and B of any category C, one gets
C(A, B) ∈ Ob(Set). (c) There are also constructions that combine objects
of different categories. For instance, from a commutative ring R and a set X,
one can form the polynomial ring over R in an X-tuple of indeterminates,
R[X].

In each of these cases, maps on the given objects yield maps on the con-
structed objects. In cases (a) and (c), the maps of constructed objects go
the same way as the maps of the given objects, while in case (b) the direc-
tion depends on which argument one varies: A morphism Y → Y ′ yields
a map C(X, Y ) → C(X, Y ′), but a morphism X → X ′ yields a map
C(X ′, Y )→ C(X, Y ).

It is natural to call these constructions functors of two variables. Like
the concept of contravariant functor, that of a functor of more than one
variable can be reduced to our original definition of functor via an appropriate
construction on categories.

Definition 7.6.4. Let (Ci)i∈I be a family of categories. Then the product
category

i∈ICi will mean the category C defined by

Ob(C) =
i∈I Ob(Ci) C((Xi)i∈I , (Yi)i∈I) =

i∈I Ci(Xi, Yi),

µ((fi)I , (gi)I) = (µ(fi, gi))I , id(Xi)i∈I = (idXi)i∈I .

The product of a finite family of categories is often written C× · · · ×E.
A functor F on a product category is called a functor of several variables;

a functor of two variables is often called a bifunctor.

Thus, a functor on a category of the form C×Dop may be described as a
“bifunctor covariant in a C-valued variable and contravariant in a D-valued
variable”. Note that if we tried to express contravariance by putting “ op ”
onto the codomains instead of the domains of functors, we would not be able
to express this mixed type of functor; hence the preference for putting op on
domains.

A product category
i∈ICi has a projection functor onto each of the

categories Ci (i ∈ I), taking each object and each morphism to its i-th
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component, and as we might expect from our experience with products of
other sorts, this is characterizable by the following universal property:

Theorem 7.6.5. Let (Ci)i∈I be a family of categories, C = Ci their
product, and Pi : C→ Ci the projection functors. Then for every category D
and family of functors Fi : D→ Ci, there exists a unique functor F : D→ C
such that for each i ∈ I, Fi = Pi F . ut

Exercise 7.6:9. Prove the above theorem.

Exercise 7.6:10. Show that a family of categories also has a coproduct.
(First state the universal property desired.)

I claim now that the two sorts of hom-functors, hX and hY , are pieces of a
single bifunctor. In the definition of this functor below, we use “ X̃ ”-notation
for objects and morphisms in opposite categories, though in presentations
elsewhere, you are likely to see no distinctions made.

Definition 7.6.6. The bivariant hom-functor of a category C means the
functor

h : Cop ×C −→ Set

which is defined on objects by

h(X̃, Y ) = C(X, Y ) (X, Y ∈ Ob(C)),

while for a morphism (p̃, q) ∈ Cop(X̃, W̃ ) × C(Y, Z) (formed from mor-
phisms p ∈ C(W, X), q ∈ C(Y, Z)) we define h(p̃, q) to carry a ∈ C(X, Y )
to q a p ∈ C(W, Z).

Thus, each covariant hom-functor hX : C→ Set can be described as tak-
ing objects Y to the objects h(X̃, Y ), and morphisms q to the morphisms

h(ĩdX , q); and the contravariant hom-functors hY : Cop → Set are similarly
obtained by putting Y and idY in the right-hand slot of the bifunctor h.

Exercise 7.6:11. Extend further the ideas of Exercises 7.5:5, 7.6:6 and 7.6:7,
by investigating functions in two nonnegative-integer-valued variables in-
duced by bifunctors FSet×FSet→ FSet, FSetop×FSet→ FSet, etc..

7.7. Category-theoretic versions of some common
mathematical notions: properties of morphisms

We have mentioned that in an abstract category, one cannot speak of “el-
ements” of an object, hence one cannot meaningfully ask whether a given



7.7 Properties of morphisms 239

morphism is one-to-one or onto. However, we have occasionally spoken of two
objects of a category C being “isomorphic”. What we meant was, I hope,
clear: An isomorphism between X and Y means an element f ∈ C(X, Y )
for which there exists a 2-sided inverse, that is, a morphism g ∈ C(Y, X)
such that f g = idY , g f = idX . It is clear that in virtually any naturally oc-
curring category, the invertible morphisms are the things one wants to think
of as the isomorphisms. (However, for some mathematical objects other words
are traditionally used: In set theory the term is bijection, an invertible mor-
phism in Top is called a homeomorphism, and differential geometers call
their invertible maps diffeomorphisms.) If X and Y are isomorphic, we will
as usual write X ∼= Y. An isomorphism of an object X with itself is called
an automorphism of X; these together comprise the automorphism group of
X.

Exercise 7.7:1. Let C be a category.
(i) Show that if a morphism f ∈ C(X, Y ) has both a right inverse g
and a left inverse g′, then these are equal. (Hence if h and h′ are both
two-sided inverses of f, then h = h′.)
(ii) Show that the relation X ∼= Y is an equivalence relation on Ob(C).
(iii) Show that isomorphic objects in a category have isomorphic automor-
phism groups.

Our aim in this and the next section will be to look at various other
concepts occurring in “concrete mathematics” and ask, in each case, whether
we can define a concept for abstract categories which will yield the given
concept in many concrete cases. We cannot expect that there will always be
as perfect a fit as there was for the concept of isomorphism! But lack of perfect
fit with existing concepts will not necessarily detract from the usefulness of
the concepts we find.

Let us start with the concepts of “one-to-one map” and “onto map”. The
next exercise shows that no condition can give a perfect fit in these cases.

Exercise 7.7:2. Show that a category C can have concretizations T, U,
V, W : C→ Set such that for a particular morphism f in C,

T (f) is one-to-one and onto,

U(f) is one-to-one but not onto,

V (f) is onto but not one-to-one, and

W (f) is neither one-to-one nor onto.
(Suggestion: Take C = Scat, where S is the free monoid on one generator,
or C = 2cat, where 2 is the 2-element totally ordered set.)

Nevertheless, there is a category-theoretic property which in the vast ma-
jority of naturally occurring concrete categories does correspond to one-one-
ness.

Definition 7.7.1. A morphism f : X → Y in a category C is called a
monomorphism if for all W ∈ Ob(C) and all pairs of morphisms g, h ∈
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C(W, X), one has f g = f h =⇒ g = h; equivalently, if every covariant
hom-functor hW : C → Set (W ∈ Ob(C)) carries f to a one-to-one set
map.

Exercise 7.7:3. (i) Show that if (C, U) is a concrete category (i.e., C is
a category and U : C → Set a faithful functor) and f is a morphism in
C such that U(f) is one-to-one, then f is a monomorphism in C.
(ii) Show that if C is a small category and f a morphism in C, then
f is a monomorphism if and only if there exists a concretization functor
U : C→ Set such that U(f) is one-to-one.

Exercise 7.7:4. Show that in the categories Set, Group, Monoid,
Ring1, POSet and Lattice, a morphism is one-to-one on underlying
sets if and only if it is a monomorphism. (Suggestion: look for one method
that works in all six cases.) If you are familiar with the basic definitions of
general topology, also verify this for Top.

Naturally occurring concrete categories where monomorphisms are not the
one-to-one maps are rare, but here is an example:

Exercise 7.7:5. A group G is called divisible if for every x ∈ |G| and every
positive integer n, there exists y ∈ |G| such that x = yn.
(i) Show that in the category of divisible groups (a full subcategory of
Group), the quotient map Q → Q/Z (where Q is the additive group
of rational numbers and Z the subgroup of integers) is a monomorphism,
though it is not a one-to-one map.
(ii) Can you characterize group-theoretically the homomorphisms that are
monomorphisms in the category of divisible abelian groups? Of all divisible
groups?
(iii) Can you find a category-theoretic property equivalent in either of
these categories to being one-to-one?

If you are familiar with topological group theory, you may in the above
questions consider the category of connected abelian Lie groups and the
quotient map R→ R/Z, instead of or in addition to divisible groups and
Q→ Q/Z.

It is natural to dualize the concept of monomorphism.

Definition 7.7.2. A morphism f : X → Y in a category C is called an
epimorphism if for all Z ∈ Ob(C) and all pairs of morphisms g, h ∈ C(Y, Z)
one has g f = h f =⇒ g = h; equivalently, if all the contravariant hom-
functors hZ : C → Set (Z ∈ Ob(C)) carry f to one-to-one set maps;

equivalently, if in Cop the morphism f̃ is a monomorphism.

This concept coincides with that of a surjective map in many naturally
occurring concrete categories; but in about equally many, it does not:

Exercise 7.7:6. (i) Show that if (C, U) is a concrete category, and f a
morphism in C such that U(f) is surjective, then f is an epimorphism
in C.
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(ii) Show that in the categories Set and Ab, the epimorphisms are pre-
cisely the surjective morphisms.
(iii) Show that in the category Monoid, the inclusion of the free monoid
on one generator in the free group on one generator is an epimorphism,
though not surjective with respect to the underlying-set concretization.
(Hint: uniqueness of inverses.) Show similarly that in Ring1, the inclusion
of any integral domain in its field of fractions is an epimorphism.
(iv) If you are familiar with elementary point-set topology, show that in
the category HausTop of Hausdorff topological spaces, the epimorphisms
are precisely the continuous maps with dense image.

Exercise 7.7:7. (i) Determine the epimorphisms in Group.
(ii) Show the relation between this problem and Exercise 4.10:10.
(iii) Does the method you used in (i) also yield a description of the epi-
morphisms in the category of finite groups? If not, can you nevertheless
determine these?

Exercise 7.7:8. Let C = Ring1, or, if you prefer, CommRing1.
(i) Show that for an object A of C, the following conditions are equiv-
alent: (a) The unique morphism Z → A is an epimorphism. (b) For each
object R of C, there is at most one morphism A→ R.
(ii) Investigate the class of rings A with the above property. (Cf. Exer-
cise 4.10:10, and last sentence of Exercise 7.7:6(iii).)

Exercise 7.7:9. (i) Show that if R is a commutative ring, and f : R→ S
is an epimorphism in Ring1, then S is also commutative.

(Hint: Given a ring A, construct a ring A′ of formal sums a + bε
(a, b ∈ A) with multiplication given by (a+ bε)(c+ dε) = ac+ (ad+ bc)ε.
For fixed r ∈ A, on what elements of A do the two homomorphisms
A→ A′ given by x 7→ x and x 7→ (1 + rε)−1x(1 + rε) agree?)

(ii) Show that if f : R→ S is an epimorphism in CommRing1, then it
is also an epimorphism in Ring1.

(Hint: Given homomorphisms g, h : S → T agreeing on f(R), reduce
to the situation where the image of R in T is in the center. Then look
at the ring of endomorphisms of the additive group of T generated by left
multiplications by elements of g(S) and right multiplications by elements
of h(S).)
(iii) Prove the converse of (ii), i.e., that if a homomorphism of commuta-
tive rings is an epimorphism in Ring1, then it is also an epimorphism in
CommRing1. In fact, show that this is an instance of a general property
of epimorphisms in a category and a subcategory.

Unlike the result of (iii), the results of (i) and (ii) are rather excep-
tional, as indicated by
(iv) Show that for a commutative ring k, the inclusion of the ring of upper
triangular 2 × 2 matrices over k (matrices (aij) such that a21 = 0) in

the ring of all 2× 2 matrices over k is an epimorphism in Ring1. Show,
however, that the identity (x y − y x)2 = 0 holds in the former ring but
not the latter.
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Thus, although the result of (i) can be formulated as saying “If f : R→
S is an epimorphism in Ring1, and R satisfies the identity x y−y x = 0,
then so does S ”, the corresponding statement with x y − y x replaced by
(x y − y x)2 is false.
(v) Similarly, give an example showing that the analog of (ii) does not
remain true if Ring1 and CommRing1 are replaced by an arbitrary
category and any full subcategory thereof.
(vi) Does the analog of (i) and/or (ii) hold for the category Monoid and
its subcategory AbMonoid ?

As some of the above exercises show, the property of being an epimorphism
is not a reliable equivalent of surjectivity; but they also show that it is an
interesting concept in its own right. In concrete categories, the statement
that f : A → B is an epimorphism means intuitively that the image f(A)
“controls” B, in terms of behavior under morphisms.

There is an unfortunate tendency for some categorical enthusiasts to con-
sider epimorphism to be the “category-theoretically correct” translation of
surjective map, even in cases when the concepts do not agree. For instance,
a standard definition in module theory calls a module P projective if for
every surjective module homomorphism f : M → N, every homomorphism
P → N factors through f. (If you haven’t seen this concept, draw a dia-
gram, and verify that every free module is projective.) I have heard it claimed
that one should therefore define an object P of a general category C to be
projective if and only if for every epimorphism f : M → N of C, every
morphism P → N factors through f. This property is certainly of interest,
but there is no reason to consider it to the exclusion of others. In particular,
if C is a category having some natural concretization functor U : C→ Set,
there is no reason to reject the concept of projective object defined in terms
of factorization through “surjective” maps, i.e., maps f : M → N such that
U(f) is surjective. The fact that a property can be defined purely category-
theoretically does not make it automatically superior to another property.

(The right context for developing a theory of “projective objects” is prob-
ably that of a category C given with a subfamily of morphisms S, which
we wish to put in the role of surjections. To make things behave nicely, one
will presumably want to put certain restrictions on S; for instance that it
be contained in the class of epimorphisms, as the surjective maps in concrete
categories always are by Exercise 7.7:6(i); probably also that it contain all
invertible morphisms, and be closed under composition. We would then say
that an object P is “projective with respect to the class S ” if for every
morphism f : M → N belonging to S, every morphism P → N factors
through f. This relative approach is taken in [102], where a large number of
properties are defined relative to a pair of classes of morphisms, one in the
role of the surjections and the other in the role of the injections.)

The use of the words “monomorphism” and “epimorphism” is itself un-
settled. In the days before category theory, the words were introduced by
Bourbaki with the meanings “injective (i.e., one-to-one) homomorphism” and
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“surjective (i.e., onto) homomorphism”. The early category-theorists brazenly
gave these words the abstract category-theoretic meanings we have been dis-
cussing. This made the terms ambiguous in situations where the category-
theoretic definition did not agree with the old meaning. Mac Lane [19] tries to
remedy the situation by restoring “monomorphism” and “epimorphism” to
their old meanings (applicable in concrete categories) and calling the general
category-theoretic concepts that we have been discussing “monic” and “epic”
morphisms, or “monos” and “epis” for short. However, the category-theoretic
meanings are already well-established in many areas; e.g., there have been
many published papers dealing with epimorphisms in categories of rings. (A
concept which includes the construction of the field of fractions of a commu-
tative domain is bound to be of interest!) My feeling is that “epimorphism”
and “epic morphism” sound too similar to usefully carry Mac Lane’s distinc-
tion; and that we should now stick with the category-theoretic meanings of
“epimorphism” and “monomorphism”. The phrases “surjective (or onto) ho-
momorphism” and “injective (or one-to-one) homomorphism” give us more
than enough ways of referring to the concrete concepts.

In any case, when you see these words used by other authors, make sure
which meaning they are giving them.

Exercise 7.7:10. Suppose f ∈ C(Y, Z), g ∈ C(X, Y ). Investigate impli-
cations holding among the conditions “ f is a monomorphism”, “ g is a
monomorphism”, “ f g is a monomorphism” “ f is an epimorphism”, “ g
is an epimorphism” and “ f g is an epimorphism”.

A full answer would be an exact determination of which among the 64
possible combinations of truth-values for these 6 statements can hold for
a pair of morphisms, and which cannot! As a partial answer, you might
determine which of the 8 possible combinations of truth-values of the first
3 conditions can hold. Then see whether duality allows you to deduce which
combinations of the last 3 can hold, and whether, by examining when
morphisms in a product of categories are monomorphisms or epimorphisms,
you can use the results you have found to get a complete or nearly complete
answer to the full 64-case question.

Exercise 7.7:11. Although in most natural categories of mathematical ob-
jects the two obvious questions about a morphism are whether it is one-to-
one and whether it is onto, in the category RelSet we can ask additional
questions such as whether a given relation is a function.
(i) Can you find a general condition on a morphism in an arbitrary cat-
egory, which, for a morphisms f : X → Y in RelSet, is equivalent to
being a set-theoretic function X → Y ?
(ii) Examine other properties of relations, and whether they can be
characterized by category-theoretic properties in RelSet. For instance,
which members of RelSet(X, X) represent partial orderings on X ?
Given f, g ∈ RelSet(X, Y ), how can one determine whether f ⊆ g
as relations? Can one construct from the category-structure of RelSet
the contravariant functor R : RelSetop → RelSet taking each relation
f ∈ RelSet(X, Y ) to the opposite relation, R(f) ∈ RelSet(Y, X) ?
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(iii) Can you find a necessary and sufficient condition on a subset f ⊆ X×
Y for it to be, when regarded as morphism in RelSet, a monomorphism,
or an epimorphism in that category? Left or right invertible?

Because of the way we used duality in getting from the concept of
monomorphism to that of epimorphism, both of them refer to one-one-ness
of the images of a morphism under certain hom-functors. Let us look at the
conditions that these same images be onto:

Exercise 7.7:12. (i) Given f ∈ C(X, Y ), show that the following condi-
tions are equivalent:

(a) For all Z ∈ Ob(C), hZ(f) is surjective.
(b) f is right invertible; i.e., there exists g ∈ C(Y, X) such that
f g = idY .
(c) For every covariant functor F : C→ Set, F (f) is surjective.
(d) For every contravariant functor F : C→ Set, F (f) is injective.
(e) For every category D and covariant functor F : C → D, F (f)
is an epimorphism.
(f) For every category D and contravariant functor F : C → D,
F (f) is a monomorphism.
(For partial credit, simply establish the equivalence of (a) and (b).

Hint: idY ∈ hY (Y ).)
(ii) State the result which follows from the result of (i) by duality, indi-
cating briefly how one deduces this dual result from that of (i).

Let us look at what condition (b) of the above exercise means in famil-
iar categories; in other words, what it means to have morphisms f and g
satisfying a one-sided inverse relation,

(7.7.3) f g = idY (f ∈ C(X, Y ), g ∈ C(Y, X)).

First take C = Set. Then we see that if (7.7.3) holds, g must be one-to-one
(if two elements of Y fell together under g, there would be no way for f
to “separate” them); so let us think of g as embedding a copy of Y in X.
The map f sends X to Y so as to take each element g(y) back to y, while
acting in an unspecified way on elements of X that are not in the image
of g. Thus the composite g f ∈ C(X, X) leaves elements of the image of
g fixed, and carries all elements not in that image into that image; i.e., it
“retracts” X onto the embedded copy of Y. Hence in an arbitrary category,
a pair of morphisms satisfying (7.7.3) is called a retraction of the object X
onto the object Y. In this situation Y is said to be a retract of X (via the
morphisms f and g).

Exercise 7.7:13. (i) Show that a morphism in Set is left invertible if
and only if it is one-to-one, with the exception of certain cases involving ∅
(which you should show are indeed exceptions) and right invertible if and
only it is onto (without exceptions).
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(ii) Show that X is a retract of Y in the category Ab of abelian groups
(or more generally, the category R-Mod of left R-modules) if and only if
X is isomorphic to a direct summand in Y.
(iii) Give examples of a morphism in Ab that is surjective, but not right
invertible, and a morphism that is one-to-one, but not left invertible.
(iv) Characterize retractions in Group in terms of group-theoretic con-
structions. Do they all arise from direct-product decompositions, as in
Ab ?

Combining part (i) of the above exercise with Exercise 7.7:3(i) and Exer-
cise 7.7:6(iii), we see that for morphisms in any concrete category, one has

left invertible =⇒ one-to-one =⇒ monomorphism,

right invertible =⇒ onto =⇒ epimorphism.

On the other hand, part (iii) of the above exercise and similar examples given
in earlier exercises show that none of these implications are reversible.

Exercise 7.7:14. Give an example of a morphism in some category which is
both an epimorphism and a monomorphism, but not an isomorphism. In-
vestigate what combinations of the properties “epimorphism”, “monomor-
phism”, “left invertible” and “right invertible” force a morphism to be an
isomorphism.

(Warning in connection with the above discussion and exercises: The mean-
ings of the terms “left” and “right” invertible become reversed when category-
theorists – or other mathematicians – compose their maps in the opposite
sense to the one we are using!)

We have noted that in the situation of (7.7.3) the composite e = g f is an
idempotent endomorphism of the object X, whose image, in concrete situa-
tions, is a copy of the retract Y. The next exercise establishes two category-
theoretic versions of the idea that this idempotent morphism “determines”
the structure of the retract Y of X.

Exercise 7.7:15. (i) Let X, Y, Y ′ ∈ Ob(C), and suppose that f ∈
C(X, Y ), f ′ ∈ C(X, Y ′) have right inverses g, g′ respectively. Show
that g f = g′f ′ =⇒ Y ∼= Y ′.
(ii) Let C be a category, and e ∈ C(X, X) be an idempotent mor-
phism: e2 = e. Show that C may be embedded as a full subcategory in
a category D, unique up to isomorphism, with one additional object Y
(i.e., with Ob(D) = Ob(C) ∪ {Y }) and such that there exist morphisms
f ∈ D(X, Y ), g ∈ D(Y, X) satisfying

f g = idY (in D(Y, Y )), g f = e (in D(X, X) = C(X, X)).

Returning to our search for conditions which correspond to familiar math-
ematical concepts in many cases, let us ask whether we can define a concept
of a subobject of an object X in a category C.



246 7 Categories and functors

If by this we mean a criterion telling which objects of a category such as
Set or Group are actually contained in which other objects, the answer
is “certainly not”: There can be no way to distinguish an object that is a
subobject of another from one that is simply isomorphic to such a subobject.
However, in particular categories of mathematical objects, we may well be
able to say when a given morphism is an embedding, i.e., corresponds to an
isomorphism of its domain object with a subobject of its codomain. For in-
stance, in Set, Group, Monoid, Ring1, Lattice and similar categories,
the embeddings are the monomorphisms. In these cases, and more generally,
whenever we know which morphisms we want to regard as embeddings, we
can recover the partially ordered set of subobjects of X as equivalence classes
of such morphisms:

Exercise 7.7:16. Let C be a category, and suppose we are given a subcat-
egory Cemb of C whose object-set consists of all the objects of C, and
whose set of morphisms is contained in the set of monomorphisms of C.
The morphisms of Cemb are the morphisms of C that we intend to think
of as embeddings. (But you may not assume anything about Cemb except
the conditions stated above.) For any object X of C, let EmbX de-
note the category whose objects are pairs (Y, f), where Y ∈ Ob(C) and
f ∈ Cemb(Y, X), and where a morphism from (Y, f) to (Z, g) means a
morphism a : Y → Z of C such that f = g a.
(i) Show that each hom-set EmbX(U, V ) has at most one element. De-
duce that EmbX is of the form Emb(X)cat for some (possibly large)
preorder Emb(X).
(ii) Let us call the partially ordered set constructed from the preorder
Emb(X) as in Proposition 5.2.2 “ Sub(X) ”. Show that if C is one of Set,
Group, Ring or Lattice, and we take Cemb to have for its morphisms
all the monomorphisms of C, then Sub(X) is isomorphic to the partially
ordered set of subsets, subgroups, etc., of X.
(iii) Let X be a set, in general infinite, and S the monoid of set maps
of X into itself. Form the category Scat, and take (Scat)emb to have the
monomorphisms of Scat for its morphisms. Calling the one object of Scat
“ 0 ”, describe the partially ordered set Sub(0).

The categories of algebraic objects mentioned so far in discussing one-
one-ness have had the property that every one-to-one morphism gives an
isomorphism of its domain with a subobject of its codomain. An example
of a category for which this is not true is POSet. For instance if P and
Q are finite partially ordered sets having the same underlying set, but the
order-relation on Q is stronger than that of P, then the identity map of the
underlying set is a one-to-one isotone map from P to Q, but some elements
of Q will satisfy order-relations that they don’t satisfy in P ; so we cannot
regard P as a subobject of Q with the induced ordering. This leads to the
questions

Exercise 7.7:17. (i) Suppose the construction of the preceding exercise
is applied with C the category POSet, and Cemb(X,Y ) the set of all
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monomorphisms in C(X,Y ). For X ∈ Ob(POSet), describe the partially
ordered set Sub(X).
(ii) Can you find a category-theoretic property characterizing those mor-
phisms of POSet which are “genuine” embeddings, i.e., correspond to
isomorphisms of their domain with subsets of their codomain, partially
ordered under the induced ordering?

7.8. More categorical versions of common mathematical
notions: special objects

I shall start this section with some “trivialities”.
In many of the classes of structures we have dealt with, there were one,

or sometimes two objects that one would call the “trivial” objects: the one-
element group; the one-element set and also the empty set; the one-element
lattice and likewise the empty lattice. The following definition abstracts the
common properties of these objects.

Definition 7.8.1. An initial object in a category C means an object I such
that for every X ∈ Ob(C), C(I, X) has exactly one element.

A terminal object in a category C means an object T such that for every
X ∈ Ob(C), C(X, T ) has exactly one element.

An object that is both initial and terminal is often called a zero object.

Thus, in Set, the empty set is the unique initial object, while any
one-element set is a terminal object. In Group, a one-element group is
both initial and terminal, hence is a zero object. The categories Lattice,
POSet, Top and Semigroup are like Set in this respect, while Toppt

and Monoid are like Group. In Ring1, the initial object is Z, though
we would usually not call it “trivial”; the terminal object is the one-element
ring with 1 = 0 (which some people do not call a ring).

A category need not have an initial or terminal object: The category of
nonempty sets, or nonempty partially ordered sets, or nonempty lattices, or
finite rings, has no initial object; POSet< has no terminal object, nor does
the category of nonzero rings (rings in which 1 6= 0). If P is the partially
ordered set of the integers, then Pcat has neither an initial nor a terminal
object. Terminal objects are also called “final” objects, and I may sometimes
slip and use that word in class.

Lemma 7.8.2. If I, I ′ are two initial objects in a category C, then they are
isomorphic, via a unique isomorphism. Similarly, any two terminal objects
are isomorphic via a unique isomorphism. ut

Exercise 7.8:1. Prove Lemma 7.8.2.
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Exercise 7.8:2. Suppose C is a category with an initial object I and a
terminal object T, and suppose f is a morphism with domain I or T.
We would like to know whether f will always, sometimes, or almost never
be an epimorphism or a monomorphism. Here by “almost never” I mean
“only if it is an isomorphism”, while by “sometimes”, I mean “not for all
choices of C and f, but in at least some cases other than when f is an
isomorphism”.
(i) For each of the four combinations of one of the two distinguished ob-
jects I and T, and one of the two conditions “epimorphism” or “monomor-
phism”, answer the above question, i.e., prove the answer if it is “always”
or “almost never”, while if it is “sometimes”, give the two examples needed
to establish this.
(ii) State the corresponding results for morphisms with codomain I and
T, noting briefly how the results of part (i) can be used to get these.

Exercise 7.8:3. Consider the following conditions on a category C :
(a) C has a zero object (an object that is both initial and terminal).
(b) It is possible to choose in each hom-set C(X, Y ) a morphism
0X,Y in such a way that for all X, Y, Z ∈ Ob(C) and f ∈ C(X, Y ),
g ∈ C(Y, Z) one has 0Y, Zf = 0X,Z = g 0X,Y .

(c) It is possible to choose in each hom-set C(X, Y ) a morphism
0X,Y such that for all X, Y, Z ∈ Ob(C) one has 0Y, Z 0X,Y = 0X,Z .

(d) For all X, Y ∈ Ob(C), C(X, Y ) 6= ∅.
(i) Show that (a) =⇒ (b) =⇒ (c) =⇒ (d), but that none of these
implications is reversible.
(ii) Show that if C has either an initial or a terminal object, then the
first and third implications are reversible, but not, in general, the second.
(iii) Show that if C has an initial object and a terminal object (as the
majority of naturally occurring categories do), then (d) =⇒ (a), so that
all four conditions are equivalent.

Exercise 7.8:4. If C is a category with a terminal object T, let Cpt denote
the category whose objects are pairs (X, p), where X ∈ Ob(C), p ∈
C(T, X), and where Cpt((X, p), (Y, q)) = {f ∈ C(X, Y ) | f p = q}.
(i) Verify that this defines a category, and that Cpt will have a zero
object.
(ii) Show that if C = Top, this gives the category we earlier named
Toppt.
(iii) Show that if C already had a zero object, then Cpt is isomorphic to
C.

Exercise 7.8:5. If C is a category, call an object A of C quasi-initial
if it satisfies the condition of Exercise 7.7:8(i)(b). Generalize the result
“(a)⇐⇒ (b)” of that exercise to a characterization of quasi-initial objects
in categories with initial objects.

What about the concept of free object? The definition of a free group F on
a set X refers to elements of groups, hence the generalization should apply
to a concrete category (C, U). You should verify that when C = Group
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and U is the underlying set functor, the following definition reduces to the
usual definition of free group.

Definition 7.8.3. If C is a category, U : C→ Set a faithful functor, and X
a set, then a free object of C on X with respect to the concretization U will
mean a pair (FX , u), where FX ∈ Ob(C), u ∈ Set(X, U(FX)), and this
pair has the universal property that for any pair (G, v) with G ∈ Ob(C),
v ∈ Set(X, U(G)), there is a unique morphism h ∈ C(FX , G) such that
v = U(h)u.

Loosely, we often call the object FX the free object, and u the associated
universal map.

Exercise 7.8:6. Let V : Group → Set denote the functor associating to
every group G the set |G|2 of ordered pairs (x, y) of elements of G, and
W : Group → Set the functor associating to G the set of “unordered
pairs” {x, y} of elements of G (where x = y is allowed).
(i) State how these functors should be defined on morphisms. (I don’t
ask you to verify the fairly obvious fact that these descriptions do make V
and W functors.) Show that they are both faithful.
(ii) Show that for any set X, there exists a free group with respect to the
functor V, and describe this group.
(iii) Show that there do not in general exist free groups with respect to
W.

Exercise 7.8:7. Let U : Ring1 → Set be the functor associating to every
ring R the set of 2×2 invertible matrices over R. Show that U is faithful.
Does there exist for every set X a free ring RX on X with respect to
U ?

The next exercise shows why the property of being a monomorphism char-
acterizes the one-to-one maps in most of the concrete categories we know – or
more precisely, shows that this characterization follows from another property
we have noted in these categories.

Exercise 7.8:8. Let (C, U) be a concrete category. Show that if there exists
a free object on a one-element set with respect to U, then a morphism f
of C is a monomorphism if and only if U(f) is one-to-one.

We could go further into the study of free objects, proving, for instance,
that they are unique up to isomorphism when they exist, and that when
C has free objects on all sets, the free-object construction gives a functor
Set → C. Some of this will be done in Exercise 7.9:9 later in this chapter,
but for the most part we shall get such results in the next chapter, as part
of a theory embracing wide classes of universal constructions.

Let us turn to another pair of constructions that we have seen in many
categories (including Cat itself), those of product and coproduct. No con-
cretization or other additional structure is needed to translate these concepts
into category-theoretic terms.
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Definition 7.8.4. Let C be a category, I a set, and (Xi)i∈I a family of
objects of C.

A product of this family in C means a pair (P, (pi)i∈I), where P ∈ Ob(C)
and for each i ∈ I, pi ∈ C(P, Xi), having the universal property that for
any pair (Y, (yi)i∈I) (Y ∈ Ob(C), yi ∈ C(Y, Xi)) there exists a unique
morphism r ∈ C(Y, P ) such that yi = pi r (i ∈ I).

Likewise, a coproduct of the family (Xi)i∈I means a pair (Q, (qi)i∈I),
where Q ∈ Ob(C) and for each i ∈ I, qi ∈ C(Xi, Q), having the universal
property that for any pair (Y, (yi)i∈I) (Y ∈ Ob(C), yi ∈ C(Xi, Y )) there
exists a unique morphism r ∈ C(Q, Y ) such that yi = r qi (i ∈ I).

Loosely, we call P and Q the product and coproduct of the objects Xi,
the pi : P → Xi the projection maps, and the qi : Xi → Q the coprojection
maps. (The term injection is used by some authors instead of coprojection.)

The category C is said to have finite products if every finite family of
objects of C has a product in C, and to have small products (often simply
“to have products”) if every family of objects of C indexed by a small set
has a product; and similarly for finite and small coproducts.

Standard notations for product and coproduct objects are P = i∈IXi

and Q =
i∈IXi. For a product of finitely many objects one also writes

X0 × · · · × Xn−1. There is no analogous standard notation for coproducts
of finitely many objects; we used “ ∗ ” as the operation-symbol in Chapter 4,
following group-theorists’ notation for “free products”. One sometimes sees
+ or ⊕, based on module-theoretic notation. Still another notation that is
used, and which I will follow from now on in these notes, is X0 . . . Xn−1.

Observe that a product of the empty family is equivalent to a terminal
object, while a coproduct of the empty family is equivalent to an initial
object.

Exercise 7.8:9. If P is a partially ordered set, what does it mean for a
family of objects of Pcat to have a product? A coproduct?

Exercise 7.8:10. (i) Suppose we are given a family of families of ob-
jects in a category C, ((Xij)i∈Ij )j∈J , such that for each j,

Ij
Xij

exists, and such that we can also find a product of these product ob-
jects, P =

j∈J(
i∈Ij Xij). Show that P will be a product of the family

(Xij)i∈Ij , j∈J .

(ii) Deduce that if a category has products of pairs of objects, it has
products of all finite nonempty families of objects.
(iii) Consider the case of (i) where J = {0, 1}, I0 = ∅, and I1 = {0}.
What form do the products described there take, and what does the con-
clusion tell us? Also state the dual of the result you get.

Exercise 7.8:11. (i) Let X be a set (in general infinite) and S the
monoid of maps of X into itself. When, if ever, does the category Scat
have products of pairs of objects? (Of course, there is only one ordered pair
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of objects, and only one object to serve as their product, so the question
comes down to whether two morphisms p1 and p2 can be found having
appropriate properties.)
(ii) Is there, in some sense, a “universal” example of a monoid S such
that Scat has products of pairs of objects?

Exercise 7.8:12. Let k be a field. Show that one can define a category C
whose objects are the k-vector-spaces, and such that for vector spaces U
and V, C(U, V ) is the set of equivalence classes of linear maps U → V
under the equivalence relation that makes f ∼ g if and only if the linear
map f − g has finite rank. Show that in this category, finite families of
objects have products and coproducts, but infinite families in general have
neither.

We saw in Exercise 7.7:13(i) that in Ab and R-Mod, any retraction of an
object arises from a decomposition as a direct sum, which in those categories
is both a product and coproduct. The next exercise examines the relation
between retractions, products and coproducts in general.

Exercise 7.8:13. (i) Show that if C is a category with a zero object, then
for any objects A and B of C, if the product A×B exists, then A can
be identified with a retract of this product, and if the coproduct A B
exists, then A can be identified with a retract of this coproduct.
(ii) Can you find a condition weaker than the existence of a zero object
under which these conclusions hold?

Though we saw in (i) that in a category with a zero object, a decom-
position of an object as a product or a coproduct leads to a retraction, it
is not in general true that every retraction comes from a product decom-
position, nor that every retraction comes from a coproduct decomposition.
Indeed,
(iii) Let A and B be nontrivial objects of Group. Thus, by part (i)
above, the subgroup A ⊆ A B is a retract. Show, however, that it is not
a factor in any product decomposition of that group. Likewise, show that
A ⊆ A×B, though a retract, is not a factor in any coproduct decomposition
of that group.

Some related facts are noted in the next exercise. (Part (iii) thereof requires
some group-theoretic expertise, or some ingenuity.)

Exercise 7.8:14. (i) Show that if A is the free group or free abelian group
on a generating set X, and Y is a subset of X, then the subgroup of A
generated by Y is a retract of A.
(ii) For the case of a free abelian group A, show, conversely, that if B a
retract of A, then A has a basis X such that B is the subgroup generated
by a subset of X.
(iii) On the other hand, show that if A is the free group on two generators
x and y, then A has cyclic subgroups which are retracts, but are not
generated by any subset of any free generating set for A. (Suggestion: try
the cyclic subgroup generated by x2y3, or by x2yx−1y−1.)
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The next exercise shows that when one requires even large families of
objects to have products, one’s categories tend to become degenerate.

Exercise 7.8:15. Let C be a category and α a cardinal such that Ob(C)
and all morphism sets C(X, Y ) have cardinality ≤ α (e.g., the cardinality
of a universe with respect to which C is legitimate).
(i) Show that if every family of objects of C indexed by a set of cardi-
nality ≤ α has a product in C, then C has the form Pcat, where P is a
preorder whose associated partially ordered set P/≈ is a complete lattice.
(ii) Deduce that in this case every family of objects of C (indexed by any
set whatsoever) has a product and a coproduct.

It is an easy fallacy to say, “since product is a category-theoretic notion,
functors must respect products.” Rather

Exercise 7.8:16. Find an example of categories C and D having finite
products, and a functor C→ D which does not respect such products.

On the other hand:

Exercise 7.8:17. Show that if (C, U) is a concrete category, and there
exists a free object on one generator with respect to U, then U respects
all products which exist in C. (Cf. Exercise 7.8:8.)

Thus, in most of the concrete categories we have been interested in, the
underlying set of a product object is the direct product of the underlying sets
of the given objects. However, there is a well-known example for which this
fails:

Exercise 7.8:18. A torsion group (also called a “periodic group”) is a group
all of whose elements are of finite order. Let TorAb be the category of all
torsion abelian groups.
(i) Show that a product in Ab of an infinite family of torsion abelian
groups is not in general a torsion group.
(ii) Show, however, that the category TorAb has small products.
(iii) Deduce that the underlying set functor TorAb → Set does not
respect products.

Exercise 7.8:19. Does the category TorGroup of all torsion groups have
small products?

Exercise 7.8:20. Consider a category C having finite products. When we
spoke of making the product construction into a functor (in motivating the
concept of a functor of two variables), the domain category was to be the
set of pairs of objects of C. Clearly we can do the same using I-tuples for
any fixed finite set I. But what if we look at the product construction as
simultaneously applying to I-tuples of objects as I ranges over all finite
index sets?

To make this question precise, let Ob(C)+ denote the class of all
families (Xi)i∈I such that I is a finite set (varying from family to family)
and the Xi are objects of C. Can you make this the object-set of a
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category C+ in a natural way (which allows morphisms between families
indexed by sets of possibly different sizes), so that the product construction
becomes a functor C+ → C ? If so, will the same category C+ serve as
domain for the coproduct construction, assuming C has finite coproducts?

For future reference, let us make

Definition 7.8.5. Let I be a set (for instance, a natural number or other
cardinal), and C a category having I-fold products. If X is an object of
C, then when the contrary is not stated, XI will denote the I-fold product
of X with itself, which we may call the “I-th power of X ”. Likewise, if F
is a functor from another category D to C, then when the contrary is not
stated, F I will denote the functor taking each object Y of D to the object
F (Y )I of C, and behaving in the obvious way on morphisms.

(Note that if F : C → C is an endofunctor of a category C, we might
want to write Fn for the n-fold composite of F with itself. In such a case
we would have to make an explicit exception to the above convention.)

What about category-theoretic versions of the constructions of kernel and
cokernel ?

We saw that these constructions were specific to fairly limited kinds of
mathematical objects, such as groups and rings, but that a pair of concepts
which embrace them but are much more versatile are those of equalizer and
coequalizer. The latter concepts are abstracted in

Definition 7.8.6. Let C be a category, X, Y ∈ Ob(C), and f, g ∈
C(X, Y ).

Then an equalizer of f and g means a pair (K, k), where K is an object,
and k : K → X a morphism which satisfies f k = g k, and is universal for
this property, in the sense that for any pair (W, w) with W an object and
w :W → X a morphism such that f w = g w, there exists a unique morphism
h : W → K such that w = k h.

Likewise, a coequalizer of f and g means a pair (C, c) where C is an
object, and c : Y → C a morphism which satisfies c f = c g, and is universal
for this property, in the sense that for any pair (Z, z) with Z an object and
z : Y → Z a morphism such that z f = z g, there exists a unique morphism
h : C → Z such that z = h c.

Loosely, K and C are called the equalizer and coequalizer objects, and
k, c the equalizer and coequalizer morphisms, or the canonical morphisms
associated with the equalizer and coequalizer objects. We say that C has
equalizers (respectively coequalizers) if all pairs of morphisms between pairs
of objects of C have equalizers (coequalizers).

It turns out that in familiar categories, the concept of coequalizer yields
a better approximation to that of surjective map than does the concept of
epimorphism:
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Exercise 7.8:21. (i) Show that in each of the categories Group, Ring1,
Set, Monoid, a morphism out of an object Y is surjective on underlying
sets if and only if it is a coequalizer morphism of some pair of morphisms
from an object X into Y.
(ii) Is the same true in POSet ? In the category of finite groups?
(iii) In the categories considered in (i) (and optionally, those considered
in (ii)) investigate whether, likewise, the condition of being an equalizer is
equivalent to one-one-ness.
(iv) Investigate what implications hold in a general category between the
conditions of being an epimorphism, being right invertible, and being a
coequalizer map.

Exercise 7.8:22. Let f, g ∈ Set(X, Y ) be morphisms, and (C, c) their
coequalizer.
(i) Show that card(X)+card(C) ≥ card(Y ). If you wish, assume X and
Y are finite.
(ii) Can one establish some similar relation between the cardinalities of
X, of Y, and of the equalizer of f and g in Set ?
(iii) What can be said of the corresponding questions in Ab ? In Group ?

In categories such as Group, Ab and Monoid which have a zero object,
concepts of kernel and cokernel of a morphism f : X → Y may also be
defined, namely as the equalizer and coequalizer of f with the zero morphism
X → Y (see Exercise 7.8:3).

We turn next to a pair of constructions which we have not discussed before,
but which are related both to products and coproducts and to equalizers and
coequalizers.

Definition 7.8.7. Given objects X1, X2, X3 of a category C, and mor-
phisms f1 : X1 → X3, f2 : X2 → X3 (diagram below), a pullback of the pair
of morphisms f1, f2 means a 3-tuple (P, p1, p2), where P is an object,
and p1 : P → X1, p2 : P → X2 are morphisms satisfying f1 p1 = f2 p2, and
which is universal for this property, in the sense that any 3-tuple (Y, y1, y2),
with y1 : Y → X1, y2 : Y → X2 satisfying f1 y1 = f2 y2, is induced by a
unique morphism h : Y → P.

(7.8.8)

? ?

p2 f1

-

-
B
B
B
B
B
B
BBN

@
@@R

PPPPPPPPq
P X1p1

X2 X3

f2

Y

Dually, for objects X0, X1, X2 and morphisms g1 : X0 → X1, g2 : X0 →
X2, a pushout of g1 and g2 means a 3-tuple (Q, q1, q2), where q1 : X1 → Q,
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q2 : X2 → Q satisfy q1 g1 = q2 g2, and which is universal for this property in
the sense shown below:

(7.8.9) ? ?

g2 q1

-

-

B
B
B
B
B
B
BBN

@
@R

PPPPPPPq

X0 X1g1

X2 Q
q2

Y

As in the case of products and coproducts, the universal morphisms p1,
p2 from a pullback object P are called its projection morphisms to the Xi,
and the universal morphisms q1, q2 to a pushout object Q are called its
coprojection morphisms.

A commuting square in C is called a pullback diagram (respectively, a
pushout diagram) if the upper left-hand (lower right-hand) object is a pull-
back (pushout) of the remainder of the diagram. We say that a category C
has pullbacks if every diagram of objects and morphisms X1, X2, X3, f1,
f2 as in (7.8.8) has a pullback P, and that C has pushouts if every diagram
of objects and morphisms X0, X1, X2, g1, g2 as in (7.8.9) has a pushout
Q.

The next exercise shows how to construct these creatures.

Exercise 7.8:23. (i) Show that if a category C has finite products and
has equalizers, then it has pullbacks. Namely, for every system of objects
and morphisms, X1, X2, X3, f1, f2 as in the first part of the above def-
inition, construct a pullback as the equalizer of a certain pair of morphisms
X1 ×X2 → X3.
(ii) State the dual result for pushouts (including the statement of how the
pushout may be obtained).

To get a picture of pullbacks in Set, note that any set map f : X → Y can
be regarded as a decomposition of the set X into subsets f−1(y), indexed by
the elements y ∈ Y. When one looks at f this way, one calls X a set fibered
by Y, and calls f−1(y) the fiber of X at y ∈ Y. Now in a pullback situation
(7.8.8) in Set, we see that from two sets X1 and X2, each fibered by X3,
we obtain a third set P fibered by X3, with maps into the first two. From the
preceding exercise one can verify that the fiber of P at each y ∈ X3 is the
direct product of the fibers of X1 and of X2 at y. Consequently, pullbacks
are sometimes called fibered products, whether or not one is working in a
concrete category. The next exercise shows that “fibered products” can be
regarded as products in an appropriate category of “fibered objects”.
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Exercise 7.8:24. Given a category C and any Z ∈ Ob(C), let CZ denote
the category of “objects of C fibered by Z ”, that is, the category having
for objects all pairs (X, f) where X ∈ Ob(C) and f ∈ C(X, Z), and
having for morphisms (X, f) → (Y, g) all members of C(X, Y ) making
commuting triangles with the morphisms f and g into Z.

Show that a pullback (7.8.8) in C is equivalent to a product of the
objects (X1, f1), (X2, f2) in CX3 .

The pushout Q of a diagram (7.8.9) is also often called suggestively the
“coproduct of X1 and X2 with amalgamation of X0 ”, especially in concrete
situations where the morphisms f1 and f2 are embeddings. It also has names
specific to particular fields: In topology, the Q of (7.8.9) is the space gotten
by “gluing together” the spaces X1 and X2 along a common image of X0.
In commutative ring theory, where the X0, X1 and X2 of (7.8.9) might be
denoted K, R and S, the pushout Q is written R ⊗K S, and called the
tensor product of R and S over K as K-algebras.

In the spirit of Chapter 4, you might do

Exercise 7.8:25. (i) Show by a generators-and-relations argument that
the category Group has pushouts.
(ii) Obtain a normal form or other explicit description for the pushout, in
the category of groups, of an arbitrary one-to-one group homomorphisms
f1 : G0 → G1 and f2 : G0 → G2. Assume for notational convenience that
these maps are inclusions, and that the underlying sets of G1 and G2 are
disjoint except for the common subgroup G0.

This is a classical construction, called by group theorists “the free
product of G1 and G2 with amalgamation of the common subgroup G0 ”.
(If you are already familiar with this construction, and the proof of its
normal form by van der Waerden’s trick, skip to (iii).)
(iii) Describe how to reduce the construction of an arbitrary pushout of
groups to the case where the given maps f1 and f2 are one-to-one, as
above.

Exercise 7.8:26. Show by example that given a pair of one-to-one monoid
homomorphisms g1 : M0 → M1 and g2 : M0 → M2, if we construct their
pushout M, the universal maps M1 → M and M2 → M need not be
one-to-one.

Must the common map M0 →M be one-to-one?

Exercise 7.8:27. This exercise, for students who have done (or are familiar
with the result of) Exercise 7.8:25(ii), will construct an infinite, finitely
presented group with no nontrivial finite homomorphic images.

The group is

(7.8.10)
G = w, x, y, z | w−1xw = x2, x−1y x = y2,

y−1z y = z2, z−1w z = w2 .

Exercise 7.8:25 will not be needed until step (vi); in particular, it is
not needed in proving that G has no nontrivial finite homomorphic images
(steps (i)-(ii)).
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(i) Show that if a group H has nonidentity elements x, y, both of finite
order, satisfying x−1y x = y2, then the least prime dividing the order of
x is strictly less than the least prime dividing the order of y.
(ii) Deduce that the group G of (7.8.10) has no nontrivial finite homo-
morphic images.

In proving the nontriviality of G, let us make the convention that
for any subset I of our set of generators {w, x, y, z}, we shall write
GI for the group presented by the generators in the subset I, and those
of the four relations in (7.8.10) that involve only terms in that subset.
Moreover, in cases where I is an explicit list of generators, we shall drop the
brackets and commas from this notation. So, for instance, Gxy will denote
x, y | x−1y x = y2 , with two generators and one relation, while Gxz is

presented by the two generators x, z and no relations, i.e., it denotes the
free group on those generators.
(iii) For subsets I ⊆ J ⊆ {w, x, y, z}, explain why there will exist a ho-
momorphism fI,J : GI → GJ taking each generator of GI to the generator
of GJ denoted by the same symbol.

In the symbol fI,J , as in GI , we will drop set-brackets and commas
within such brackets in the symbols for I and J when these sets are shown
explicitly.
(iv) Obtain a normal form or other computationally convenient description
of Gxy (or if you have done Exercise 4.3:3, quote your result from that
exercise to get such a description). Verify from this description that the
elements x and y of this group each generate an infinite cyclic subgroup,
i.e., that the maps fx, xy and fy, xy are both one-to-one. Also verify that
their images have trivial intersection.

In view of the symmetry of the presentation (7.8.10), you may, after
proving a result such as the preceding, use any statement obtained from
it via a cyclic permutation of the generator-symbols w, x, y, z, merely
noting that this is what you are doing.
(v) Show that Gwxy is the pushout of the diagram formed from the two
maps fx,wx and fx, xy.

(vi) Deduce from part (v) above and Exercise 7.8:25(ii) that the subgroup
of Gwxy generated by w and y is free on those generators. Translate this
into a statement about the map fwy,wxy.

(vii) Show that G = Gwxyz is the pushout of the diagram formed from
the two maps fwy,wxy and fwy, yzw. Conclude that G is infinite.

This example shows, in particular, that a finitely presented group need
not be residually finite (as defined just before Exercise 4.5:2).

Exercise 7.8:28. Let C be a category having pullbacks and pushouts, and
let X1, X2, X3, f1, f2 be as in (7.8.8). Suppose we form their pullback
P, then form the pushout of the system P, X2, X3, p1, p2, and so on,
going back and forth between pullbacks and pushouts. Will this process
ever “stabilize”?

(Suggestion: Given the two objects X1 and X2, consider the set A of
all objects W given with morphisms into X1 and X2, and the set B of
all objects Y given with morphisms into them from X1 and X2, and let
R ⊆ A × B denote the relation “the four morphisms form a commuting
square”. Examine the resulting Galois connection between A and B.)
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We note

Lemma 7.8.11. A morphism f : X → Y of a category C is a monomor-
phism if and only if the diagram

? ?

idX f

-

-X X
idX

X Y
f

is a pullback diagram. Similarly f is an epimorphism if and only if

? ?

f idX

-

-X Y
f

Y Y
idX

is a pushout diagram. ut

Exercise 7.8:29. Prove Lemma 7.8.11.

The category of “objects of C fibered over Z ” used in Exercise 7.8:24
has a far-reaching generalization:

Definition 7.8.12. Given three categories and two functors,

D
S−→ C

T←− E,

we shall denote by (S ↓ T ) the category having for objects all 3-tuples
(D, f, E), where D ∈ Ob(D), E ∈ Ob(E), and f ∈ C(S(D), T (E)),
and where a morphism (D, f, E) → (D′, f ′, E′) means a pair (d, e) of
morphisms d : D → D′, e : E → E′, such that S(d) and T (e) make a
commuting square with f and f ′.

This construction is sometimes written (S, T ). We follow Mac Lane [19]
in writing it (S ↓ T ), because, as he observes, “the comma is already over-
worked”. However, the older notation is the source of its name, the comma
category construction. The most frequently used cases of this construction
are those noted in (ii) and (iii) of the next exercise.

Exercise 7.8:30. (i) Verify that Definition 7.8.12 makes sense. Namely,
write out the indicated commutativity condition, say how composition
should be defined in (S ↓ T ), and verify that the result is a category.
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(ii) Given a category C, suppose we let D = C, with S : C → C the
identity functor, while we take for E the trivial category, with only one
object, denoted 0, and its identity morphism. Let T : E → C be any
functor; thus T will be determined by the choice of one object, T (0),
which we shall call Z.

Show that the category (S ↓ T ) can then be identified with the cate-
gory we called CZ in Exercise 7.8:24. This is often denoted (C ↓ Z).
(iii) For S and T as in (ii) above, also describe the category (T ↓ S)
(often denoted (Z ↓ C)).

(In the symbols for particular comma categories mentioned at the ends
of (ii) and (iii) above, note that the object-name “Z ” is used as an abbre-
viation for the functor on the trivial category taking its one object to Z,
while C is used as an abbreviation for the identity functor of C. The latter
is an instance of the use, mentioned in §7.3, of the symbol for an object to
denote that object’s identity morphism. Though we are not adopting that
usage in general, it is convenient in this case, where we know the two slots in
the comma category symbol must be filled with names of functors, so there
is no danger of confusion.)

If C is a category with a terminal object T, the construction Cpt of Ex-
ercise 7.8:4 can clearly be described as (T ↓ C). However, there is a different
comma category construction that is also sometimes called the category of
“pointed objects” of C :

Exercise 7.8:31. Suppose (C, U) is a concrete category having a free ob-
ject F (1) on the one-element set 1 = {0}. Show that the following cate-
gories are isomorphic:
(i) (F (1) ↓ C).
(ii) The category whose objects are pairs (X, x0), where X is an ob-
ject of C and x0 an element of U(X), and whose morphisms are the
morphisms (in C) of first components that respect second components.
(iii) (1 ↓ U), where “ 1 ” denotes the functor from the one-object one-
morphism category to Set which takes the unique object to the one-
element set 1.

Since the one-point topological space is both the terminal object T of
Top and the free object F (1) on one generator in that category (under the
concretization by underlying sets), the constructions (T ↓ C) and (F (1) ↓ C)
agree in this case, leading to the above situation of one concept from topology
with two equally natural but inequivalent generalizations to category theory.
As mentioned, each of these constructions is sometimes called the category of
“pointed objects of C, ” though they can be quite different from one another.
The term “pointed” presumably comes from the term “pointed topological
space” for an object of Toppt, regarded as a space with a distinguished
basepoint.

Note that since the terminal object of Group is also initial (i.e., is a
zero object, as defined in Definition 7.8.1), every object of Group admits a
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unique homomorphism of this terminal object into it. Hence such a homomor-
phism contains no new information, and Grouppt is isomorphic to Group.
Therefore when an author speaks of the category of “pointed groups” one can
guess that he or she does not mean Grouppt, but (FGroup(1) ↓ Group),
equivalently (1 ↓ UGroup), the category of groups with a distinguished ele-
ment.

We end this section with a particularly simple example of a category-
theoretic translation of a familiar concept. Let G be a group, and recall that
a G-set is a set with an action of G on it by permutations. More generally,
one can consider an action of G by automorphisms on any object X of a
category C; one defines such an action as a homomorphism f of G into the
monoid C(X, X). Now observe that the pair consisting of such an object
X and such a homomorphism f : G → C(X, X) is equivalent to a functor
Gcat → C; the object X gives the image of the one object of Gcat, and f
determines the images of the morphisms. Thus, group actions are examples
of functors!

7.9. Morphisms of functors (or “natural
transformations”)

We have seen that various sorts of mathematical structures can be regarded
as functors from “diagram” categories to categories of simpler objects: As
just noted, G-sets are equivalent to functors from Gcat to Set; another
example is the type of structure which is the input of the equalizer and
coequalizer constructions, consisting of two objects of a category C and a
pair of morphisms from the first object to the second, (X, Y, f, g). If we
call such a 4-tuple a “parallel pair” of morphisms in C, then as observed in
§7.2, parallel pairs correspond to functors from the 2-object diagram category

·⇒ · to C.
Now if we regard such functors as new sorts of mathematical “objects”, it

is natural to ask whether we can define morphisms among these objects.
There is a standard concept of a morphism of G-sets – a set map which

“respects” the action of G. Is there a similar concept of “morphism of parallel
pairs”? Given two parallel pairs S = (X, Y, f, g) and S′ = (X ′, Y ′, f ′, g′),
it seems reasonable to define a morphism S → S′ to be a pair of morphisms
x ∈ C(X, X ′), y ∈ C(Y, Y ′) which respects the structure of parallel pairs,
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in the sense that y f = f ′x and y g = g′x :

?? ??

f g f ′ g′

-

-X X ′
x

Y Y ′
y

It is clear how to compose such morphisms, and immediate to verify that
this composition makes the class of parallel pairs in C into a category.

With this definition, equalizers and coequalizers join the ranks of construc-
tions which, though originally thought of only as defined on objects, can also
be applied to morphisms. Indeed, if the two parallel pairs of the above dia-
gram each have an equalizer, then it is not hard to check that the morphism
(x, y) induces a morphism z of the equalizer objects, and if every parallel
pair in C has an equalizer, then this way of associating to every morphism
of parallel pairs a morphism of their equalizer objects makes the equalizer
construction a functor. Likewise, if each parallel pair has a coequalizer, the
coequalizer construction becomes a functor.

Exercise 7.9:1. Prove the assertions about equalizers in the above para-
graph.

Exactly similar considerations apply to the configurations in a category C
for which we defined the concepts of pullbacks and pushouts. Such configura-

tions can be regarded as functors from diagram categories r rr-?, respectivelyrr r-? , into C, and the set of all configurations of one or the other of these

kinds can be made into a category, by letting a morphism from one such
configuration to another mean a system of maps between corresponding ob-
jects, which respect the given morphisms among these. One can verify that
this makes the pullback and pushout constructions, when they exist, into
functors on these categories of configurations.

In each of these cases, we have had a diagram category D and a general
category C, and we have discovered a concept of “morphism” between func-
tors from D to C. So, although we have seen that we can regard functors
as the morphisms of Cat, it seems that there is also a concept of morphisms
among functors! We formalize this as

Definition 7.9.1. Let C and D be categories and F, G : D→ C functors.
Then a morphism of functors a : F → G means a family (a(X))X∈Ob(D)

such that for each X ∈ Ob(D), one has a(X) ∈ C(F (X), G(X)), and for
each morphism f : X → Y in D, one has

(7.9.2) a(Y )F (f) = G(f) a(X) in C.
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Pictorially, this means that for each arrow f of D as at left below, we have
commutativity of the square at right:

? ?

F (f) G(f)

-

-F (X) G(X)
a(X)

F (Y ) G(Y )
a(Y )

X

Y

?

f

Given functors F, G, H : D → C and morphisms F
a−→ G

b−→ H, the
composite morphism b a : F → H is defined by

b a(X) = b(X) a(X) (X ∈ Ob(D)).

Likewise, the identity morphism idF of a functor F : D→ C is defined by

idF (X) = idF (X) (X ∈ Ob(D)).

The category whose objects are all the functors from D to C, with mor-
phisms, composition, and identity defined as above, will be denoted CD.

Note that if D is small, then CD will be small or legitimate according
as C is, but that if D is legitimate, then even if C is small, CD need
not be legitimate. (Its hom-sets may not be small.) But the Axiom of Uni-
verses shows us that we may consider these large functor categories as small
categories with respect to a larger universe.

We see that if G is a group, the above definition of a morphism between
functors Gcat → Set indeed agrees with the concept of a morphism between
G-sets, hence the category G-Set can be identified with SetGcat . Since Gcat

is a small category, SetGcat is a legitimate category.
Let us note some examples (where D will not be a small category) of mor-

phisms between functors we have seen before. Let F, A : Set → Group be
the functors taking a set X to the free group and the free abelian group on X
respectively. For every set X there is a homomorphism a(X) : F (X)→ A(X)
taking each generator of F (X) to the corresponding generator of A(X).
It is easy to see that these form commuting squares with group homomor-
phisms induced by set maps, hence they constitute a morphism of functors
a : F → A.

Let F again be the free group construction, and let U : Group→ Set be
the underlying set functor. Recall that for each X ∈ Ob(Set), the universal
property of F (X) involves a set map u(X) : X → U(F (X)). It is easy to
check that these maps u(X), taken together, give a morphism u : IdSet →
UF of functors Set→ Set, where IdSet denotes the identity functor of the
category Set.
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Exercise 7.9:2. Verify the above claim that u is a morphism of functors.

We note

Lemma 7.9.3. Let C and D be categories, F, G : D → C functors, and
a : F → G a morphism of functors. Then a is an isomorphism of functors
(i.e., an isomorphism in the category CD) if and only if for every X ∈
Ob(C), the morphism a(X) is an isomorphism of objects of D.

Proof. If a has a 2-sided inverse b, then it is immediate from the definition
of composition of functors that for each X ∈ Ob(C), b(X) is a 2-sided
inverse to a(X).

Conversely, if for each X ∈ Ob(C), a(X) has a 2-sided inverse b(X),
then we want to show that these maps together give a morphism of functors
G→ F ; once we have this, that morphism will clearly be a 2-sided inverse to
a. So let f : X → Y be any morphism in C. The fact that a is a morphism
of functors tells us that a(Y )F (f) = G(f)a(X) (7.9.2). Composing on the
left with b(Y ) and on the right with b(X), we get F (f)b(X) = b(Y )G(f).
Since this is true for all f, b is a morphism of functors, as required. ut

Statements that two different constructions are “essentially the same” can
usually be formulated precisely as saying that they are isomorphic as functors.
For instance

Exercise 7.9:3. (i) Let F : Set → Group denote the free group con-
struction, A : Set → Ab the free abelian group construction, and
C : Group → Ab the abelianization construction. Show that CF ∼= A.
(In what functor category?)
(ii) When we gave examples of covariant hom-functors hX : C → Set
at the end of §7.5, we observed that for C = Group, the functor hZ
was “essentially” the underlying set functor, and that for C = Set and
2 = {0, 1} ∈ Ob(Set), h2 was “essentially” the construction X 7→ X×X.
Similarly, in §7.6, we noted that the contravariant hom-functor h2 on Set
“could be identified with” the contravariant power-set functor. Verify that
in each of these cases, we have an isomorphism of functors.
(iii) Let T : Ab × Ab → Ab be the tensor product construction, and
R : Ab × Ab → Ab × Ab the construction taking each pair of abelian
groups (A, B) to the pair (B, A), and acting similarly on morphisms.
Show that T ∼= TR.
(iv) Show that the isomorphisms of Exercise 7.6:5(v) give an isomorphism
of functors IdFPOSet

∼= BA.

A venerable example of an isomorphism of functors arises in considering
duality of finite-dimensional vector spaces. We know that a finite-dimensional
vector space V, its dual V ∗, and its double dual V ∗∗ are all isomorphic.
Now the isomorphism V ∼= V ∗ is not “natural” – these spaces are isomorphic
simply because they have the same dimension. But there is a natural way to
construct an isomorphism V ∼= V ∗∗, by taking each vector v to the oper-
ator v defined by v(f) = f(v) (f ∈ V ∗). What this natural construction
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shows is that for C the category of finite-dimensional k-vector spaces, the
functors IdC and ∗∗ are isomorphic. (One cannot even attempt to construct
an isomorphism between IdC and ∗, since one functor is covariant and the
other contravariant.)

Examples such as this had long been referred to as “natural isomorphisms”,
and people had gradually noticed that these and other sorts of “natural”
constructions respected maps among objects. When Eilenberg and Mac Lane
introduced category theory in [8], they therefore gave the name natural trans-
formation to what we are calling a morphism of functors. The former term
is still widely used, though we shall not use it here. One can also call such
an entity a functorial map, to emphasize that it is not merely a system of
maps between individual objects F (X) and G(X), but that these respect
the morphisms F (f) and G(f) that make the constructions F and G func-
tors.

In fact, we used this term “functorial” – deferring explanation – in Ex-
ercises 3.3:6 and 3.3:7. What we called there a “functorial group-theoretic
operation in n variables” is in our new language a morphism Un → U,
where U is the underlying-set functor Group → Set, and Un is (as indi-
cated in Definition 7.8.5) the functor associating to every group G the direct
product of n copies of U(G), i.e., the set of n-tuples of elements of U(G).
Some cases of those exercises reappear, along with other problems, in the fol-
lowing exercises, which should give you practice thinking about morphisms
of functors. Note, incidentally, that the set-theoretic difficulties referred to
when we introduced Exercises 3.3:6 and 3.3:7 have been overcome by our
adoption of the Axiom of Universes, and our convention that “group” now
means “U-small group”.

Exercise 7.9:4. In each part below, attempt to describe all morphisms
among the functors listed, including morphisms from functors to them-
selves. (I describe functors below in terms of their behavior on objects.
The definitions of their behavior on morphisms should be clear. If you are
at all in doubt, begin your answer by saying how you think these functors
should act on morphisms.)
(i) The functors Id, A and B : Set→ Set given by Id(S) = S, A(S) =
S × S, B(S) = {{x, y} | x, y ∈ S}. (Note that a member of B(S) may
have either one or two elements.)
(ii) The functors U, V and W : Group → Set given by U(G) = |G|,
V (G) = |G| × |G|, W (G) = {x ∈ |G| | x2 = e}.
(iii) The underlying set functor U : FGroup → Set, where FGroup is
the category of finite groups.

Exercise 7.9:5. (i) Show that for any category C, the monoid CC(IdC,
IdC) of endomorphisms of the identity functor of C is commutative.
(ii) Attempt to determine this monoid for the following categories
C : bSet, Group, Ab, and FAb, the last being the category of finite
abelian groups.
(iii) Do the same for C = Scat where S is an arbitrary monoid.
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(iv) Is the endomorphism monoid of a full and faithful functor F : C→ D
in general isomorphic to the endomorphism monoid of the identity functor
of the full subcategory of D that is its image? If not, is it at least abelian?
If you get such a result, can either “full” or “faithful” be deleted from the
hypothesis?

Exercise 7.9:6. (i) Let F : Set→ Set be the functor associating to every
set S the set Sω of all sequences (s0, s1, . . . ) of elements of S. Determine
all morphisms from F to the identity functor of Set.
(ii) Let G : FSet → Set be the restriction of the above functor to the
category of finite sets; i.e., the functor taking every finite set S to the
(generally infinite) set of all sequences of members of S. Determine all
morphisms from G to the inclusion functor FSet→ Set.

Exercise 7.9:7. Give an example of two functors F, G : D→ C such that
for every object X of D, F (X) ∼= G(X) in C, but such that F and
G are not isomorphic as functors. In fact, if possible give one example in
which C and D are both one-object categories, and another in which they
are naturally occurring categories of mathematical objects.

Exercise 7.9:8. Suppose F, G : C → D are functors, and a : F → G a
morphism of functors. In Lemma 7.9.3, we saw that a will be invertible if
and only if each of the morphisms a(X) is invertible. Let us look at some
related questions.
(i) What implications if any hold between the conditions: (a) for all X ∈
Ob(C), a(X) ∈ D(F (X), G(X)) is left invertible in D, and (b) a ∈
DC(F, G) is left invertible in DC ?

(Suggestion: Consider the example where C is the category whose
objects are pairs (S, T ), for T a nonempty set and S a nonempty subset
of T, and where the morphisms (S, T )→ (S′, T ′) are the set-maps T → T ′

which carry S into S′. Let F,G : C → Set carry (S, T ) to S and T
respectively. Examine the obvious morphism a : F → G.)
(ii) What implications if any hold between the conditions: (a) for all X ∈
Ob(C), a(X) ∈ D(F (X), G(X)) is a monomorphism in D, and (b) a ∈
DC(F, G) is a monomorphism in DC ?

In the same spirit:
(iii) Suppose F1, F2, P : C→ D are functors, and p1 : P → F1, p2 : P →
F2 are morphisms. What implications if any hold between the conditions
(a) for all X ∈ Ob(C), P (X) is a product of F1(X) and F2(X) in D,
with projection morphisms p1(X) and p2(X), and (b) P is a product of
F1 and F2 in DC, with projection morphisms p1 and p2 ?

We have mentioned that constructions such as that of free groups, product
objects, etc., could be made into functors by using the universal properties to
get the required morphisms between the constructed objects. Since then, we
have talked about the free group functor, the product functor on a category,
etc.. Part (ii) of the next exercise justifies this use of the definite article.

Exercise 7.9:9. (i) Let (C, U) be a concrete category having free objects,
and let Φ be a function associating to every X ∈ Ob(Set) a free object
on X in C, Φ(X) = (F (X), u(X)). Show that there is a unique way of
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extending F (the first component of Φ) to a functor (i.e., defining F (f)
for each morphism f of Set in a functorial manner) so that u becomes
a morphism of functors IdSet → UF.
(ii) Suppose Φ : X 7→ (F (X), u(X)) and Ψ : X 7→ (G(X), v(X)) are two
constructions each assigning to every set X a free object in C with respect
to U. Show that the functors F and G obtained from Φ and Ψ as in
part (i) above (so that the second components u and v become morphisms
of functors) are isomorphic; in fact, that there is a unique isomorphism
making an appropriate diagram commute.
(iii) Write up the analogs of (i) and (ii) for one other functor associated
with a universal construction, e.g., products, equalizers, tensor products of
abelian groups, etc.. You may abbreviate steps that parallel the free-object
case closely.

To motivate what comes next, let us consider the following three pairs
of constructions: (a) To every group G, we may associate the set of its
elements of exponent 2, and also its set of elements of exponent 4; this
gives two functors V2 and V4 from Group to Set such that for every G,
V2(G) ⊆ V4(G). (b) To every set X we can associate the set P(X) of its
subsets, and also the set Pf (X) of its finite subsets. If we regard the power-
set construction as a covariant functor P : Set → Set, this gives a second
covariant functor Pf : Set→ Set such that for all X, Pf (X) ⊆ P (X). (We
used the covariant power-set functor here because the inverse image of a finite
set under a set map may not be finite, so there is no natural way to make a
contravariant functor out of Pf .) (c) If Inv : Monoid →Monoid denotes
the functor associating to every monoid its submonoid of invertible elements,
then for each monoid S, Inv(S) is a submonoid of S = IdMonoid(S).

These examples suggest that we want a concept of a “subfunctor” of a
functor. Of course, the examples were based on having the concept of a “sub-
object” of an object, and as we have observed, there is no unique way to
define this in a category. However, if we assume a concept of subobject given,
we can define the concept of subfunctor relative to it:

Lemma 7.9.4. Let C be a category, and Cincl be a subcategory having for
objects all the objects of C, and having for morphisms a subclass of the
monomorphisms of C, called the inclusions, such that there is at most one
inclusion morphism between any unordered pair of objects (i.e., such that
Cincl is a (large) partially ordered set). For X0, X ∈ Ob(C), let us call
X0 a subobject of X (or when there is a possibility of ambiguity, a “sub-
object with respect to the distinguished subcategory Cincl ”) if there exists an
inclusion morphism X0 → X. If X0 and Y0 are subobjects of X and Y
respectively, and f ∈ C(X, Y ), let us say f carries X0 into Y0 if there ex-
ists a (necessarily unique! ) morphism f0 ∈ C(X0, Y0) making a commuting
square with f and the inclusions of X0 and Y0 in X and Y.

Then for C and Cincl as above, and F any functor from another category
D into C, the following data are equivalent:

(a) A choice for each X ∈ Ob(D) of a subobject G(X) of F (X) such that
for each f ∈ D(X, Y ), F (f) carries G(X) into G(Y ).
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(b) A functor G : D→ C such that each G(X) is a subobject of F (X), and
such that the inclusion maps give a morphism of functors G→ F.

(c) A subobject G of F as objects of CD with respect to the subcategory
of thereof having for objects all the objects of that category (all functors
D → C), and for morphisms those morphisms of functors whose values at
all objects of D are inclusion morphisms (morphisms in Cincl). We may
call such an G a subfunctor of F. ut

Exercise 7.9:10. Prove the above lemma, including the assertion of unicity
noted parenthetically near the end of the first paragraph, and the implicit
assertion that the subcategory referred to in (c) has the same properties as-
sumed for Cincl. (Can that subcategory of CD be described as (Cincl)

D ?)

In considering categories C of familiar algebraic objects, when we speak
of subobjects and subfunctors, the distinguished subcategory Cincl will be
understood to have for morphisms the “ordinary” inclusions, unless the con-
trary is stated.

Exercise 7.9:11. Let G be a group.
(i) Show that if S is a subfunctor of the identity functor of Group,
then S(G) will be a subgroup of G which is carried into itself by every
endomorphism of G. (Group theorists call such a subgroup fully invariant.)
(ii) Is it true, conversely, that if H is any fully invariant subgroup of G,
then there exists a subfunctor S of IdGroup such that S(G) = H ?

(iii) Given a subgroup H of G such that some subfunctor S of IdGroup

exists for which S(G) = H, will there exist a least S with this property?
A greatest?
(iv) Generalize your answers to (i)-(iii) in one way or another.

Exercise 7.9:12. Let k be a field of characteristic 0, and k-Mod the
category of k-vector-spaces. For each positive integer n let ⊗n : k-Mod→
k-Mod denote the n-fold tensor product functor,

V 7→ V ⊗n =def V ⊗ · · · ⊗ V (n factors).

(i) Determine all subfunctors of the functors ⊗1 and ⊗2.
(ii) Investigate subfunctors of higher ⊗n ’s.
(iii) Are the results you obtained in (i) and/or (ii) valid over fields k of
arbitrary characteristic?

We have observed that the idea that two constructions of some sort of
mathematical object are “equivalent” can often be made precise as a state-
ment that two functors are isomorphic. A different type of statement is that
two sorts of mathematical object are “equivalent”. In some cases, this can
be formalized by giving an isomorphism (invertible functor) between the cat-
egories of the two sorts of objects. E.g., the category of Boolean rings is
isomorphic to the category of Boolean algebras, and Group is isomorphic
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to the category of those monoids all of whose elements are invertible. But
there are times when this does not work, because the two sorts of objects
differ in certain “irrelevant” structure which makes it impossible, or unnat-
ural, to set up such an isomorphism. For instance, groups with underlying
set contained in ω are “essentially” the same as arbitrary countable groups,
although there cannot be an isomorphism between these two categories of
groups, because one is small while the object-set of the other has the cardi-
nality of the universe in which we are working. Monoids are “essentially the
same” as categories with just one object, but the natural construction taking
one-object categories to monoids is not one-to-one, because it forgets what
element was the one object; and the way we found to go in the other direc-
tion (inserting “ 1 ” as the object) is likewise not onto. For these purposes, a
concept weaker than isomorphism is useful.

Definition 7.9.5. A functor F : C → D is called an equivalence between
the categories C and D if there exists a functor G : D → C such that
GF ∼= IdC and FG ∼= IdD (isomorphisms of functors). If such an equivalence
exists, one says “ C is equivalent to D ”, often written C ≈ D.

Lemma 7.9.6. A functor F : C → D is an equivalence if and only if it is
full and faithful, and every object of D is isomorphic to F (X) for some
X ∈ Ob(C).

Idea of proof. “=⇒” is straightforward. To show “⇐=”, choose for each ob-
ject Y of D an object G(Y ) of C and an isomorphism i(Y ) : Y → FG(Y ).
One finds that there is a unique way to make G a functor so that i becomes
an isomorphism IdD

∼= FG, and that there is a straightforward way to con-
struct an isomorphism IdC

∼= GF. ut

Exercise 7.9:13. Give the details of the proof of the above lemma (including
the parts described as straightforward).

Note that it is clear from Definition 7.9.5 that the relation ≈ is symmetric
and reflexive, but it is not entirely clear whether a composite of equivalences
is an equivalence, hence whether ≈ is transitive. That condition, however,
is easily seen from Lemma 7.9.6. So the relation ≈ of equivalence between
categories is, as one would hope, an equivalence relation.

If one merely assumes a functor F : C → D is full and faithful, but not
the final condition of the above lemma, then it is not hard to deduce that this
is equivalent to saying that it is an equivalence of C with a full subcategory
of D.

Exercise 7.9:14. Let k be a field and k-fgMod the category of finite-
dimensional vector spaces over k. Let Matk denote the category whose
objects are the nonnegative integers, and such that a morphism from m
to n is an n×m matrix over k, with composition of morphisms given by
matrix multiplication. Show that Matk ≈ k-fgMod.
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Exercise 7.9:15. Let k and k-fgMod be as in the preceding exercise. Show
that duality of vector spaces gives a contravariant equivalence of k-fgMod
with itself, i.e., an equivalence between k-fgModop and k-fgMod.

Exercise 7.9:16. Let FBool1 denote the category of finite Boolean rings,
and FSet the category of finite sets. In FBool1, 2 will denote the
2-element Boolean ring with underlying set {0, 1}, while in FSet, 2 will
as usual denote the set {0, 1}.

For each B ∈ Ob(FBool1), if we define B∗ = FBool1(B, 2), we get
a natural homomorphism of Boolean rings mB : B → 2B

∗
which takes

x ∈ B to (h(x))h∈B∗ .
(i) Show that mB is always an isomorphism. In particular, this says that
every finite Boolean ring is a finite product of copies of the ring 2.

(ii) Show with the help of (i) that the category FBool1 is equivalent to
FSetop.

Exercise 7.9:17. Let R be a ring, n a positive integer, and Mn(R) the
ring of n × n matrices over R. For any left R-module M, let Coln(M)
denote the set of column vectors of height n of elements of M, and let
this be made a left Mn(R)-module in the obvious way. This gives a functor
Coln : R-Mod→Mn(R)-Mod.

Show that Coln is an equivalence of categories.
(Pairs of rings which, like R and Mn(R), have equivalent module

categories are said to be Morita equivalent; cf. [107, §§18–19].)

The following definition and lemma reduce the question of whether two
categories are equivalent to the question of whether two other categories are
isomorphic.

Definition 7.9.7. If C is a category, then a skeleton of C means a full
subcategory having exactly one representative of each isomorphism class of
objects of C; i.e., by Lemma 7.9.6, a minimal full subcategory C0 such that
the inclusion of C0 in C is an equivalence.

The Axiom of Choice clearly allows us to construct a skeleton for every
category.

Lemma 7.9.8. Let C and D be categories, with skeleta C0 and D0. Then
C and D are equivalent if and only if C0 and D0 are isomorphic. ut

Exercise 7.9:18. Write out the proof of Lemma 7.9.8.

Lemma 7.9.8 shows that equivalent categories agree in all properties that
respect isomorphism of categories and “don’t depend on how many isomor-
phic copies each object has”; that is, intuitively speaking, in all “genuinely
category-theoretic” properties.
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Exercise 7.9:19. Show that Set is not equivalent to Setop by finding a
category-theoretic property possessed by one of these categories but not
the other, and proving that equivalent categories must agree with respect
to whether that property holds. For additional credit, demonstrate the
non-equivalence of a few other pairs of familiar categories, e.g., show that
Set is not equivalent to Group.

Exercise 7.9:20. Let X be a pathwise connected topological space. Recall
that one can define a category π1(X) whose objects are the points of X,
and in which a morphism from x to y means a homotopy class of paths
from x to y. What does a skeleton of this category look like?

Exercise 7.9:21. Suppose C and D are equivalent categories, and C0 is
a subcategory of C. Must D have a subcategory D0 equivalent to C0 ?

7.10. Properties of functor categories

In the preceding section we defined morphisms of functors, and saw some
applications of the resulting category structure of CD. Let us now set down
a few basic properties of such categories.

First, consider any bifunctor

F : D×E −→ C,

in other words, any object of CD×E. If we fix an object Y ∈ Ob(E), it is
easy to verify that F induces a functor F (−, Y ) : D→ C, i.e., an object of
CD, sending each object X of D to F (X, Y ) and each morphism f of D
to F (f, idY ).

Having made this observation for each object of E, let us now note that
for each morphism between such objects, g ∈ E(Y, Y ′), the morphisms
F (idX , g) (X ∈ Ob(D)) yield a morphism of functors F (−, g) : F (−, Y )→
F (−, Y ′). Thus our system of objects F (−, Y ) (Y ∈ Ob(E)) of CD has
become a functor F ′ : E → CD. That is, from our object F of CD×E we
have gotten an object F ′ of (CD)E.

In constructing F ′, we have not used the values of F at all the morphisms
of D×E, but only at morphisms of the forms (idX , g) and (f, idY ); so we
might wonder whether F ′ embodies all the information contained in F. But
in fact, an arbitrary morphism of D×E, (f, g) : (X, Y )→ (X ′, Y ′), can be
written (f, idY ′)(idX , g), so the images under F of morphisms of those two
sorts do indeed determine the images of all morphisms of D×E. In fact, we
have

Lemma 7.10.1 (Law of exponents for categories). For any categories
C, D, E one has CD×E ∼= (CD)E, via the construction sketched above.

ut
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Exercise 7.10:1. Prove the above lemma. In particular, describe how to
map morphisms of CD×E to morphisms of (CD)E.

Exercise 7.10:2. Does one have other laws of exponents for functor cat-
egories? In particular, is (C × D)E ∼= (CE) × (DE), and is CD E ∼=
(CD)× (CE) ? (For the meaning of D E, cf. Exercise 7.6:10.)

Next, suppose that G1, G2 : D → C are functors, and a : G1 → G2 is
a morphism between them. If H is a functor from any other category into
D, we can form the composite functors G1H and G2H, and we find, not
surprisingly, that the morphism a : G1 → G2 induces a morphism G1H →
G2H. Likewise, given a functor F out of C, a induces a morphism F G1 →
F G2. These induced morphisms of functors are written a◦H : G1H → G2H
and F ◦ a : F G1 → F G2 respectively.

For example, let a be the canonical morphism from the free group functor
F to the free abelian group functor A. If we compose on the right with,
say, the functor U taking every lattice to its underlying set,

Lattice -U
Set

j

*

F

?a

A

Group

we get a morphism of functors a ◦U mapping free groups on the underlying
sets of lattices L homomorphically to the free abelian groups on the same
underlying sets. If instead we compose on the left with the underlying-set
functor V out of the category of groups,

Set
j

*

F

?a

A

Group -V
Set

we get a morphism of functors V ◦ a mapping the underlying set of the free
group on each set X to the underlying set of the free abelian group on X.

We record below the above constructions and note the basic laws that they
satisfy. The reader is advised to draw (or visualize) pictures like those above
for the various situations described.

Lemma 7.10.2. Let C, D and E be categories.

(i) Given a morphism a : F1 → F2 of functors D → C, and any functor
G : E→ D, a morphism a ◦G : F1G→ F2G is defined by setting

(a ◦G)(X) = a(G(X)) (X ∈ Ob(E)).

(ii) Given any functor F : D → C, and a morphism b : G1 → G2 of
functors E→ D, a morphism F ◦ b : FG1 → FG2 is defined by setting

(F ◦ b)(X) = F (b(X)) (X ∈ Ob(E)).
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(iii) Given morphisms F1
a1−→ F2

a2−→ F3 of functors D → C, and any
functor G : E→ D, one has

(a2 a1 ◦G) = (a2 ◦G)(a1 ◦G).

(iv) Given any functor F : D → C, and morphisms G1
b1−→ G2

b2−→ G3 of
functors E→ D, one has

(F ◦ b2 b1) = (F ◦ b2)(F ◦ b1).

(v) Given functors F : D→ C and G : E→ D, one has

idF ◦G = idFG = F ◦ idG.

(vi) Given both a morphism a : F1 → F2 of functors D → C, and a mor-
phism b : G1 → G2 of functors E→ D, one has

(7.10.3) (a ◦G2)(F1 ◦ b) = (F2 ◦ b)(a ◦G1)

as morphisms F1G1 → F2G2.

(vii) Hence, the operation of composing functors, which a priori is a set map

(7.10.4) Cat(D, C)×Cat(E, D) −→ Cat(E, C),

actually gives a functor

(7.10.5) CD ×DE −→ CE,

which acts on morphisms by taking each (a, b) : (F1, G1) → (F2, G2) as
in (vi) to the common value of the two sides of (7.10.3), with details of
functoriality established by (i)-(v). ut

Exercise 7.10:3. (i) Prove statements (i)-(vi) of the above lemma.
(ii) Verify that statement (vii) summarizes all of statements (i)-(v), except
for the descriptions of how F ◦ a and b ◦G are defined.

In making Cat a category, we had to verify that the set map (7.10.4)
satisfied the associativity and identity laws; we now ought to check that
these laws hold, not merely as equalities of set maps, but as equalities of
functors! The case of the identity laws is easy, but as part (ii) of the next
exercise shows, is still useful:

Exercise 7.10:4. (i) Given a morphism a : G1 → G2 of functors G1,
G2 : D→ C, show that

a ◦ IdD = a = IdC ◦ a.
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(ii) Show that the above result, together with Lemma 7.10.2(vi), imme-
diately gives the result of Exercise 7.9:5(i).

It is more work to write out the details of

Exercise 7.10:5. For categories B, C, D and E establish identities (like
those of Lemma 7.10.2) showing that the two iterated-composition functors
BC ×CD ×DE → BE are equal as functors.

In doing the above exercises, you may wish to use the notation which
represents the common value of the two sides of (7.10.3) as a ◦ b. In this
connection, note part (i) of

Exercise 7.10:6. (i) Show that if the above notation is adopted, there are
situations where a ◦ b and ab are both defined, but are unequal.
(ii) Can you find any important class of cases where they must be equal?

Exercise 7.10:7. Suppose we have an equivalence of categories, given by
functors F : C → D, G : D → C with IdC

∼= GF, IdD
∼= FG. Given

a particular isomorphism of functors i : IdC → GF, can one in general
choose an isomorphism j : IdD → FG such that the two isomorphisms
of functors, i ◦ G, G ◦ j : G → GF G are equal, and likewise the two
isomorphisms j ◦ F, F ◦ i : F → FGF ?

How are we to look at a functor category CD ? Should we think of the
functors which are its objects as “maps” or as “things”? As a category, is it
“like” C, “like” D, or “like” neither?

My general advice is to think of its objects as “things” and its morphisms
as “maps”. More precisely, its objects are “things” which consist of systems
of objects of C, linked together by morphisms of C, in a way parametrized
by D; its morphisms are further systems of morphisms of C uniting par-
allel structures of this sort. With respect to basic properties, such a functor
category usually behaves more like C than like D. For example, if C has
finite products, so does CD : one can construct the product F × G of two
functors F, G ∈ CD “objectwise”, by taking (F ×G)(X) to be the product
F (X) × G(X) for each X ∈ Ob(D) (cf. Exercise 7.9:8 (iii)). On the other
hand, so far as I know, existence of products in D tells us nothing about
CD.

7.11. Enriched categories (a sketch)

A recurring theme in category theory is that one characterizes some type of
mathematical entity as a certain kind of structure in a particular category,
such as Set, analyzes what properties of Set are needed for the concept
to make sense, and then creates a generalized definition, which is like the
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original one except that Set is replaced by a general category having the
required properties.

There is in fact an important application of this idea to the concept of cat-
egory itself! I shall sketch this briefly below. I will begin with a few examples
to motivate the idea, and then discuss what is involved in the general case,
though I shall not give formal definitions.

Recall that a category, as we have defined it, is given by a set of objects,
and a set of morphisms between any two objects, with composition operations
given by set maps, µ : C(Y, Z) × C(X, Y ) → C(X, Z). But now consider
the category Cat. Though we still have a set of objects, we have seen that
for each pair of objects C, D we can speak of a category of morphisms CD,
and composition in Cat is given by bifunctors µCDE : ED ×DC → EC.

Likewise, for any ring R, it is well known that the homomorphisms
from one R-module to another form an additive group, so the category
R-Mod can be described as having, for each pair of objects, an abelian
group of morphisms X → Y. Here composition is given by bilinear maps
(R-Mod(Y, Z), R-Mod(X, Y )) → R-Mod(X, Z) among these abelian
groups.

One expresses these facts by saying that Cat can be regarded as
a Cat-based category, or a Cat-category for short, and R-Mod as an
Ab-category. Similarly, in situations where one has a natural topological
structure on sets of morphisms, and the composition maps are continuous,
one can say one has a Top-based category.

These generalized categories are called enriched categories.
Note that when we referred to R-Mod as being an Ab-category, this in-

cluded the observation that the composition maps µXY Z are bilinear. Thus,
they correspond to abelian group homomorphisms (which by abuse of nota-
tion we shall denote by the same symbols):

µXY Z : C(Y, Z)⊗C(X, Y ) −→ C(X, Z).

The general definition of enriched category requires that the “base category”
(the category in which the hom-objects are taken to lie; i.e., Set, Cat, Ab,
Top, etc.) be given with a bifunctor into itself having certain properties,
which is used, as above, in describing the composition maps. In the case
where the base category is Ab, this is the tensor-product bifunctor, while
in the cases of Set, Cat, and Top, the corresponding role is filled by the
product bifunctor. See [19, §VII.7] for a few more details, and [100] for a
thorough development of the subject.

One should, strictly, distinguish between R-Mod as an ordinary (i.e.,
Set-based) category and as an Ab-category, writing these two entities as, say,
R-Mod and R-Mod(Ab), and similarly distinguish Cat and Cat(Cat) –
just as one ought to distinguish between the set of integers, the additive group
of integers, the lattice of integers, the ring of integers, etc.. This notational
problem will not concern us, however, since we will not formalize the concept
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of enriched category in these notes. Outside this section, when we occasionally
refer to the special properties of categories such as R-Mod or Cat, we shall
not assume any general theory of enriched categories, but simply use in an
ad hoc fashion what we know about the extra structure.

We remark that the concept of Ab-based categories, and more generally,
of k-Mod-based categories for k a commutative ring (called “k-linear cate-
gories”), are probably more widely used than all the other sorts of enriched
categories together. See [10] for a lively development of the subject.

The Cat-based category Cat contains a vast number of interesting sub-
Cat-categories. Here is one:

Exercise 7.11:1. Consider the full subcategory of Cat whose objects are
the categories Gcat, for groups G.
(i) Characterize in group-theoretic terms the morphisms and morphisms
of morphisms, and the operation ◦ of Lemma 7.10.2, in this Cat-category.
(ii) Translate your answer into a description of a Cat-category structure
one can put on the category Group.
(iii) Describe the structure of the full Cat-subcategory of the above cate-
gory having for objects the abelian groups.

The student interested in ring theory might note that the category of Ex-
ercise 7.2:3 (with rings as objects, and bimodules RBS as morphisms) can be
made a Cat-category, by using bimodule homomorphisms as the morphisms-
among-morphisms; moreover, each morphism-category C(R, S) (for R and
S rings) is in fact an Ab-category! What this says is that this category is an
AbCat-category, where AbCat is the category of Ab-categories. There is
an explanation: This category is equivalent to the subcategory of Cat whose
objects are the Ab-categories R-Mod for rings R, and whose morphisms
are the functors RB ⊗S − : S-Mod→ R-Mod induced by bimodules RBS .
So this observation is really a special case of the fact that AbCat is an
AbCat-category, just as Ab is an Ab-category and Cat is a Cat-category.

We have mentioned (in Exercise 7.3:1 and the preceding discussion) that
there is a version of the definition of category which eliminates reference
to objects, and thus involves only one kind of element, the morphism (the
objects being hidden under the guise of their identity morphisms). If we apply
this idea twice to the concept of a Cat-category, we likewise get a structure
with only one type of element – what we have been calling the morphisms of
morphisms – but with two partial composition operations on these elements,
ab and a ◦ b (Exercise 7.10:6). Described in this way, Cat-categories have
been called “2-categories” [19, p. 44]. (The relation between the two types of
composition is slightly asymmetric. If one drops the asymmetric condition –
that every identity element with respect to the first composition is also an
identity element with respect to the second – one gets a slightly more general
concept, also defined in [19], and called a “double category”.)
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Having begun by considering Cat as an ordinary, i.e., Set-based category,
with objects and morphisms (i.e., functors), and then having found that there
was an important concept of morphisms between morphisms (morphisms of
functors), we may ask whether one can define, further, morphisms between
morphisms between morphisms in this category. The answer is “yes and no”.
On the yes side, observe that one can set up a concept of “morphisms between
morphisms” in any category C ! For a morphism in C is the same as an
object of C2, where 2 denotes the diagram category ·→ · , and we know
how to make C2 a category. So in particular, given categories C and D we
can define a “morphism of morphisms in CD ”, which is thus a “morphism
of morphisms of morphisms” in Cat.

However, this construction does not constitute a nontrivial enrichment of
structure, since the concept of morphism of morphisms we have just described
in an arbitrary category C is defined in terms of its existing category struc-
ture. (Indeed, when applied to Cat, it does not give the concept of “mor-
phism of functors”, but that of “commuting square of functors”.) So we come
to the “no” side of the answer – so far as I know, the category Cat has no
enriched structure beyond that of a Cat-category.

However, if one turns from the category Cat of all Set-based categories,
to the category CatCat of all Cat-based categories, one finds that here
one has a natural and nontrivial concept of morphisms between morphisms
between morphisms – in other words, CatCat is a CatCat-based category.
And this process can be iterated ad infinitum.

But it is time to return from these vertiginous heights to the main stream
of our subject.



Chapter 8

Universal constructions in
category-theoretic terms

The language of category theory has enabled us to give general definitions
of “free object”, “product”, “coproduct”, “equalizer” and various other uni-
versal constructions. It is clear that these different constructions have many
properties in common. Let us now look for ways to unify them, so that we
will be able to prove results about them by general arguments, rather than
piecemeal.

8.1. Universality in terms of initial and terminal objects

In all the above constructions, we deal with mathematical entities with cer-
tain “extra” structure, and seek one entity E with such structure that is
“universal”. This suggests that we make the class of entities with such extra
structure into a category, and examine the universal property of E there.

For instance, the free group on three generators is universal among sys-
tems (G, a, b, c) where G is a group, and a, b, c ∈ |G|. If we define a cat-
egory whose objects are these systems (G, a, b, c), and where a morphism
(G, a, b, c)→ (G′, a′, b′, c′) means a group homomorphism f : G→ G′ such
that f(a) = a′, f(b) = b′, f(c) = c′, we see that the universal property
of the free group (F, x, y, z) says that it has a unique morphism into every
object of the category – in other words, that it is an initial object.

Similarly, given a group G, the abelianization of G is universal among
pairs (A, f) where A is an abelian group, and f a group homomorphism
G→ A. If we define a morphism from one such pair (A, f) to another such
pair (B, g) to mean a group homomorphism m : A→ B such that mf = g,
we see that the definition of the abelianization of G says that it is initial in
this category.

Likewise, a group, a ring, a lattice, etc., with a presentation X | R
clearly means an initial object in the category whose objects are groups,
etc., with specified X-tuples of elements satisfying the system of equations
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R, and whose morphisms are homomorphisms respecting these distinguished
X-tuples of elements.

The above were examples of what we named “left universal” properties
in §4.8. Let us look at one “right universal” property, that of a product of
two objects A and B in a category C. We see that the relevant auxiliary
category should have for objects all 3-tuples (X, a, b), where X ∈ Ob(C),
a ∈ C(X, A) b ∈ C(X, B), and for morphisms (X, a, b) → (Y, a′, b′) all
morphisms X → Y in C making commuting triangles with the maps into A
and B. A direct product of A and B in C is seen to be a terminal object
(P, p1, p2) in this category.

You can likewise easily translate the universal properties of pushouts, pull-
backs and coproducts in arbitrary categories to those of initial or terminal
objects in appropriately defined auxiliary categories.

So all the universal properties we have considered reduce to those of being
initial or terminal objects in appropriate categories. This view of universal
constructions is emphasized by Lang [33, p. 57 et seq.], who gives these two
types of objects the poetic designations “universally repelling” and “univer-
sally attracting”. Since a terminal object in C is an initial object in Cop,
all these universal properties ultimately reduce to that of initial objects!

Lemma 7.8.2 tells us that initial (and hence terminal) objects are unique
up to unique isomorphism. This gives us, in one fell swoop, uniqueness up
to canonical isomorphism for free groups, abelianizations of groups, prod-
ucts, coproducts, pushouts, pullbacks, objects presented by generators and
relations, and all the other universal constructions we have considered. The
canonical isomorphisms which these constructions are “unique up to” corre-
spond to the unique morphisms between any two initial objects of a category.
I.e., given two realizations of one of our universal constructions, these isomor-
phisms will be the unique morphisms from each to the other that preserve
the extra structure.

We will look at questions of existence of initial objects in §8.10.

8.2. Representable functors, and Yoneda’s Lemma

The above approach to universal constructions is impressive for its simplic-
ity; but we would also like to relate these universal objects to the original
categories in question: Though the free group on an S-tuple of generators
is initial in the category of groups given with S-tuples of elements, and the
kernel of a group homomorphism f : G → H is terminal in the category of
groups L given with homomorphisms L→ G having trivial composite with
f, we also want to understand these constructions in relation to the category
Group.

Note that the objects of the various auxiliary categories we have used can
be written as pairs (X, a), where X is an object of the original category C,
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and a is some additional structure on X. If for each object X of C we write
F (X) for the set of all possible values of this additional structure (e.g., in the
case that leads to the free group on a set S, the set of all S-tuples of elements
of X), we find that F is in general a functor, covariant or contravariant,
from C to Set. The condition characterizing a left universal pair (R, u)
is that for every X ∈ Ob(C) and x ∈ F (X), there should be a unique
morphism f : R→ X such that F (f)(u) = x. This condition – which we see
requires a covariant F for the latter equation to make sense – is equivalent
to saying that for each object X, the set of morphisms f ∈ C(R, X) is
sent bijectively to the set of elements of F (X) by the map f 7→ F (f)(u).
The bijectivity of this correspondence for each X leads to an isomorphism
between the functor C(R,−), i.e., hR : C → Set, and the given functor
F : C → Set. Thus, the universal property of R can be formulated as a
statement of this isomorphism:

Theorem 8.2.1. Let C be a category, and F : C → Set a functor. Then
the following data are equivalent:

(i) An object R ∈ Ob(C) and an element u ∈ F (R) having the universal
property that for all X ∈ Ob(C) and all x ∈ F (X), there exists a unique
f ∈ C(R, X) such that F (f)(u) = x.

(ii) An initial object (R, u) in the category whose objects are all ordered
pairs (X, x) with X ∈ Ob(C) and x ∈ F (X), and whose morphisms are
morphisms among the first components of these pairs which respect the second
components.

(iii) An object R ∈ Ob(C) and an isomorphism of functors i : hR ∼= F in
SetC.

Namely, given (R, u) as in (i) or (ii), one obtains the isomorphism i
of (iii) by letting i(X) take f ∈ hR(X) to F (f)(u) ∈ F (X), while in the
reverse direction, one obtains u from i as i(R)(idR).

Sketch of proof. The equivalence of the structures described in (i) and (ii) is
immediate.

Concerning our description of how to pass from these structures to that
of (iii), it is straightforward to verify that for any u ∈ F (R), the map i
described there gives a morphism of functors hR → F. That this is an iso-
morphism is then the content of the universal property of (i). In the opposite
direction, given an isomorphism i as in (iii), if u is defined as indicated,
then the universal property of (i) is just a restatement of the bijectivity of
the maps i(X) : hR(X)→ F (X).

Finally, it is easy to check that if one goes as above from universal element
to isomorphism of functors and back, one recovers the original element, and
if one goes from isomorphism to universal element and back, one recovers the
original isomorphism. ut
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Exercise 8.2:1. Write out the “straightforward verification” referred to in
the second sentence of the above proof, and those implied in the phrases
“is then the content of” and “is just a restatement of” in the next two
sentences.

Dualizing (i.e., applying Theorem 8.2.1 to Cop and stating the resulting
assertion in terms of contravariant functors on C), we get

Theorem 8.2.2. Let C be a category, and F a contravariant functor from
C to Set (i.e., a functor Cop → Set). Then the following data are equiva-
lent:

(i) An object R ∈ Ob(C) and an element u ∈ F (R) with the universal
property that for any X ∈ Ob(C) and x ∈ F (X), there exists a unique
f ∈ C(X, R) such that F (f)(u) = x.

(ii) A terminal object (R, u) in the category whose objects are all ordered
pairs (X, x) with X ∈ Ob(C) and x ∈ F (X), and whose morphisms are
morphisms among the first components of these pairs which respect the second
components.

(iii) An object R ∈ Ob(C) and an isomorphism of contravariant functors

i : hR ∼= F in SetC
op

.

Namely, given (R, u) as in (i) or (ii), one obtains an isomorphism i as
in (iii) by letting i(X) take f ∈ hR(X) to F (f)(u) ∈ F (X), while in the
reverse direction, one obtains u from i as i(R)(idR) . ut

Note that in Theorem 8.2.1(ii), the last phrase, “which respect second
components”, meant that for a morphism f : X → Y to be considered
a morphism (X, x) → (Y, y), we required F (f)(x) = y, while in Theo-
rem 8.2.2(ii), the corresponding condition is F (f)(y) = x.

We remark that the auxiliary categories used in point (ii) of the above two
theorems are comma categories, (1 ↓ F ) (see Exercise 7.8:30(iii)).

The properties described above have names:

Definition 8.2.3. Let C be a category.
A covariant functor F : C → Set is said to be representable if it is iso-

morphic to a covariant hom-functor hR for some R ∈ Ob(C).
A contravariant functor F : Cop → Set is likewise said to be representable

if it is isomorphic to a contravariant hom-functor hR for some R ∈ Ob(C).
In each case, R is called the representing object for F, and if i is the

given isomorphism from the indicated hom functor to F, then i(R)(idR) is
called the associated universal element of F (R).

So from this point of view, universal problems of the sort considered above
in a category C are questions of the representability of certain set-valued
functors on C. Let us examine a few set-valued functors, and see which of
them are representable.
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If U is the underlying-set functor on Group, a representing object for
U should be a group with a universal element of its underlying set. The ob-
ject with this property is the free group on one generator. More generally,
if a category has free objects with respect to a concretization U, then U
will be represented by the free object on one generator, while the free ob-
ject on a general set I can be characterized as representing the functor U I

(Definition 7.8.5).
The functor associating to every group the set of its elements of exponent

2 is represented by the group Z2. More generally, the group with presenta-
tion by generators and relations X | R represents the functor associating
to every group G the set of X-tuples of members of G which satisfy the
relations R.

Is the functor associating to every commutative ring K the set |K[t]|
of all polynomials over K in one indeterminate t representable? A repre-
senting object would be a ring R with a universal polynomial u(t) ∈ |R[t]|.
The universal property would say that given any polynomial p(t) over any
ring K, there should exist a unique homomorphism R→ K which, applied
coefficient-wise to polynomials, carries u(t) to p(t). But clearly there is a
problem here: The polynomial u will have some degree n, and if we choose
a polynomial p of degree > n, it cannot be obtained from u in this way. So
the set-of-polynomials functor is not representable.

However, there is a concept close to that of polynomial but not subject to
the restriction that only finitely many of the coefficients be nonzero, that of a
formal power series a0+a1t+a2t

2+· · · . If K is a ring, then the ring of formal
power series over K is denoted K[[t]]; its underlying set |K[[t]]| = {a0 +
a1t+ a2t

2 + . . . } can be identified with the set of all sequences (a0, a1, . . . )
of elements of K, i.e., with |K|ω = Uω(K). We know that the functor Uω

is represented by the free commutative ring on an ω-tuple of generators, that
is, the polynomial ring Z[A0, A1, . . . ]. And indeed, the formal power series
ring over this polynomial ring contains the element A0 + A1t + A2t

2 + · · · ,
which clearly has the property of a universal power series.

Exercise 8.2:2. (i) Show that the functor associating to every monoid S
the set of its invertible elements is representable, but that the functor
associating to every monoid S the set of its right-invertible elements is
not.
(ii) What about the functor associating to every monoid S the set of
pairs (x, y) such that x y = e and y x = e ? The set of pairs (x, y) merely
satisfying x y = e ? The set of 3-tuples (x, y, z) such that x y = x z = e ?
(iii) Determine which, if any, of the functors mentioned in (i) and (ii) are
isomorphic to one another.

Exercise 8.2:3. Let P denote the contravariant power-set functor, associ-
ating to every set X the set P(X) of its subsets, and E the contravariant
functor associating to every set X the set E(X) of equivalence relations
on X. Determine whether each of these is representable.
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Exercise 8.2:4. Let A, B be objects of a category C. Describe a set-
valued functor F on C such that a product of A and B, if it exists in
C, means a representing object for F, and likewise a functor G such that
a coproduct of A and B in C means a representing object for G. (One
of these will be covariant and the other contravariant.)

Exercise 8.2:5. Let (C, U) be a concrete category. Show that the follow-
ing conditions are equivalent. (a) The concretization functor U is repre-
sentable. (b) C has a free object on one generator with respect to U.

Moreover, show that if C has coproducts, then these are also equiva-
lent to: (b′) C has free objects with respect to U on all sets.

Students who know some Lie group theory might try

Exercise 8.2:6. Let LieGp denote the category whose objects are all Lie
groups (understood to be finite-dimensional) and whose morphisms are the
continuous (equivalently, analytic) group homomorphisms among these.
Let T : LieGp → Set denote the functor associating to a Lie group L
the set of tangent vectors to L at the neutral element.

Which of the following covariant functors LieGp → Set are rep-
resentable? (a) the functor T, (b) the functor T 2 : L 7→ T (L) × T (L),
(c) the functor L 7→ {(x, y) ∈ T (L)× T (L) | [x, y] = x}.

The equivalence, in each of Theorems 8.2.1 and 8.2.2, of parts (ii) and (iii)
shows that the concept of representable functor can be characterized in terms
of initial and terminal objects. The reverse is also true:

Exercise 8.2:7. Let C be any category. Display a covariant functor F and
a contravariant functor G from C to Set, such that an initial, respec-
tively a terminal object of C is equivalent to a representing object for F,
respectively G.

The bijection (i)←→ (iii) of Theorem 8.2.1 shows that an isomorphism
between the hom-functor hR associated with an object R, and an arbitrary
functor F, is equivalent to a specification of an element of F (R) with the
universal property given in (i). In fact, every morphism, invertible or not, from
a hom-functor hR : C → Set to another functor F : C → Set corresponds
to a choice of some element of F (R). Though utterly simple to prove, this
is an important tool. We give both this result and its contravariant dual in

Theorem 8.2.4 (Yoneda’s Lemma). Let C be a category, and R an ob-
ject of C.

If F : C → Set is a covariant functor, then morphisms f : hR → F are
in one-to-one correspondence with elements of F (R), under the map

(8.2.5) f 7−→ f(idR)

(where on the right-hand side, f is short for f(R) : hR(R)→ F (R)).
Likewise, if F : Cop → Set is a contravariant functor, then morphisms

f : hR → F are in one-to-one correspondence with elements of F (R), under
the map described by the same formula (8.2.5).



8.2 Representable functors, and Yoneda’s Lemma 283

Proof. In the covariant case, to show that (8.2.5) is a bijection we must
describe how to get from an element x ∈ F (R) an appropriate morphism
fx : hR → F. We define fx(A) to carry a ∈ hR(A) = C(R, A) to F (a)(x) ∈
F (A). The verification that this is a morphism of functors, and that this
construction is inverse to the indicated map from morphisms of functors to
elements of F (R), is immediate.

The contravariant case follows by duality (or by the dualized argument).
ut

Exercise 8.2:8. Show the verifications omitted in the first paragraph of the
proof of the above result.

Rather than starting as above with the functor hR, and proving that it
has the property of Theorem 8.2.4, one can approach things the other way
around. Given a category C, observe that a functor H : C → Set is a
family of sets H(X) (one for each X ∈ Ob(C)) given with maps among
them satisfying certain composition relations. For any R ∈ Ob(C), we can
ask whether there is such a system H of sets and maps “freely generated” by
an element x in the R-th set, H(R). It is not hard to see that for our system
to be “generated” by x means that for each object X of C, each element
of H(X) is obtained from x by applying H(a), for some a ∈ C(R,X).
If we write H(a)(x) as a x, it turns out that to make our system “free”
on x, we should let a x = b x only when a = b. As in the development of
Cayley’s Theorem for groups at the beginning of §7.1, we can now drop the
symbol x, and regard each H(X) as consisting of the appropriate elements
a; i.e., take H(X) = C(R,X). So our system H free on one element of
H(R) is hR. The free generator that we began by calling x could also have
been written idR x, so when we drop the symbol x, it takes the form idR.
The next result makes explicit this view of Yoneda’s Lemma as expressing a
universal property.

Corollary 8.2.6. Let C be a category and R an object of C.
In the (large) category whose objects are pairs (F, x) where F is a functor

C → Set and x an element of F (R), the pair (hR, idR) is the initial
object. Equivalently, the object hR ∈ Ob(SetC) is a representing object for
the “evaluation at R ” functor SetC → Set, its universal element being
idR ∈ hR(R).

Likewise, in the category whose objects are pairs (F, x) where F is a
functor Cop → Set and x an element of F (R), the pair (hR, idR) is the

initial object; equivalently, the object hR ∈ Ob(SetC
op

) represents the (again

covariant! ) “evaluation at R ” functor SetC
op

→ Set. ut

This points to a general principle worth keeping in mind: when dealing
with a morphism from a hom-functor to an arbitrary set-valued functor, look
at its value on the identity map!

What if we apply Yoneda’s Lemma (covariant or contravariant) to the case
where the arbitrary functor F is another hom-functor, hS or hS ? We get
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Corollary 8.2.7. Let C be a category.
Then for any two objects R, S ∈ Ob(C), the morphisms from hR to

hS as functors C→ Set are in one-to-one correspondence with morphisms
S → R. Thus, the mapping R 7→ hR gives a contravariant full embedding
of C in SetC, i.e., a full and faithful functor Cop → SetC, the “Yoneda
embedding”.

Likewise, morphisms from hR to hS as functors Cop → Set correspond
to morphisms R→ S, giving a covariant “Yoneda embedding” C→ SetC

op

.
These two embeddings may both be obtained from the bivariant hom-functor

Cop ×C→ Set by distinguishing one or the other argument, i.e., regarding
this bifunctor in one case as a functor Cop → SetC, and in the other as a
functor C→ SetC

op

.

Sketch of proof. By Lemma 7.10.1 the bivariant hom functor does indeed
yield functors Cop → SetC and C → SetC

op

on distinguishing one or the
other argument, and we see that the object R is sent to hR, respectively hR.
Given a morphism f : S → R in C, one verifies that the induced morphism
of functors hf : hR → hS takes idR to f ∈ hS(R). Yoneda’s Lemma with
F = hS tells us that the map f 7→ hf is one-to-one and onto, so our functor

Cop → SetC is full and faithful. The contravariant case follows by duality.
ut

Exercise 8.2:9. Verify the property used above of the morphism hf : hR →
hS induced by a morphism f : S → R.

Exercise 8.2:10. Show how to answer most of the parts of Exercise 7.9:4,
and also Exercise 7.9:6(i), using Yoneda’s Lemma.

Remark 8.2.8. It may seem paradoxical that we get the contravariant Yoneda
embedding using covariant hom-functors, and the covariant Yoneda embed-
ding using contravariant hom-functors, but there is a simple explanation.
When we write the hom bifunctor Cop × C → Set as a functor to a func-
tor category C → SetC

op

or Cop → SetC by distinguishing one variable,
the variance in that variable determines the variance of the resulting Yoneda
embedding, while the variance in the other variable determines the variance
of the hom-functors that the embedding takes as its values. Whichever way
we slice it, we get covariance in one, and contravariance in the other.

What is the value of the Yoneda embedding? First, categories of the form
SetC are very nicely behaved; e.g., they have small products and coprod-
ucts, pushouts, pullbacks, equalizers and coequalizers, all of which can be
constructed “objectwise”. So Yoneda embeddings embed arbitrary categories
into “good” categories. Moreover, if one wishes to extend a category C by
adjoining additional objects with particular properties, one can often do this
by identifying C with the category of representable contravariant functors on
C, or with the opposite of the category of representable covariant functors,
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and then taking for the additional objects certain other functors that are
not representable, constructed in one way or another from the representable
ones.

In §7.5 (discussion following Definition 7.5.2), we saw that systems of uni-
versal constructions could frequently be linked together, by natural mor-
phisms among the constructed objects, to give functors. From the above
corollary, we see that this should happen in situations where the functors
that these universal objects are constructed to represent are linked by a corre-
sponding system of morphisms of functors, in other words (by Lemma 7.10.1)
where they form the components of a bifunctor. There is a slight complication
in formulating this precisely, because the given representable functors are not
themselves assumed to be hom-functors hR or hR, but only isomorphic to
these, and the choice of representing objects R is likewise determined only
up to isomorphism. To prepare ourselves for this complication, let us prove
that a system of objects given with isomorphisms to the values of a functor
in fact form the values of an isomorphic functor.

Lemma 8.2.9. Let F : C→ D be a functor, and for each X ∈ Ob(C), let
i(X) be an isomorphism of F (X) with another object G(X) ∈ Ob(D).

Then there is a unique way to assign to each morphism of C, f ∈
C(X, Y ) a morphism G(f) ∈ D(G(X), G(Y )) so that the objects G(X)
and morphisms G(f) constitute a functor G : C→ D, and i constitutes an
isomorphism of functors, F ∼= G.

Proof. If G is to be a functor and i a morphism of functors, then for each
f ∈ C(X, Y ) we must have G(f) i(X) = i(Y )F (f). Since i(X) is an isomor-
phism, we can rewrite this as G(f) = i(Y )F (f) i(X)−1. It is straightforward
to verify that G, so defined on morphisms, is indeed a functor. This defini-
tion of G(f) insures that i is a morphism of functors F → G, and it clearly
has an inverse, defined by i−1(X) = i(X)−1. ut

Exercise 8.2:11. Write out the verification that G, constructed as above,
is a functor.

We can now get our desired result about tying representing objects to-
gether into a functor. In thinking about results such as the next lemma, I
find it useful to keep in mind the case where C = Set, D = Group, and
A is the bifunctor associating to every set X and group G the set |G|X of
X-tuples of elements of G.

Lemma 8.2.10. Suppose that C and D are categories, and that for each
X ∈ Ob(C) we are given a functor A(X,−) : D → Set and an object
F (X) ∈ Ob(D) representing this functor, via an isomorphism

(8.2.11) i(X) : A(X, −) ∼= hF (X).

Then
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(i) If the given functors A(X,−) are in fact the values of a bifunctor
A : Cop ×D → Set at the objects of C, then the objects F (X) of D can
be made the values of a functor F : C → D in a unique way so that the
isomorphisms (8.2.11) comprise an isomorphism of bifunctors

(8.2.12) i : A(−, −) ∼= D(F (−), −).

(ii) Conversely, if the objects F (X) are the values, at the objects X, of a
functor F : C→ D, we can make the family of functors A(X,−) into a bi-
functor A : Cop×D→ Set in a unique way so that the isomorphisms (8.2.11)
again give an isomorphism (8.2.12) of bifunctors.

Proof. On the one hand, if A : Cop×D→ Set is a bifunctor, the induced sys-
tem of functors A(X,−) : D→ Set will together constitute a single functor
which we may call B : Cop → SetD (Lemma 7.10.1). For each X ∈ Ob(C)
we have an isomorphism i(X) of B(X) with a hom-functor hF (X), so by the

preceding lemma we get an isomorphic functor C : Cop → SetD, such that
C(X) = hF (X), and the isomorphism i : B ∼= C is made up of the i(X) ’s.
Now by Corollary 8.2.7, the covariant hom-functors hY (Y ∈ Ob(D)) form
a full subcategory of SetD isomorphic to Dop via the Yoneda embedding
Y 7→ hY . Hence the functor C : Cop → SetD is induced by precomposing
this embedding Dop → SetD with a unique functor Cop → Dop, which
is equivalent to a functor F : C → D, and this F is the functor of the
statement of the lemma.

Inversely, if F is given as a functor, let us consider each functor A(X,−)
as an object B(X) of SetD. Then for each X we have an isomorphism
i(X) : B(X) ∼= hF (X), and applying the preceding lemma to the isomor-
phisms i(X)−1, we conclude that the objects B(X) are the values of a func-
tor B : Cop → SetD, which we may regard as a bifunctor A : Cop×D→ Set,
and again the values of i become an isomorphism of bifunctors. ut

The above lemma concerns systems of objects representing covariant hom-
functors; let us state the corresponding result for contravariant hom-functors.
A priori, this means replacing D by Dop. But it is then natural to replace
the “parametrizing” category Cop by C so as to keep the parametrization
of the constructed objects of D covariant. And having done that much, why
not interchange the names of C and D so as to get a set-up parallel to that
of the preceding case? Doing so, we get

Lemma 8.2.13. Suppose that C and D are categories, and that for each
Y ∈ Ob(D) we are given a functor A(−, Y ) : Cop → Set and an object
U(Y ) ∈ Ob(C) representing this contravariant functor, via an isomorphism

(8.2.14) j(Y ) : A(−, Y ) ∼= hU(Y ).

Then
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(i) If the given functors A(−, Y ) are the values of a bifunctor A : Cop ×
D→ Set at the objects of D, the family of objects U(Y ) of C can be made
the values of a functor U : D → C in a unique way so that the isomor-
phisms (8.2.14) constitute an isomorphism of bifunctors

(8.2.15) j : A(−, −) ∼= C(−, U(−)).

(ii) Conversely, if the objects U(Y ) are the values at the objects Y of a
functor U : C→ D, we can make the family of functors A(−, Y ) into a bi-
functor A : Cop×D→ Set in a unique way so that the isomorphisms (8.2.14)
together give an isomorphism (8.2.15) of bifunctors. ut

8.3. Adjoint functors

Let us look at some examples of the situation of the two preceding lemmas
– families of objects that we characterized individually as the representing
objects for certain naturally occurring functors, but that turned out, them-
selves, to fit together into a functor. By the above lemmas, this means that
the system of functors that these objects represented fit together into a bi-
functor. We shall see that in each of these cases, this structure of bifunctor
was actually present in the original situation, providing an explanation of
why our constructions yielded functors.

The free group on each set X is the object of Group representing the
functor G 7→ |G|X = Set(X, U(G)). So the free group functor arises by
representing the family of functors Group→ Set obtained by inserting all
sets X as the first argument of the bifunctor

Set(−, U(−)) : Setop ×Group −→ Set.

The analogous description obviously applies in any category C having free
objects with respect to a concretization U : C→ Set.

If G is a group, the abelianization of G is the object of Ab represent-
ing the functor Ab → Set given by A 7→ Group(G, A). The symbol
Group(G, A) makes sense because Ab is a subcategory of Group; to
put this example in the context of the general pattern, let us write V for
the inclusion functor of Ab in Group. We then see that the abelianization
functor arises by representing the family of set-valued functors obtained by
inserting values in the first argument of the bifunctor

Group(−, V (−)) : Groupop ×Ab −→ Set.

In the same way, if W denotes the forgetful functor Group → Monoid,
then the functor taking a monoid to its universal enveloping group arises by
representing the family of set-valued functors obtained by inserting values in
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the first argument of the bifunctor

Monoid(−, W (−)) : Monoidop ×Group −→ Set.

The above were left universal examples, that is, constructions F : C→ D
such that each object F (X) represented a covariant functor D→ Set. We
see that in each such case, the bifunctor from which these covariant functors
were extracted had the form

(8.3.1) C(−, U(−)) : Cop ×D −→ Set,

for some functor U : D→ C. Taking (8.3.1) to be the A in Lemma 8.2.10,
we see that the universal properties of the objects F (X) in terms of U can
be formulated in each of these cases as

C(−, U(−)) ∼= D(F (−), −)

– a strikingly symmetrical condition!

Let us consider one right universal example. Given a monoid S, we consid-
ered above the construction of the universal group G with a homomorphism
of S into Gmd; but there is also a universal group G with a homomorphism
of Gmd into S, namely the group G = Sinv of invertible elements (“units”)
of S. If we write F : Group→Monoid for the forgetful functor G 7→ Gmd,
and call the above group-of-units functor U : Monoid→ Group, we see that
U(S) represents the contravariant functor associating to each group G the
set Monoid(F (G), S). If we write C and D for Group and Monoid,
then on taking D(F (−),−) for the bifunctor A in the second paragraph
of Lemma 8.2.13, we get an isomorphism characterizing this right universal
construction U :

D(F (−), −) ∼= C(−, U(−)).

This is exactly the same as the isomorphism characterizing our examples
of left universal constructions – but written in reverse order, and looked at
as characterizing U in terms of F, rather than F in terms of U ! The
fact that these two situations are characterized by the same isomorphism
means that a functor F gives objects representing the covariant functors
C(X, U(−)) if and only if U gives objects representing the contravariant
functors D(F (−), Y ).

Let us test this conclusion, by turning our characterization of the free
group construction upside down. Since the free group F (X) on a set X is
left universal among groups G with set maps of X into their underlying
sets U(G), the underlying set U(G) of a group G should be right-universal
among all sets X with group homomorphisms from the free group F (X) into
G. And indeed, though it may seem bizarre to treat the free-group construc-
tion as something given and the underlying-set construction as something to
be characterized, the universal property certainly holds: For any group G,
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U(G) is a set with a homomorphism u : F (U(G)) → G, such that given
any homomorphism f from a free group F (X) on a set into G, there is a
unique set map h : X → U(G) (which you should be able to describe) such
that f = uF (h). This property of underlying sets is sometimes even useful.
For instance, in showing that every group can be presented by generators
and relations, one wishes to write an arbitrary group G as a homomorphic
image of a free group on some set X. The above property says that there is
a universal choice of such X, namely the underlying set U(G) of G.

Before setting out to tie together all our ways of describing these uni-
versal constructions, let us prove a lemma that will allow us to relate iso-
morphisms of bifunctors as above to systems of maps X → U(F (X)) and
F (U(Y )) → Y. (The lemma is an instance of the general principle noted
following Corollary 8.2.6.)

Lemma 8.3.2. Let C and D be categories and U : D → C, F : C → D
functors, and consider the two bifunctors Cop ×D→ Set,

C(−, U(−)), D(F (−), −).

Then a morphism of bifunctors

(8.3.3) a : C(−, U(−)) −→ D(F (−), −)

is determined by its values on identity morphisms idU(D) ∈ C(U(D), U(D))
(D ∈ Ob(D)). In fact, given a as above, if we write

α(D) = a(U(D), D)(idU(D)) ∈ D(F (U(D)), D),

then this family of morphisms comprises a morphism of functors,

(8.3.4) α : FU −→ IdD

and this construction yields a bijection between morphisms (8.3.3) and
morphisms (8.3.4). Given a morphism (8.3.4), the corresponding mor-
phism (8.3.3) can be described as acting on f ∈ C(C, U(D)) by first ap-
plying F to get F (f) : F (C) → FU(D), then composing this with α(D) :
FU(D)→ D, getting

a(f) = α(D)F (f) : F (C) −→ D.

Likewise, a morphism of bifunctors in the opposite direction to (8.3.3),

(8.3.5) b : D(F (−), −) −→ C(−, U(−))

is determined by its values on identity morphisms, in this case morphisms
idF (C) ∈ D(F (C), F (C)) (C ∈ Ob(C)), and writing

β(C) = b(C, F (C))(idF (C)) ∈ C(C, U(F (C))),
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we get a bijection between morphisms (8.3.5) and morphisms

(8.3.6) β : IdC −→ UF.

Given β, the corresponding morphism b can be described as taking f ∈
D(F (C), D) to

b(f) = U(f)β(C) : C −→ U(D).

Sketch of proof. Consider a morphism a as in (8.3.3). For each D ∈ Ob(D)
this gives a morphism of functors C(−, U(D)) → D(F (−), D). Since the
first of these functors is hU(D), the Yoneda Lemma says this morphism is
determined by its value on the identity morphism of U(D). That value will
be a member of D(FU(D), D); let us call it α(D) : FU(D) → D. I claim
that these maps constitute a morphism (8.3.4).

To see this, let f : D1 → D2 be any morphism in D, and consider the
diagram

(8.3.7)

C(U(D1), U(D1)) C(U(D1), U(D2)) C(U(D2), U(D2))

C(FU(D1), D1) C(FU(D1), D2) C(FU(D2), D2).

-U(f) ◦ −

-f ◦ −

�− ◦ U(f)

�− ◦ FU(f)? ? ?

a(U(D1), D1) a(U(D1), D2) a(U(D2), D2)

The left square commutes by functoriality of a in its second argument; the
right square by functoriality in its first argument. Note that the identity mor-
phisms in the upper left and upper right hom-sets have the same image in
the upper middle hom-set, namely U(f), and hence they must have equal
images in the lower middle hom-set. But those same images, computed by go-
ing first downward and then to the center, are the composites whose equality
is need to prove the functoriality of α. The reader can easily check that the
description of how to recover (8.3.3) from (8.3.4) also leads to a morphism of
functors, and that this construction is inverse to the first.

The second paragraph follows by duality. ut

Exercise 8.3:1. Verify the assertion that the equality proved using (8.3.7)
is the condition for α to be a morphism of functors, and show the “easy
check” mentioned after that.

To get a feel for the above construction, you might start with the mor-
phism of bifunctors a that associates to every set map from a set X to the
underlying set U(G) of a group G the induced group homomorphism from
the free group F (X) into G. Determine the morphism of functors α that



8.3 Adjoint functors 291

the above construction yields, and check explicitly that the “inverse” con-
struction described does indeed recover a. In this example, one finds that a
is invertible; calling its inverse b, you might similarly work out for this b the
constructions of the second assertion of the lemma.

With the help of Lemmas 8.2.10, 8.2.13, and 8.3.2, we can now give several
descriptions of the type of universal construction discussed at the beginning
of this section.

Theorem 8.3.8. Let C and D be categories. Then the following data are
equivalent:

(i) A pair of functors U : D→ C, F : C→ D, and an isomorphism

i : C(−, U(−)) ∼= D(F (−), −)

of functors Cop ×D→ Set.

(ii) A functor U : D → C, and for every C ∈ Ob(C), an object
RC ∈ Ob(D) and an element uC ∈ C(C, U(RC)) which are universal
among such object-element pairs, i.e., which represent the covariant func-
tor C(C, U(−)) : D→ Set (cf. Theorem 8.2.1 and Definition 8.2.3).

(ii*) A functor F : C → D, and for every D ∈ Ob(D), an object
RD ∈ Ob(C) and an element vD ∈ D(F (RD), D) which are universal
among such object-element pairs, i.e., which represent the contravariant func-
tor D(F (−), D) : Cop → Set.

(iii) A pair of functors U : D → C, F : C → D, and a pair of morphisms
of functors

η : IdC −→ UF, ε : FU −→ IdD,

such that the two composites

U
η ◦ U−→ UFU

U ◦ ε−→ U, F
F ◦ η−→ FUF

ε ◦ F−→ F,

are the identity morphisms of U and F respectively. (For the “ ◦ ” notation
see Lemma 7.10.2.)

Sketch of proof. The equivalence (i) ⇐⇒ (ii) is given by Lemma 8.2.10 with
A(−, −) = C(−, U(−)); similarly, (i) ⇐⇒ (ii*) is given by Lemma 8.2.13
with A(−, −) = D(F (−),−). By Lemma 8.3.2, an isomorphism of bifunctors
as in (i) must correspond to a pair of morphisms of functors η : IdC → UF,
ε : FU → IdD which induce mutually inverse morphisms of bifunctors. I
claim that the conditions needed for these induced morphisms to be mutually
inverse are those shown diagrammatically in (iii).

In the verification of this statement (made an exercise below), one assumes
α and β given as in Lemma 8.3.2, and uses the formulas for a and b in terms
of these to express the composites a b and b a. One must then prove that
these composites are the identity morphisms. By Yoneda’s Lemma, it suffices
to check these equalities on appropriate identity morphisms. (With what



292 8 Universal constructions

objects of C and D in the slots of D(F (−),−), respectively C(−, U(−)) ?)
This approach quickly gives the desired statements. However, if one prefers
to see directly that these statements are equivalent to a b and b a fixing
all morphisms f ∈ D(F (C), D), respectively g ∈ C(C, U(D)), then one
may combine the equations saying that the latter conclusions hold with the
commutativity of the diagram expressing the functoriality of a, respectively
b, applied to the morphism f, respectively g. ut

Exercise 8.3:2. (i) Write out the verification sketched in the last para-
graph of the above proof (including, of course, the verification that the
two constructions are mutually inverse).
(ii) Show that η will be composed of the “universal morphisms” uC of
point (ii) of the theorem, and ε will be composed of the universal mor-
phisms vD of point (ii*).
(iii) Take one universal construction, e.g., that of free groups, write down
the equalities expressed diagrammatically in part (iii) of the above theorem
for this construction in terms of maps of set- and group-elements, and
explain why they hold in this case.

Definition 8.3.9. Given categories C and D and functors U : D → C,
F : C→ D, an isomorphism

i : C(−, U(−)) ∼= D(F (−), −)

of bifunctors Cop×D→ Set, or equivalently, a pair of morphisms of functors
ε, η satisfying the condition of point (iii) of the above theorem, is called an
adjunction between U and F.

In this situation, U is called the “right adjoint” of the functor F, and F
the “left adjoint” of U (referring to their occurrence in the right and left slots
of the hom-bifunctors in the above isomorphism). The morphisms of functors
η and ε are called, respectively, the unit and counit of the adjunction.

Historical note: The term “adjoint” was borrowed from analysis, where
the adjoint of a bounded operator between Hilbert spaces, A : X → Y, is
the operator B : Y → X characterized by the condition on inner products
(x, By) = (Ax, y).

The student who finds condition (iii) of Theorem 8.3.8 hard to grasp will be
happy to know that we will not make much use of it in the next few chapters.
(I have trouble with it myself.) But we will use the morphisms η and ε named
in that condition, so you should get a clear idea of how these act. (What we
will seldom use is the fact that the indicated compositional condition on a
pair of morphisms η, ε is equivalent to their being the unit and counit of
an adjunction. Nevertheless, I recommend working Exercise 8.3:2 this once.)

We can now characterize as right or left adjoints many of the universal con-
structions we are familiar with. The three diagrams below show the cases we
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used above to motivate the concept. In each of these, a pair of successive verti-
cal arrows between two categories represents a pair of mutually adjoint func-
tors, the right adjoint being shown on the right and the left adjoint on the left.

Group

Set

6
free

group

?

under-

lying

set

Group

Monoid

6

S

6

Sgp

?

for-

get-

ful

6

S

6

U(S)

Ab

Group

6abel-

ianiz-

ation

?

for-

get-

ful

The middle diagram is interesting in that the forgetful functor there (in
the notation of §4.11, G 7→ Gmd) has both a left and a right adjoint. In
the first diagram above, we can, as mentioned, replace Group with any
category C having free objects with respect to a concretization U. A slight
generalization is noted in the next exercise.

Exercise 8.3:3. If you did not do Exercise 8.2:5, prove that if C is a cat-
egory with small coproducts and U : C → Set a functor, then U has a
left adjoint if and only if it is representable.

(Exercise 8.2:5 was essentially the case of this result where U was
faithful, so that it could be called a “concretization” and its left adjoint
a “free object” construction; but faithfulness played no part in the proof.
In Chapter 10 we shall extend the concept of “representable functor” from
set-valued functors to algebra-valued functors, and generalize the above
result to the resulting much wider context.)

Exercise 8.3:4. Show that (i) the left (or right) adjoint of a functor, if one
exists, is unique up to canonical isomorphism, and conversely, that (ii) if
A and B are isomorphic functors, then any functor which can be made a
left (or right) adjoint of A can also be made a left (or right) adjoint of B.

Exercise 8.3:5. Show that if A : C→ D, B : D→ C give an equivalence
of categories (Definition 7.9.5), then B is both a right and a left adjoint
to A.

The next exercise is a familiar example in disguise.

Exercise 8.3:6. Let C be the category with Ob(C) = Ob(Group), but
with morphisms defined so that for groups G and H, C(G, H) =
Set(|G|, |H|). Thus Group is a subcategory of C, with the same object
set but smaller morphism sets. Does the inclusion functor Group → C
have a left and/or a right adjoint?

There are many other constructions whose universal properties translate
into adjointness statements: The forgetful functor Ring1 → Monoid that
remembers only the multiplicative structure has as left adjoint the monoid
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ring construction. The forgetful functor Ring1 → Ab that remembers only
the additive structure has for left adjoint the tensor ring construction. (These
two ring constructions were discussed briefly toward the end of §4.12.) The
inclusion of the category of compact Hausdorff spaces in that of arbitrary
topological spaces has for left adjoint the Stone-Čech compactification functor
(§4.17). The functor associating to every commutative ring its Boolean ring
of idempotent elements has as left adjoint the construction asked for in Exer-
cise 4.14:3(iv). The forgetful functors going from Lattice to ∨-Semilattice
and ∧-Semilattice, and from these in turn to POSet, have left adjoints
which you were asked to construct in Exercise 6.1:8.

The student familiar with Lie algebras (§9.7 below) will note that the
functor associating to an associative algebra A the Lie algebra ALie with
the same underlying vector space as A, and with the commutator operation
of A for Lie bracket, has for left adjoint the universal enveloping algebra
construction. (The Poincaré-Birkhoff-Witt Theorem gives a normal form for
this universal object; cf. [45, §3].)

Suppose C is a category having products and coproducts of all pairs of
objects. We know that each of these constructions will give a functor C×C→
C. We may ask whether these functors can be characterized as adjoints of
some functors C→ C×C. Similarly, we may ask whether the tensor product
functor Ab×Ab→ Ab can be characterized as an adjoint of some functor
Ab→ Ab×Ab.

The universal property of the product functor C × C → C is a right
universal one, so if it arises as an adjoint, it should be a right adjoint to
some functor A : C→ C×C. No such functor was evident in our definition
of products. However, we can search for such an A by posing the universal
problem whose solution would be a left adjoint to the product functor: Given
X ∈ Ob(C), does there exist (Y, Z) ∈ Ob(C×C) with a universal example
of a morphism X → Y × Z ? Since a morphism X → Y × Z corresponds
to a morphism X → Y and a morphism X → Z, this asks whether there
exists a pair (Y, Z) of objects of C universal for having a morphism from X
to each member of this pair. In fact, the pair (X, X) is easily seen to have
the desired universal property. This leads us to define the “diagonal functor”
∆ : C → C × C taking each object X to (X, X), and each morphism f
to (f, f). It is now easy to check that the universal property of the direct
product construction is that of a right adjoint to ∆. Similar reasoning shows
that the universal property of the coproduct is that of a left adjoint to ∆; so
in a category C having both products and coproducts, we have the diagram
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of adjoint functors,

C

C × C

6

?

∆

6

We recall that if C is Ab, the constructions of pairwise products and
coproducts (“direct products and direct sums”) coincide. So in that case we
get an infinite periodic chain of adjoints.

Exercise 8.3:7. Does the direct product construction on Set have a right
adjoint? Does the coproduct construction have a left adjoint?

The next exercise is one of my favorites:

Exercise 8.3:8. Recall that 2 denotes the category with two objects, 0 and
1, and exactly one nonidentity morphism, 0→ 1, so that for any category
C, an object of C2 corresponds to a choice of two objects A0, A1 ∈ Ob(C)
and a morphism f : A0 → A1.

Let p0 : Group2 → Group denote the functor taking each ob-
ject (A0, A1, f) to its first component A0, and likewise every morphism
(a0, a1) : (A0, A1, f) → (B0, B1, g) of Group2 to its first component
a0.

Investigate whether p0 has a left adjoint, and whether it has a right
adjoint. If a left adjoint is found, investigate whether this in turn has a left
adjoint (clearly it has a right adjoint – namely p0); likewise if p0 has a
right adjoint, investigate whether this in turn has a right adjoint; and so
on, as long as further adjoints on either side can be found.

Exercise 8.3:9. Let G be a group, and G-Set the category of all G-sets.
You can probably think of one or more very easily described functors

from Set to G-Set, or vice versa. Choose one of them, and apply the idea
of the preceding exercise; i.e., look for a left adjoint and/or a right adjoint,
and for further adjoints of these, as long as you can find any.

When you are finished, does the chain of functors you have gotten
contain all the “easily described functors” between these two categories
that you were able to think of? If not, take one that was missed, and do
the same with it.

Exercise 8.3:10. Translate the idea indicated in observation (a) following
Exercise 4.8:1 into questions of the existence of adjoints to certain functors
between categories G1-Set and G2-Set, determine whether such adjoints
do in fact exist, and if they do, describe them as concretely as you can.

Let us now consider the case of the tensor product construction, ⊗ : Ab×
Ab → Ab. It is the solution to a left universal problem, and we can char-
acterize this problem as arising, as described in Lemma 8.2.10, from the
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bifunctor Bil : (Ab×Ab)op×Ab→ Set, where for abelian groups A, B, C
we let Bil((A, B), C) denote the set of bilinear maps (A, B) → C. From
the preceding examples, we might expect Bil((A, B), C) to be expressible in
the form (Ab×Ab)((A, B), U(C)) for some functor U : Ab→ Ab×Ab.

But, in fact, it cannot be so expressed; in other words, the tensor product
construction Ab × Ab → Ab, though it is a left universal construction,
is not a left adjoint. The details (and a different sense in which the tensor
product is a left adjoint) are something you can work out:

Exercise 8.3:11. (i) Show that the functor ⊗ : Ab ×Ab → Ab has no
left or right adjoint.
(ii) On the other hand, show that for any fixed abelian group A, the
functor A⊗− : Ab→ Ab is left adjoint to the functor Hom(A,−) : Ab→
Ab. (I am writing Hom(A, B) for the abelian group of homomorphisms
from A to B, in contrast to Ab(A, B) the set of such homomorphisms
– a temporary ad hoc notational choice.)
(iii) Investigate whether the functor A⊗− : Ab→ Ab has a left adjoint,
and whether Hom(A,−) : Ab → Ab has a right adjoint. If such adjoints
do not always exist, do they exist for some choices of A ?

If you are familiar enough with ring theory, generalize the above prob-
lems to modules over a fixed commutative ring k, or to bimodules over
pairs of noncommutative rings.

Exercise 8.3:12. For a fixed set A, does the functor Set→ Set given by
S 7→ S ×A have a left or right adjoint?

A situation which is similar to that of the tensor product in that the
question of whether a construction is an adjoint depends on what we take
as the variable, though quite different in terms of which versions have and
which don’t have adjoints, is considered in

Exercise 8.3:13. In this exercise “ring” will mean commutative ring with
1; recall that we denote the category of such rings CommRing1.

If R is a ring and X any set, R[X] will denote the polynomial ring
over R in an X-tuple of indeterminates.

(i) Show that for X a nonempty set, the functor PX : CommRing1 →
CommRing1 taking each ring R to R[X] has neither a right nor a
left adjoint, and similarly that for R a ring, the functor QR : Set →
CommRing1 taking each set X to R[X] has neither a right nor a left
adjoint.

(ii) On the other hand, show that the functor CommRing1 × Set →
CommRing1 taking a pair (R, X) to R[X] is an adjoint (on the appro-
priate side) of an easily described functor.

(iii) For any ring R, let CommRing1
R denote the category of commu-

tative R-algebras (rings S given with homomorphisms R → S), and
R-algebra homomorphisms (ring homomorphisms making commuting tri-
angles with R. In the notation of Exercise 7.8:30(ii), this is the comma
category (R ↓ CommRing1).)
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Similarly, for any set X, let CommRing1
X denote the category of

rings S given with set maps X → |S|, and again having for morphisms
the ring homomorphisms making commuting triangles. (This is the comma
category (X ↓ U), where U is the underlying set functor of CommRing1.
Note: to keep the symbols CommRing1

R and CommRing1
X unambigu-

ous, we must remember to use distinct symbols for rings and sets.)
Show that for any R, the functor Set → CommRing1

R taking X
to R[X] can be characterized as an adjoint, and that for any X, the
functor CommRing1 → CommRing1

X taking R to R[X] can also be
characterized as an adjoint.
(iv) Investigate similar questions for the formal power series construction,
R[[X]]; in particular, whether the analog of (i) is true.

Here is still another way to make the tensor product construction into an
adjoint functor:

Exercise 8.3:14. (i) Let Bil be the category whose objects are all 4-tu-
ples (A, B, β, C), where A, B, C are abelian groups and β : (A, B)→ C
is a bilinear map, and where morphisms are defined in the natural way. (Say
what this natural way is!) Show that the forgetful functor Bil→ Ab×Ab,
taking each such 4-tuple to its first two components, has a left adjoint,
which is “essentially” the tensor-product construction.
(ii) Show that an analogous trick can be used to convert any isomorphism
of bifunctors as in the Lemma 8.2.10 into an adjunction. (Between what
categories?) Do the same for the situation of Lemma 8.2.13.

Exercise 8.3:15. Describe all pairs of adjoint functors at least one member
of which is a constant functor, i.e., a functor taking all objects of its domain
category to a single object X of its codomain category, and all morphisms
of its domain category to idX .

What happens when we compose two functors arising from adjunctions?
Note that the abelianization of the free group on a set X is a free abelian

group on X. That is, when we compose these two functors, each of which is a
left adjoint, we get another functor with that property. The general statement
is simple, and is delightfully easy to prove.

Theorem 8.3.10. Suppose E
U-
�
F

D
V-
�
G

C are pairs of adjoint func-

tors, with U and V the right adjoints, F and G the left adjoints. Then

E
V U-
�
FG

C are also adjoint, with V U the right adjoint and FG the left

adjoint.

Proof. C(−, V U(−)) ∼= D(G(−), U(−)) ∼= E(FG(−), −). ut

Exercise 8.3:16. Suppose U, V, F and G are as above, η and ε are the
unit and counit of the adjoint pair U, F, and η′ and ε′ are the unit and
counit of the adjoint pair V, G. Describe the unit and counit of the adjoint
pair V U, FG.
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For further examples of the above theorem, consider two ways we can
factor the forgetful functor from Ring1 to Set. We can first pass from a
ring to its multiplicative monoid, then go to the underlying set thereof, or we
can first pass from the ring to its additive group, and then to the underlying
set:

Ring1 -×
Monoid

?

+

?

@
@
@
@
@
@
@
@R

Ab - Set

Taking left adjoints, we get the two decompositions of the free ring con-
struction noted in §4.12: as the free-monoid functor followed by the monoid-
ring functor, and as the free abelian group functor followed by the tensor ring
functor:

Ring1 � Monoid

6 6

@
@

@
@

@
@

@
@I

Ab � Set

8.4. Number-theoretic interlude: the p-adic numbers
and related constructions

While you digest the concept of adjunction (fundamentally simple, yet daunt-
ing in its multiple facets), let us look at some constructions of a different
sort, which we did not meet in the “Cook’s tour” of Chapter 4. In this sec-
tion we will develop a particular case important in number theory; the general
category-theoretic concept will be defined in the next section. A broader gen-
eralization, which embraces this and several constructions we have studied,
will be developed in the section after that.

Suppose we are interested in solving the equation
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(8.4.1) x2 = −1

in the integers, Z. Of course, we know it has no solution in the real numbers,
let alone the integers, but we will ignore that dreary fact for the moment.
(“If the fool would persist in his folly, he would become wise,” William Blake
[61].)

We may observe that the above equation does have a solution in the finite
ring Z/5Z, in fact, two solutions, 2 and 3. Up to sign, these are the same,
so let us look for a solution of (8.4.1) in Z satisfying

x ≡ 2 (mod 5).

An integer x which is ≡ 2 (mod 5) has the form

(8.4.2) x = 5y + 2,

so we may rewrite (8.4.1) as

(5y + 2)2 = −1

and expand, to see what information we can learn about y. We get 25y2 +
20y = −5. Hence 20y ≡ −5 (mod 25), and dividing by 5, we get 4y ≡ −1
(mod 5). This has the unique solution

y ≡ 1 (mod 5),

which, substituted into (8.4.2), determines x modulo 25 :

x = 5y + 2 ≡ 5 · 1 + 2 = 7 (mod 25).

We continue in the same fashion: At the next stage, putting x = 25z + 7
we have (25z + 7)2 = −1. You should verify that this implies

z ≡ 2 (mod 5),

which leads to
x ≡ 57 (mod 125).

Can we go on indefinitely? This is answered in

Exercise 8.4:1. (i) Show that given i > 0, and c ∈ Z such that c2 ≡ −1
(mod 5i ), there exists c′ ∈ Z such that c′2 ≡ −1 (mod 5i+1), and c′ ≡ c
(mod 5i).
(ii) Show that any integer is uniquely determined by its residue classes
modulo 5, 52, 53, . . . , 5i, . . . ; i.e., its images in Z/5Z, Z/52 Z, Z/53 Z,
. . . , Z/5iZ, . . . .

(Aside: I find that some students have been taught to consider the un-
derlying set of Z/nZ to be the set of n integers {0, . . . , n−1}. Under the
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standard definition it is, rather, the set of equivalence classes of integers
(positive and negative) under the relation of congruence modulo n. Though
the representatives 0, . . . , n−1 of these equivalence classes are easier to talk
about and compute with, the description as a set of equivalence classes is
better for understanding the construction and its relation to factor-rings in
general. Because two positive integers are in the same equivalence class mod-
ulo n if and only if they give the same residue (remainder) in {0, . . . , n−1}
on dividing by n, these equivalence classes have been named residue classes;
and by extension, that phrase is used for the equivalence classes that com-
prise any factor-ring R/I, even when no natural concept of division with
remainder is applicable. Once one understands that the n elements of Z/nZ
are equivalence classes, one can, of course, use 0, . . . , n−1 as abbreviated
names for those classes.)

Part (ii) of the above exercise shows that if there were an integer satisfying
(8.4.1), the sequence of residues arising by repeated application of part (i) of
that exercise would determine it. But now let us return to our senses, and
remember that (8.4.1) has no real solution, and ask what, if anything, we
have found.

Clearly, we have shown that there exists a sequence of residues, x1 ∈
|Z/5Z|, x2 ∈ |Z/52 Z|, . . . , xi ∈ |Z/5iZ|, . . . , each of which satisfies
(8.4.1) in the ring in which it lives, and which are “consistent”, in the sense
that each xi+1 is a “lifting” of xi, under the series of natural ring homo-
morphisms

· · · −→ Z/5i+1Z −→ Z/5iZ −→ · · · −→ Z/52 Z −→ Z/5Z .

Let us name the i-th homomorphism in the above sequence fi : Z/5i+1Z →
Z/5iZ; thus, fi is the map taking the residue of any integer n modulo 5i+1

to the residue of n modulo 5i. Now note that the set of all infinite strings

(8.4.3)
(. . . , xi, . . . , x2, x1) such that

xi ∈ |Z/5iZ| and fi(xi+1) = xi (i = 1, 2, . . . )

forms a ring under componentwise operations. What we have shown is that
this ring contains a square root of −1. Since, as we have noted, an integer n
is determined by its residues modulo the powers of 5, the ring Z is embedded
in this ring by the map taking each integer to its residues modulo the powers
of 5, though of course the square root, in this ring, of −1 ∈ |Z| does not lie
in the embedded copy of the ring Z.

The ring of sequences (8.4.3) is called the ring of 5-adic integers. The
corresponding object constructed for any prime p, using the system of maps

(8.4.4) · · · −→ Z/pi+1Z −→ Z/piZ −→ · · · −→ Z/p2Z −→ Z/pZ ,

is called the ring of p-adic integers. These rings are of fundamental importance
in modern number theory, and come up in many other areas as well. The
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notation for them is not uniform; the symbol we will use here is Ẑ(p). (The
(p) in parenthesis denotes the ideal of the ring Z generated by the element
p. What is meant by putting it as a subscript of Z and adding a hat will
be seen a little later. Most number-theorists simply write Zp for the p-adic
integers, denoting the field of p elements by Z/pZ or Fp; cf. [26, p. 272],
[33, p. 162, Example].)

The construction of Ẑ(p) can be described in another way, analogous to
the construction of the real numbers from the rationals. Real numbers are
entities that can be approximated by rational numbers under the distance
metric; p-adic integers are entities that can be approximated by integers via
congruence modulo increasing powers of p. This analogy is made stronger in

Exercise 8.4:2. Let p be a fixed prime number. If n is any integer, let
vp(n) denote the greatest integer e such that pe divides n, or the symbol

+∞ if n = 0. The p-adic metric on Z is defined by dp(m, n) = p−vp(m−n).
Thus, it makes m and n “close” if they are congruent modulo a high power
of p.
(i) Verify that dp is a metric on Z, and that the ring operations are uni-
formly continuous in this metric. Deduce that the completion of Z with
respect to this metric (the set of Cauchy sequences modulo the usual equiv-
alence relation) can be made a ring containing Z.

(In fact, you will find that dp satisfies a stronger condition than the tri-
angle inequality, namely dp(x, z) ≤ max(dp(x, y), dp(y, z)). This is called
the ultrametric inequality.)

(ii) Show that this completion is isomorphic to Ẑ(p).

(iii) Show that the function vp can be extended in a natural way to the

completion Ẑ(p), and that both the original function and this extension sat-
isfy the identities vp(x y) = vp(x)+vp(y) and vp(x+y) ≥ min(vp(x), vp(y))
(x, y ∈ Z).

(iv) Deduce that Ẑ(p) is an integral domain.

Exercise 8.4:3. (i) Show that the function vp on Z of the preceding ex-
ercise can be extended in a unique manner to a Z∪{+∞}-valued function
on Q, again satisfying the conditions of part (iii) of that exercise.
(ii) Show that the completion of Q with respect to the metric dp induced

by the above extended function vp is the field of fractions of Ẑ(p).

This field is called the field of p-adic rationals, and denoted Q̂(p) (or
Qp).

An interesting way of representing elements of these rings is noted in

Exercise 8.4:4. (i) Show that every element x of Ẑ(p) has a unique

“left-facing base-p expression” x =
∑

0≤i <∞ ci p
i, where each ci ∈

{0, 1, . . . , p−1}. In particular, show that any such infinite sum is con-
vergent in the p-adic metric. What is the expression for −1 in this form?
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(ii) Show likewise that elements of the field Q̂(p) have expansions x =∑
i cip

i, where again ci ∈ {0, 1, . . . , p−1}, and where i now ranges over
all integer values (not necessarily positive), but subject to the condition
that the set of i such that ci is nonzero is bounded below.

We showed earlier that one could find a solution to the equation x2 = −1
in Ẑ(5). Let us note some simpler equations one can also solve.

Exercise 8.4:5. (i) Show that every integer n not divisible by p is in-

vertible in Ẑ(p).

(ii) Are the “base-p expressions” (in the sense of Exercise 8.4:4(i)) for the
elements n−1 eventually periodic?

It follows from part (i) of the above exercise that we can embed into the
p-adic integers not only Z, but the subring of Q consisting of all fractions
with denominators not divisible by p. Now when one adjoins to a commu-
tative ring R inverses of all elements not lying in some prime ideal P, the
resulting ring (which, if R is an integral domain, is a subring of the field of
fractions of R) is denoted RP , so what we have embedded in the p-adic in-
tegers is the ring Z(p). In Z(p), every nonzero element is clearly an invertible
element times a power of p, from which it follows that the nonzero ideals are
precisely the ideals (pi). It is easy to verify that the factor-ring Z(p)/(p

i ) is
isomorphic to Z/piZ; hence the system of finite rings and homomorphisms
(8.4.4) can be described as consisting of all the proper factor-rings of Z(p),
together with the canonical maps among them. Hence the p-adic integers can
be thought of as elements which can be approximated by members of Z(p)

modulo all nonzero ideals of that ring. Ring-theorists call the ring of such
elements the completion of Z(p) with respect to the system of its nonzero

ideals, hence the symbol Ẑ(p).
We will not go into a general study of what algebraic equations have

solutions in the ring of p-adic integers. A result applicable to a large class of
rings including the p-adics is Hensel’s Lemma; see [26, Theorem 8.5.6] or [24,
§III.4.3] for the statement.

Let us now characterize abstractly the relation between the diagram (8.4.4)
and the ring of p-adic integers which we have constructed from it. Since
a p-adic integer is by definition a sequence (. . . , xi, . . . , x2, x1) with each
xi ∈ Z/piZ, the ring of p-adic integers has projection homomorphisms pi
onto each ring Z/piZ. (Apologies for the double use of the letter “ p ”!)
Since the components xi of each element satisfy the compatibility conditions
fi(xi+1) = xi, these projection maps satisfy

fi pi+1 = pi,

i.e., they make a commuting diagram
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(8.4.5)

Ẑ(p)

N ^ s j

. . . . . .

. . .→ Z/pi+1Z → Z/piZ→ . . .→ Z/p2Z→ Z/pZ

I claim that Ẑ(p) is right universal for these properties. Indeed, given any
ring R with homomorphisms ri : R → Z/piZ which are “compatible”, i.e.,
satisfy fi ri+1 = ri, we see that for any a ∈ R, the system of images

(. . . , ri(a), . . . , r2(a), r1(a)) defines an element r(a) ∈ Ẑ(p). The resulting

map r : R → Ẑ(p) will be a homomorphism such that ri = pir for each i,
and will be uniquely determined by these equations.

This universal property is expressed by saying that Ẑ(p) is the inverse
limit of the system (8.4.4); one writes

Ẑ(p) = lim←−i Z/p
iZ.

We will give the formal definition of this concept in the next section.
A very similar example of an inverse limit is that of the system of homo-

morphic images of the ring k[x] of polynomials in x over a field k,

. . . −→ k[x]/(xi+1) −→ k[x]/(xi) −→ . . . −→ k[x]/(x2) −→ k[x]/(x),

where (xi ) denotes the ideal of all multiples of xi. A member of k[x]/(xi )
can be thought of as a polynomial in x specified modulo terms of degree ≥ i.
If we take a sequence of such partially specified polynomials, each extending
the next, these determine a formal power series in x. So the inverse limit
of the above system is the formal power series ring k[[x]]. This ring is well
known as a place where one can solve various sorts of equations. Some of
these results are instances of Hensel’s Lemma, referred to above; others, such
as the existence of formal-power-series solutions to differential equations, fall
outside the scope of that lemma.

We constructed the p-adic integers using the canonical surjections Z/pi+1Z
→ Z/piZ. Now there are also canonical embeddings Z/piZ → Z/pi+1Z,
sending the residue of n modulo pi to the residue of p n modulo pi+1.
These respect addition but not multiplication, i.e., they are homomorphisms
of abelian groups but not of rings. If we write out this system of groups and
embeddings,

(8.4.6) Z/pZ −→ Z/p2Z −→ . . . −→ Z/piZ −→ Z/pi+1Z −→ . . .
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it is natural to think of each group as a subgroup of the next, and to try to
take their “union” G. But they are not literally subgroups of one another,
so we need to think further about what we want this G to be.

Clearly, for every element x of each group in the above system, we want
there to be an element of G representing the image of x. Furthermore, if
an element x of one of the above groups is mapped to an element y of
another by some composite of the maps shown in (8.4.6), then these two
elements should have the same image in G. Hence to get our G, let us form
a disjoint union of the underlying sets of the given groups, and divide out by
the equivalence relation that equates two elements if the image of one under a
composite of the given maps is the other. It is straightforward to verify that
this is an equivalence relation on the disjoint union, and that because the
maps in the above diagram are group homomorphisms, the quotient by this
relation inherits a group structure. If we call the maps in (8.4.6) ei : Z/piZ→
Z/pi+1Z, and the maps to the group we have constructed qi : Z/piZ → G,
then the identifications we have made have the effect that for each i,

qi+1 ei = qi,

i.e., that the diagram

(8.4.7)

G
N̂sj

. . .. . .

Z/pZ→ Z/p2Z→ · · · → Z/piZ→ Z/pi+1Z→ . . .

commutes. Since we have made only these identifications, G will have the
universal property that given any group H and family of homomorphisms
ri : Z/piZ → H satisfying ri+1ei = ri for each i, there will exist a unique
homomorphism r : G→ H such that ri = r qi for all i. This universal prop-
erty is expressed by saying that the group G is the direct limit, lim−→i

Z/piZ,
of the given system of groups.

Group theorists denote the direct limit G of the system (8.4.6) by the
suggestive symbol Zp∞ . It is often called the “Prüfer p-group”.

Exercise 8.4:6. (i) Show that Zp∞ is isomorphic to the subgroup of Q/Z
generated by the elements [ p−1], [ p−2], . . . .
(ii) Show that the ring of endomorphisms of the abelian group Zp∞ is

isomorphic to Ẑ(p).
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(Incidentally, in these notes I generally write Z/ nZ only for the ring of
integers modulo n, but use the group-theorists’ notation Zn for the cyclic
group of order n, for which the construction as a quotient of the integers is
only one of many realizations. However, above, to emphasize the relationship
between (8.4.4) and (8.4.6), I have used the former notation in both cases.
But for the direct limit of (8.4.6), the group-theorists’ symbol Zp∞ has no
ring-theoretic analog.)

8.5. Direct and inverse limits

Before we give abstract definitions of our two types of limits, let us give an
example showing that one may want to consider limits of systems indexed by
more general partially ordered sets than the natural numbers. Consider the
concept of a germ of a function at a point z of the complex plane or any other
topological space X. This arises by considering, for every neighborhood S of
z, the set F (S) of functions of the desired sort on the set S (for instance,
analytic functions, if X is the complex plane), and observing that when
one goes from a neighborhood S to a smaller neighborhood T, one gets
a restriction map F (S) → F (T ) (not in general one-to-one, since distinct
functions on the set S may have the same restriction to the subset T, and
not necessarily onto, since not every admissible function on T need extend to
an admissible function on S). To get germs of functions at z, one intuitively
wants to consider this system of sets of functions for smaller and smaller
neighborhoods of z, and “take the limit”. To do this formally, one takes a
disjoint union of all the sets F (S), and divides out by the equivalence relation
that makes two functions a ∈ F (S1), b ∈ F (S2) equivalent if and only if
they have the same image in F (T ) for some neighborhood T ⊆ S1 ∩ S2 of
z.

If the sets of functions F (S) are given with some algebraic structure
(structures of groups, rings, etc.) for which the above restriction maps are
homomorphisms, we find that an algebraic structure of the same sort is in-
duced on the direct limit set. The key point is that given functions a, b
defined on different neighborhoods S and T of z, both will have images in
the neighborhood S ∩ T of z, and these images can be added, multiplied,
etc. there, allowing us to define the sum, product, etc., of the images of a
and b in the limit set.

If we look for the conditions on a general partially ordered index set that
allow us to reason in this way, we get

Definition 8.5.1. Let P be a partially ordered set.
P is said to be directed (or upward directed) if it is nonempty, and for

any two elements x, y of P, there exists an element z majorizing both x
and y.
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P is said to be inversely directed (or downward directed) if it is nonempty
and for any two elements x, y of P, there exists an element z which is ≤
both x and y; equivalently, if P op is upward directed.

(The word “filtered” is sometimes used instead of “directed” in these def-
initions.)

(If you did Exercise 6.2:9, you will find that these conditions are certain
of the “interpolation” properties of that exercise.)

We can now give the general definitions of direct and inverse limits. The
formulations we give below assume that the morphisms of our given systems
go in the “upward” direction with respect to the ordering on the indexing
set. It happens that in our initial example of Ẑ(p), the standard ordering
on the positive integers is such that the morphisms went the opposite way;
in our construction of Zp∞ they went the “right” way; while in the case of
germs of analytic functions, if one orders neighborhoods of z by inclusion,
the morphisms again go the “wrong” way (namely, from the set of functions
on a larger neighborhood to the set of functions on a smaller neighborhood).
This can be corrected formally by using, when necessary, the opposite partial
ordering on the index set. Informally, in discussing direct and inverse limits
one often just specifies the system of objects and maps, and understands that
to apply the formal definition, one should partially order the set indexing the
objects so as to make maps among them go “upward”.

Definition 8.5.2. Let C be a category, and suppose we are given a family
of objects Xi ∈ Ob(C) (i ∈ I), a partial ordering on the index set I, and
a system (fij) of morphisms, fij ∈ C(Xi, Xj) (i<j, i, j ∈ I) such that for
i < j < k, one has fjk fij = fik. (In brief, suppose we are given a partially
ordered set I, and a functor F : Icat → C.)

If I is inversely directed, then (Xi, fij)I is called an inversely directed
system of objects and maps in C. An inverse limit of this system means an
object L of C given with morphisms pi : L→ Xi which are compatible, in
the sense that for all i < j ∈ I, pj = fij pi, and which is universal for this
property, in the sense that given any object W and morphisms wi : W → Xi

such that for all i < j ∈ I, wj = fij wi, there exists a unique morphism
w : W → L such that wi = piw for all i ∈ I.

Likewise, if I is directed, then (Xi, fij)I is called a directed system in
C; and a direct limit of this system means an object L of C given with
morphisms qi : Xi → L such that for all i < j ∈ I, qi = qj fij , and which is
universal in the sense that given any object Y and morphisms yi : Xi → Y
such that for all i < j ∈ I, yi = yj fij , there exists a unique morphism
y : L→ Y such that yi = y qi for all i ∈ I.

(Synonyms sometimes used for inverse and direct limit are projective and
inductive limit, respectively.)

Loosely, one often writes the inverse limit object lim←−iXi, and the direct
limit object lim−→i

Xi. More precisely, letting F denote the functor Icat → C
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corresponding to the inversely directed or directed system (Xi, fij), one
writes these objects as lim←−F and lim−→F respectively.

The morphisms pj : lim←−iXi → Xj are called the projection maps associ-
ated with this inverse limit, and the qj : Xj → lim−→i

Xi the coprojection maps
associated with the direct limit.

In the next-to-last paragraph of the above definition, by the “functor . . .
corresponding to the . . . system (Xi, fij) ” we understand the functor which
takes on the value Xi at the object i, the value fij at the morphism (i, j)
(i < j in I), and the value idXi at the morphism (i, i). In the case where
the indexing partially ordered set consists of the positive or negative integers,
note that the full system of morphisms is determined by the morphisms fi, i+1

(which can be arbitrary), hence in such cases one generally specifies only these
morphisms in describing the system.

Direct and inverse limits in Set may be constructed by the techniques we
illustrated earlier:

Lemma 8.5.3. Every inversely directed system (Xi, fij) of sets and set
maps has an inverse limit, given by

(8.5.4)
lim←−Xi = {(xi) ∈ I

Xi | xj = fij(xi) for i < j ∈ I},
with the pj given by projection maps, lim←−Xi ⊆ Xi → Xj .

Likewise, every directed system (Xi, fij) of sets and set maps has a direct
limit, gotten by forming the disjoint union of the Xi and dividing out by
the equivalence relation under which x ∈ Xi and x′ ∈ Xi′ are equivalent if
and only if they have the same image in some Xj (j ≥ i, i′). Each map qi
acts as the inclusion of Xi in the disjoint union, followed by the map of that
union into its factor-set by the above equivalence relation. ut

One may ask what the point is, in our definitions of direct and inverse
limit, of requiring that the partially ordered set I be directed or inversely
directed. One could set up the definitions without that restriction, and in
most familiar categories one can, in fact, construct objects which satisfy the
resulting conditions. But the behavior of these constructions tends to be quite
different from those we have discussed unless these directedness assumptions
are made. (For instance, the explicit description in Lemma 8.5.3 of the equiva-
lence relation in the construction of a direct limit of sets is no longer correct.)
In any case, such generalized definitions would be subsumed by the still more
general definitions to be made in the next section! So the value of the defini-
tions in the form given above is that they single out a situation in which the
limit objects can be studied by certain techniques.

Exercise 8.5:1. (i) If (Xi, fij)I is a directed system in a category C, and
J a cofinal subset of I, show that lim−→J

Xj
∼= lim−→I

Xi. Precisely, show that

J will also be a directed partially ordered set, and that any object with
the universal property of the direct limit of the given system can be made
into a direct limit of the subsystem in a natural way, and vice versa.
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(ii) Show that the isomorphism of (i) is an instance of a morphism (in
one direction or the other) between lim−→J

Xj and lim−→I
Xi which can be

defined whenever J ⊆ I are both directed and both limits exist, whether
or not J is cofinal.
(iii) State the result corresponding to (i) for inverse limits. (For this we
need a term for a subset of a partially ordered set which has the property
of being cofinal under the opposite ordering; let us use “downward cofinal”.
When speaking of inverse systems, one sometimes just says “cofinal”, with
the understanding that this is meant in the sense that is relevant to such
systems.)
(iv) What can you deduce from (i) and (iii) about direct limits over di-
rected partially ordered sets having a greatest element, and inverse limits
over inversely directed partially ordered sets having a least element?
(v) Given any directed partially ordered set I and any noncofinal directed
subset J of I, show that there exists a directed system of sets, (Xi, fij),
indexed by I, such that lim−→I

Xi � lim−→J
Xj .

Exercise 8.5:2. Suppose (Xi, fij)I is a directed system in a category C,
and f : J → I a surjective isotone map, such that J, like I, is directed.
Show that lim−→j∈J Xf(j)

∼= lim−→i∈I Xi.

The next few exercises concern direct and inverse limits of sets. We shall
see in the next chapter that direct and inverse limits of algebras have as their
underlying sets the direct or inverse limits of the objects’ underlying sets
(assuming, in the case of direct limits, that the algebras have only finitary
operations); hence the results obtained for sets in the exercises below will be
applicable to algebras.

The construction of the p-adic integers was based on a system of surjective
homomorphisms. The first point of the next exercise looks at inverse systems
with the opposite property, and the second part considers the dual situation
for direct limits.

Exercise 8.5:3. (i) Let (Si, fij) be an inversely directed system in Set
such that all the morphisms fij are one-to-one, and let us choose any
element i0 ∈ I. Show that lim←−i Si can be identified with the intersection,

in Si0 , of the sets fii0(Si) (i < i0).
(ii) Let (Si, fij) be a directed system in Set such that all the morphisms
fij are onto, and let us choose any element i0 ∈ I. Show that lim−→i

Si can

be identified with the quotient set of Si0 by the union of the equivalence
relations induced by the maps fi0i : Si0 → Si (i > i0).

Exercise 8.5:4. (i) Show that the inverse limit in Set of any inverse sys-
tem of finite nonempty sets is nonempty.

(Suggestions: Either build the description of an element of the inverse
limit up “from below”, by looking at partial assignments satisfying appro-
priate extendibility conditions, and apply Zorn’s Lemma to get a maximal
such assignment, or else “narrow down on an element from above”, by look-
ing at “subsystems” of the given inverse system, i.e., systems of nonempty
subsets of the given sets carried into one another by the given mappings,
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and use Zorn’s Lemma to get a minimal such subsystem. You might find
it instructive to work out both of these proofs.)
(ii) Show that (i) can fail if the condition “finite” is removed, even for
inverse limits over the totally ordered set of negative integers.
(iii) If you have some familiarity with general topology, see whether you
can generalize statement (i) to a result on topological spaces, with “com-
pact Hausdorff” replacing “finite”.

As an application of part (i) of the above exercise, suppose we are given a
subdivision of the plane into regions, possibly infinitely many, and a positive
integer n, and we wish to study the problem of coloring these regions with n
colors so that no two adjacent regions are the same color. Let the set of all our
regions be denoted R, the adjacency relation A ⊆ R×R (i.e., (r1, r2) ∈ A
if and only if r1 and r2 are adjacent regions), and the set of colors C. For
any subset S ⊆ R, let XS denote the set of all colorings of S (maps S → C)
under which no two adjacent regions have the same color; let us call these
“permissible colorings of S ”. Given subsets S ⊆ T, the restriction to S of
a permissible coloring of T is a permissible coloring of S; thus we have a
restriction map XT → XS . Now –

Exercise 8.5:5. (i) Show that in the above situation, the sets XS , as S
ranges over the finite subsets of R, form an inversely directed system, and
that XR may be identified with the inverse limit of this system in Set.
(ii) Deduce using Exercise 8.5:4(i) that if each finite family S ⊆ R can
be colored, then the whole picture R can be colored.

(Note: the assumption that every finite family S can be colored does
not say that every permissible coloring of a finite family S can be extended
to a permissible coloring of every larger finite family T !)

Exercise 8.5:6. (i) Show that if (Xi, fij) is a directed system of sets, and
each fij is one-to-one, then the canonical maps qj : Xj → lim−→Xi are all
one-to-one.
(ii) Let (Xi, fij) be an inversely directed system of sets such that each
fij is surjective. Show that if I is countable, then the canonical maps
pj : lim←−Xi → Xj are surjective. (Suggestion: First prove this in the case
where I is the set of negative integers. Then show that any countable
inversely directed partially ordered set either has a least element, or has
a downward-cofinal subset order-isomorphic to the negative integers, and
apply Exercise 8.5:1(iii).)
(iii) Does this result remain true for uncountable I ? In particular, what
if I is the opposite of an uncountable cardinal?

Exercise 8.5:7. Show that every group is a direct limit of finitely presented
groups.

(This result is not specific to groups. We shall be able to extend it to
more general algebras when we have developed the necessary language in
the next chapter.)

The remaining exercises in this section develop some particular examples
and applications of direct and inverse limits, including some further results
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on the p-adic integers. In these exercises you may assume the result which,
as noted earlier, will be proved in the next chapter, that a direct or inverse
limit of algebras whose operations are finitary can be constructed by forming
the corresponding limit of underlying sets and giving this an induced algebra
structure. None of these exercises, or the remarks connecting them, is needed
for the subsequent sections of these notes.

One can sometimes achieve interesting constructions by taking direct lim-
its of systems in which all objects are the same; this is illustrated in the
next three exercises. The first shows a sophisticated way to get a familiar
construction; in the next two, direct limits are used to get curious examples.

Exercise 8.5:8. Consider the directed system (Xi, fij)i,j∈I in Ab, where
I is the set of positive integers, partially ordered by divisibility (i con-
sidered less than or equal to j if and only if i divides j), each object
Xi is the additive group Z, and for j = ni, fij : Z → Z is given by
multiplication by n.
(i) Show that lim−→Xi may be identified with the additive group of the
rational numbers.
(ii) Show that if you perform the same construction starting with an arbi-
trary abelian group A in place of Z, the result is a Q-vector-space which
can be characterized by a universal property relative to A.

Exercise 8.5:9. For this exercise, assume as known the facts that every
subgroup of a free group is free, and in particular, that in the free group
on two generators x, y, the subgroup generated by the two commutators
x−1y−1x y and x−2y−1x2y is free on those two elements.

Let F denote the free group on x and y, and f the endomorphism of
F taking x to x−1y−1x y and y to x−2y−1x2y. Let G denote the direct
limit of the system F → F → F → . . . , where all the arrows between
successive objects are the above morphism f.

Show that G is a nontrivial group such that every finitely generated
subgroup of G is free, but that G is equal to its own commutator, G =
[G, G]; i.e., that the abelianization of G is the trivial group. Deduce that
though G is “locally free”, it is not free.

Exercise 8.5:10. Let k be a field. Let R denote the direct limit of the
system of k-algebras k[x] → k[x] → k[x] → . . . , where each arrow is
the homomorphism sending x to x2. Show that R is an integral domain
in which every finitely generated ideal is principal, but not every ideal
is finitely generated. (Thus, for each ideal, the minimum cardinality of a
generating set is either 0, 1, or infinite.)

For the student familiar with the Galois theory of finite-degree field ex-
tensions, the next exercise shows how the Galois groups of infinite extensions
can be characterized in terms of the finite-dimensional case.

Exercise 8.5:11. Suppose E/K is a normal algebraic field extension, pos-
sibly of infinite degree. Let I be the set of subfields of E normal and of
finite degree over K. If F2 ⊆ F1 in I, let fF1,F2

: AutKF1 → AutKF2
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denote the map which acts by restricting automorphisms of F1 to the
subfield F2.
(i) Show that the definition of fF1,F2

makes sense, and gives a group
homomorphism.
(ii) Show that if we order I by reverse inclusion of fields, then the groups
AutKF (F ∈ I) and homomorphisms fF1,F2 (F1 ≤ F2) form an inversely
directed system of groups.
(iii) Show that AutKE is the inverse limit of this system in Group.
(iv) Can you find a normal algebraic field extension whose automorphism
group is isomorphic to the additive group of the p-adic integers?

Exercise 8.5:12. (i) (Open question.) Suppose a group G is the inverse
limit of a system of finite groups. If G is a torsion group (i.e., if all elements
of G are of finite order), must G have finite exponent (i.e., must there
exist an integer n such that xn = e is an identity of G) ?

Though the above question is very difficult, the next two parts are
reasonable exercises, and may help render that question more tractable.
(ii) Show that (i) is equivalent to the corresponding question in which we
assume that G is the inverse limit of a system of finite groups indexed
by the negative integers (under the natural ordering), with all connecting
morphisms surjective.
(iii) Translate (i) (possibly with the help of (ii)) into a question on finite
groups which you could pose to a person not familiar with the concept of
inverse limit. (The more natural-sounding, the better.)

Back to the p-adic integers. A curious property of the additive group of
Ẑ(p) is noted in

Exercise 8.5:13. Let us call an element x of a group G completely divisible
if for every positive integer n there is a y ∈ |G| such that yn = x (or if
G is written additively, n y = x).

(i) Show that no nonzero element of the additive group of Ẑ(p) is com-
pletely divisible.

On the other hand
(ii) Show that if A is any nonzero subgroup of Ẑ(p) such that Ẑ(p)/A is

torsion-free, then every element of Ẑ(p)/A is completely divisible; in fact,

that Ẑ(p)/A is the underlying additive group of a Q-vector-space.

Part (i) of the next exercise seemed to me too simple to be true when I
saw it described (in a footnote in a Ph.D. thesis, as “well-known”). But it is,
in fact, not hard to verify

Exercise 8.5:14. (i) Show that Z[[x]]/(x − p) ∼= Ẑ(p), where Z[[x]], we
recall, denotes the ring of formal power series over Z in one indeterminate
x, and (x− p) denotes the ideal of that ring generated by x− p.
(ii) Examine other factor-rings of formal power series rings. For instance,
can you describe Z[[x]]/(x − p2) ? Z[[x]]/(x2 − p) ? Z[[x]]/(p x2 − 1) ?
R [[x]]/(f(x)) for a general commutative ring R and a polynomial or power
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series f(x), perhaps subject to some additional conditions? R [[x, y]]/I for
some fairly general class of ideals I ?

(If you consider Z[[x]]/(x − n) for n not a prime power, you might
first look at Exercise 8.5:15 below.)

Is the “adic” construction limited to primes p, or can one construct, say,
a ring of “10-adic integers”, Ẑ(10) ? One encounters a trivial difficulty in that
there are two ways of interpreting this symbol. But we shall see below that
they lead to the same ring; so there is a well-defined object to which we can
give this name. However, its properties will not be as nice as those of the
p-adic integers for prime p.

Exercise 8.5:15. Let Z(10) denote the ring of all rational numbers which
can be written with denominators relatively prime to 10.
(i) Determine all nonzero ideals I ⊆ Z(10) and the structures of the
factor-rings Z(10)/I. Show that each of these factor-rings is isomorphic to
a ring Z/nZ. Writing them in this way, sketch the diagram of the inverse
system of these factor-rings and the canonical maps among them.

(ii) Show that the inverse system · · · → Z/10i Z → · · · → Z/100Z →
Z/10Z constitutes a downward cofinal subsystem of the above inverse
system.

Hence by Exercise 8.5:1 the inverse limits of these two systems are

isomorphic, and we shall denote their common value Ẑ(10). It is clear

from the form of the second inverse system that elements of Ẑ(10) can be
described by “infinite decimal expressions to the left of the decimal point”.
(iii) Show that the relation [2] · [5] = [0] in Z/10Z can be lifted to get
a pair of nonzero elements which have product 0 in Z/100Z, that these
can be lifted to such elements in Z/1000Z, and so on, and deduce that

Ẑ(10) is not an integral domain.

(iv) Prove, in fact, that Ẑ(10)
∼= Ẑ(2) × Ẑ(5).

A construction often used in number theory is characterized in

Exercise 8.5:16. Show that the inverse limit of the system of all factor-

rings of Z by nonzero ideals is isomorphic to
p
Ẑ(p), where the direct

product is taken over all primes p. (This ring is denoted Ẑ.)

A feature we have not yet mentioned, which is important in the study
of inverse limits, is topological structure. Recall that the inverse limit of a
system of sets and set maps (Xi, fij) was constructed as a subset of Xi.
Let us regard each Xi as a discrete topological space, and give Xi the
product topology. In general, a product of discrete spaces is not discrete;
however, a product of compact spaces is compact, so if our discrete spaces
Xi are finite, their product will be compact. It is not hard to show that the
subset lim←−Xi ⊆ Xi will be closed in the product topology, and hence, if
the Xi are finite, will be compact in the induced topology.
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Exercise 8.5:17. (i) Verify the assertion that if the Xi are discrete, then
lim←−Xi ⊆ Xi is always closed in the product topology, and is therefore
compact if all Xi are finite.
(ii) Show that the result of Exercise 8.5:4(i) (and hence that of Exer-
cise 8.5:5(ii)) can be deduced using the compactness of lim←−Xi.

(iii) Show that the compact topology described above agrees in the case

of Ẑ(p) with the topology arising from the metric dp of Exercise 8.4:2.

In fact, results like Exercise 8.5:5(ii), saying that a family of conditions
can be satisfied simultaneously if all finite subfamilies of these conditions can
be so satisfied, are called by logicians “compactness” results, because the
statements can generally be formulated in terms of the compactness of some
topological space.

I can now say that the usual formulation of the open question of Exer-
cise 8.5:12(i) is, “If a compact topological group is torsion, must it have finite
exponent?” (Note that a topological group is by definition required to have
a Hausdorff topology.) The equivalence of this with the question of that ex-
ercise follows from a deep result, that any compact group is an inverse limit
of surjective maps of compact Lie groups (see [118, Theorem IV.4.6, p. 175]),
combined with the observation that if any of these Lie groups had positive
dimension, we would get elements of infinite order. Thus, any compact tor-
sion group is an inverse limit of 0-dimensional compact Lie groups, i.e., finite
discrete groups, under the product topology.

An inverse limit of finite structures is called profinite (based on the syn-
onym “projective limit” for “inverse limit”). Let us look briefly at the condi-
tion of pro-finite-dimensionality in

Exercise 8.5:18. Let V be a vector space over a field k.
(i) Show that the dual space V ∗ is the inverse limit, over all finite-
dimensional subspaces V0 ⊆ V, of the spaces V ∗0 .
(ii) Can you get the result of (i) as an instance of a general result describ-
ing duals of direct limits of vector spaces?
(iii) If you did Exercise 6.5:6(ii)-(iii), show that the topology described
there is that of the inverse limit of the finite-dimensional discrete spaces V ∗0
referred to above. Show moreover that the only linear functionals V ∗ → k
continuous in this topology are those induced by the elements of V.

For some interesting results on profinite structures, especially groups, see
[56, §§3-5].

To motivate the final exercise in this section, suppose L is the direct limit
in a category C of a system of objects and morphisms indexed by a certain
directed partially ordered set I. Thinking about Exercises 8.5:1 and 8.5:2
can lead us to wonder: what other partially ordered index sets we can use to
get L as a direct limit of (some of) these same objects, using (some of) these
same morphisms?
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The objects used in the original direct limit construction, and the mor-
phisms used, together with their composites, form a subcategory D of C;
so the question can be posed as below.

Exercise 8.5:19. Let C be a category, D a subcategory, I a directed
partially ordered set, and L an object of C which can be written as the
direct limit in C of a system of objects and morphisms of D, indexed by
I. We would like to know for what other partially ordered sets J there
will exist J-directed systems in D having L as their direct limit.
(i) Show with the help of Exercise 8.5:2 that L can be written as a
direct limit in C of a system of objects and morphisms in D indexed by
a directed partially ordered set of the form Pfin(S), where S is a set, and
Pfin(S) denotes the partially ordered set of all finite subsets of S, ordered
by inclusion.

If we think of the above result as showing that the class of partially
ordered sets of the form Pfin(S) is quite “strong”, the next result shows
that a different class of partially ordered sets is less strong.
(ii) Letting C = Set and D = FinSet, show that every object of the
former category can be written as a direct limit of a directed system of ob-
jects in the latter subcategory, but that if we restrict attention to directed
systems indexed by chains (totally ordered sets), then only the finite and
countable sets can be so expressed.

The next statement may appear to contradict (ii), but does not.
(iii) Show that the closure of FinSet in Set under taking direct limits
indexed by chains is all of Set.

The idea of looking at families of partially ordered sets in terms of their
relative “strength” in achieving various direct limits suggests some sort of
Galois connection. This is made explicit in
(iv) Let X denote the large set of all partially ordered sets, and Y the
large set of all 3-tuples (C, D, L) where C is a small category, D is a
subcategory of C, and L is an object of C. Let R ⊆ X×Y be the binary
relation consisting of those pairs (P, (C, D, L)) such that L cannot be
written as a direct limit in C of a system of objects and maps from D
indexed by P. Express the results of (i) and (ii) above as statements about
the Galois connection between X and Y induced by R. (So far as I can
see, those results cannot be expressed as statements about the simpler-
looking relation ¬R, i.e., “L can be written as a direct limit in C of a
system of objects and maps from D indexed by P ”.)

8.6. Limits and colimits

The universal properties defining direct and inverse limits are similar to those
defining several other constructions we have seen. Let us recall these.

Given two objects X1, X2 of a category C, a product of X1 and X2 in
C is an object P given with morphisms p1 and p2 into X1 and X2, and
universal for this property.
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Given a pair of parallel morphisms X1 ⇒ X2 in C, an equalizer of this
system is an object K given with a morphism k into X1 having equal
composites with those two morphisms, and again universal. To improve the
parallelism with similar constructions, let us rename the morphism k as k1,
and let k2 : K → X2 denote the common value of the composites of k1

with the two morphisms X1 ⇒ X2. Then we can describe K as having a
morphism into each of X1, X2, such that the composite of k1 :K → X1 with
each of the two given morphisms X1 → X2 is k2 : K → X2, and such that
(K, k1, k2) is universal for these properties. We see that this is exactly like
the universal property of an inverse limit, except that the indexing category
·⇒ · is not of the form Icat for a partially ordered set I.

In the same way, a pullback of a pair of morphisms f1 : X1 → X3,
f2 : X2 → X3 can be redefined as an object P given with morphisms p1,
p2, p3 into X1, X2, X3 respectively, satisfying f1p1 = p3 and f2 p2 = p3,
and universal for this property.

Let us look at a case we haven’t discussed yet. If G is a group and S a
G-set, then the fixed-point set of the action of G on S means {x ∈ |S| |
(∀ g ∈ |G|) g x = x}. If we denote the action of each g ∈ |G| on S by
gS : |S| → |S|, then the fixed-point set is universal among sets A with maps
i : A → |S| such that for all g ∈ |G|, i = gS i. Given an object X of any
category C, and an action of a group G on X, we can look for an object
with the same universal property, and, if it exists, call it the “fixed object”
of the action.

We have seen constructions dual to those of product, equalizer and pull-
back. A construction dual to that of fixed object should take an object X of
C with an action of G on it to an object B of C with a map j : X → B
unchanged under composition on the right with the actions on X of elements
of G, and universal for this property. Examples of this concept are examined
in

Exercise 8.6:1. Let G be a group.
(i) If X is a set on which G acts by permutations, and x an element of
X, one defines the orbit of x under G to be the set Gx = {g x | g ∈ |G|}.
Let B be the set of such orbits Gx, called the orbit space of X. Show
that this set B, together with the map X → B taking x to Gx, has the
universal property discussed above.
(ii) Show that if G acts by automorphisms on (say) a ring R, then there
is an object S in the category of rings with this same universal property,
but that its underlying set will not in general be the orbit space of the
action of G on the underlying set of R.
(iii) If G acts by automorphisms on an object X of POSet, again show
the existence of an object B with the above universal property. Show
moreover that if G is finite, the underlying set of B will be the orbit
space of the underlying set of X, and the universal map X → B will be
strictly isotone; but that if G is infinite, neither statement need be true.
(iv) Do the assertions of (iii) about the case where G is finite remain true
if we replace POSet by Lattice ?
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As noted above, the universal properties we have been examining have
statements formally identical with those of direct and inverse limits, except
that the partially ordered set I of that definition is replaced by other cat-
egories D (for example the two-object category · ⇒ ·, or the one-object
category Gcat). As names for the general concepts embracing such cases,
one uses modified versions of the terms “inverse limit” and “direct limit”.

Definition 8.6.1. Let C and D be categories, and F : D→ C a functor.
Then a limit of F, written lim←−F or lim←−D

F (X), means an object

L ∈ Ob(C) given with a morphism p(X) : L→ F (X) for each X ∈ Ob(D),
such that for f ∈ D(X, Y ) one has p(Y ) = F (f)p(X), and universal for
this property, in the sense that given any object M ∈ Ob(C) and family of
morphisms m(X) : M → F (X) (X ∈ Ob(D)) which similarly make com-
muting triangles with the morphisms F (f), there exists a unique morphism
h : M → L such that for all X, m(X) = p(X)h.

Dually, a colimit of F, written lim−→F or lim−→D
F (X), means an object

L ∈ Ob(C) given with morphisms q(X) : F (X)→ L for all X ∈ Ob(D) such
that for f ∈ D(X, Y ) one has q(X) = q(Y )F (f), and universal for this prop-
erty, in the sense that given M ∈ Ob(C) and morphisms m(X) : F (X)→M
(X ∈ Ob(D)) making commuting triangles with the morphisms F (f), there
exists a unique morphism h : L→M such that for all X, m(X) = h q(X).

The morphisms p(X) in the definition of a limit may be called the asso-
ciated projection morphisms, and the q(X) in the definition of colimit the
associated coprojection morphisms.

One says that a category C “has small limits” if all functors from small
categories D into C have limits, and that C “has small colimits” if all
functors from small categories into C have colimits.

Remarks on terminology. Since the above concepts generalize not only di-
rect and inverse limits, but also a large number of other pairs of constructions,
they might just as well have been given names suggestive of one of the other
pairs. I think that the reason “limit” and “colimit” were chosen is that each
of the other relevant universal constructions involves a more or less fixed di-
agram, while the diagrams involved in direct and inverse limits are varied.
Hence in developing the latter concepts, people were forced to formulate a
fairly general definition, and just a little more generality gave the concepts
noted above.

But though the choice is historically explainable, I think it is unfortunate.
As we can see from the examples of products and coproducts, or of kernels and
cokernels, the objects given by limit and colimit constructions over diagram
categories other than directed partially ordered sets are not “approximated
arbitrarily closely” by the objects from which they are constructed, as the
term “limit” would suggest. The particular cases that best exemplify the
general concepts are not, I think, inverse and direct limits, but pullbacks and
pushouts, so it would be preferable if the limit and colimit of F : D → C
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were renamed the pullback and the pushout of F (regarded as a system of
objects and maps in C). But it seems too late to turn the tide of usage.

Note also the initially confusing fact that limits generalize inverse limits,
while colimits generalize direct limits. The explanation is that the words “di-
rect” and “inverse” refer to forward and backward orientation with respect to
the arrows in the diagram, while the terms “limit” and “colimit” are related
by the principle of using a simple term for a right universal construction,
and adding “co-” to it to get the name of the dual left universal construc-
tion. That principle arose from such cases as “products and coproducts”, and
“kernels and cokernels”, where the right universal constructions, being more
elementary, were named first. There is no reason why two such principles
of naming should agree as to which concept gets the “plain” and which the
“modified” name, and in this case, they do not.

There is another pair of words for the same constructions: Freyd has named
them “roots” and “coroots”, probably because if one pictures a system of
objects and morphisms as a graph, the addition of the universal object makes
it a rooted graph, with the universal object at the root. However there is no
evident connection with roots of equations etc., and this terminology has not
caught on.

Following the associations of the word “limit”, Mac Lane [19] calls a cate-
gory C small-complete if it has small limits, small-cocomplete if it has small
colimits.

Exercise 8.6:2. If S is a monoid, then as for groups, an S-set is equivalent
to a functor F : Scat → Set. Show how to construct the limit (easy) and
the colimit (not so easy) of such a functor.

A useful observation is

Lemma 8.6.2. Let D be a category and X0 an object of D such that there
are morphisms from X0 to every object of D. Let F : D→ C be a functor
having a limit L. Then the projection morphism p(X0) : L → F (X0) is a
monomorphism. In particular, all equalizer maps are monomorphisms.

Likewise, if D is a category having an object X0 such that there are
morphisms from every object of D to X0, and F : D → C is a functor
having a colimit L, then the coprojection morphism q(X0) : F (X0) → L is
an epimorphism. In particular, coequalizer maps are epimorphisms.

Proof. Assume the first situation. The universal property of L implies that
a morphism h : M → L in C is uniquely determined by the system of
morphisms p(X)h : M → F (X) (X ∈ Ob(D)). But for any X ∈ Ob(D),
we can find a morphism f : X0 → X in D, and we then have p(X) =
F (f) p(X0). Thus any h : M → L in C is uniquely determined by the single
morphism p(X0)h. This is equivalent to saying p(X0) is a monomorphism.
The result for colimits follows by duality. ut

For example, when D has the form Gcat for G a group or a monoid, so
that a functor D → C is an action of G on an object X of C, the above
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result tells us that the projection from the limit of that action to X is a
monomorphism; a fact that is clear from Exercise 8.6:2 when C = Set. One
similarly sees that equalizer maps are monomorphisms; and maps arising in
the duals of these two ways are epimorphisms. However,

Exercise 8.6:3. Show that there exist categories C having monomorphisms
f which cannot, for any choice of F, D, X0 as in Lemma 8.6.2, be
represented as projection morphisms p(X0). (Suggestion: What about a
morphism that is both an epimorphism and a monomorphism?)

We have seen that the constructions of pairwise product and coproduct,
when they exist for all pairs of objects of a category C, give right and
left adjoints to the “diagonal” functor ∆ : C → C × C. These statements
generalize to limits and colimits.

Proposition 8.6.3. Let C and D be categories, with D small, and denote
by ∆ : C→ CD the “diagonal” functor, taking every object X ∈ Ob(C) to
the “constant” functor ∆(X) ∈ Ob(CD) with value X at all objects of D
and value idX at all morphisms of D, and likewise taking each morphism
f ∈ C(X, Y ) to the morphism of functors ∆(f) : ∆(X)→ ∆(Y ) with value
f at all objects of D.

Then a limit of a functor F : D→ C is the same as an object L represent-
ing the contravariant functor CD(∆(−), F ) : Cop → Set. In particular, if C
and D are such that all functors D→ C have limits, then the construction
lim←−D

: CD → C is a right adjoint to the diagonal functor ∆ : C→ CD.
Likewise, a colimit of F : D→ C is an object L representing the covariant

functor CD(F, ∆(−)) : C → Set. Thus, when all functors D → C have
colimits, the construction lim−→D

: CD → C is a left adjoint to the diagonal

functor ∆ : C→ CD. ut

(Above, we assumed D small so that CD would be a legitimate category,
so that CD(∆(−), F ) would take values in the category Set of small sets.
If we are interested in the case where D is merely assumed legitimate, we
can apply the above result in any universe U′ larger than U, replacing Set
in the statement with Set(U′).)

These adjointness relationships are shown below.

C

CD

6

lim←−D

?

∆

6

lim−→D

Note that if, as above, C has colimits of all functors F ∈ CD, then our
observation that lim−→D

: CD → C is left adjoint to ∆ tells us, in particular,
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that it is a functor. Thus, given a morphism

f : F −→ G

in CD, we get an induced morphism

lim−→D
f : lim−→D

F −→ lim−→D
G

in C. This will be characterized by the equations

(8.6.4) (lim−→D
f) qF (X) = qG(X) f(X) (X ∈ Ob(D))

where qF (X) : F (X)→ lim−→D
F and qG(X) : G(X)→ lim−→D

G are the copro-
jection maps for these objects and colimits.

Similarly, if functors in CD have limits, then lim←−D
: CD → C becomes

a functor, with
lim←−D

f : lim←−D
F −→ lim←−D

G

characterized by

(8.6.5) pG(X)(lim←−D
f) = f(X)pF (X) (X ∈ Ob(D))

where pF (X) : lim←−D
F → F (X) and pG(X) : lim←−D

G → G(X) are projec-
tion maps.

In drawing a picture of a morphism ∆(M) → F or F → ∆(M) (M ∈
Ob(C)), we can for convenience collapse the copies of the object M and
the identity arrows among them which constitute ∆(M) into a single “M ”.
(E.g., we can collapse the picture representing Proposition 8.6.3 into the
picture representing Definition 8.6.1.) What we have then looks like a “cone”
of maps, with M at the apex; cf. (8.4.5), and for the dual picture, (8.4.7).
Hence a morphism of functors ∆(M) → F or F → ∆(M) is often called a
“cone” from the object M to the functor F, or from the functor F to the
object M ; and the limit or colimit of a functor F may be described as an
object with a “universal cone” to or from F.

Exercise 8.6:4. Let C and D be categories. By Lemma 7.10.1 (“Law of
Exponents for Functors”), the functor ∆ : C → CD corresponds to some
functor D×C→ C. Describe this functor.

Our construction in Lemma 8.5.3 of the inverse limit of an inverse sys-
tem of sets (Xi, fij) as the subset of Xi determined by “compatibility”
conditions can be generalized to give a construction of general limits in any
category having appropriate products and equalizers, and it dualizes to a
construction of colimits in categories with appropriate coproducts and co-
equalizers. (The latter construction may be thought of as generalizing our
construction of the direct limit of a directed system of sets as the quotient of
a disjoint union by an equivalence relation, though the simple way that equiv-
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alence relation could be described when D was a directed partially ordered
set and C was Set does not go over to the general situation.) In the case
of inverse limits of sets, the compatibility conditions say that for all i < j in
I, the pair of maps pj , fij pi must agree on elements of our subset of Xi.
This family of conditions can in fact be translated to a condition saying that
a single pair of maps into an appropriate product object should agree. Using
this idea, we get

Proposition 8.6.6. Let C be a category and D a small category, and let
α be an infinite cardinal such that D has < α objects and < α morphisms.

Then if C has products of all families of < α objects, and has equalizers,
then every functor F : D→ C has a limit.

Dually, if C has coproducts of all families of < α objects, and has co-
equalizers, then every functor F : D→ C has a colimit.

Proof. Under the hypotheses of the first assertion, let

P =
X∈Ob(D)

F (X),

P ′ =
X,Y ∈Ob(D), f∈D(X,Y )

F (Y ).

(If we required categories to have disjoint hom-sets, we could write the latter
definition more simply as P ′ =

f∈Ar(D)
F (cod(f)).) Denote the projection

morphisms associated with these two product objects by pX : P → F (X)
(X ∈ Ob(D)) and p′X,Y, f : P ′ → F (Y ) (X, Y ∈ Ob(D), f ∈ D(X, Y )).
We shall construct L as the equalizer of two maps a, b : P → P ′. Since
a and b are to be morphisms into the direct product object P ′, they may
be defined by specifying their composites with the projection morphisms
p′X,Y, f : P ′ → F (Y ). Define them so that

p′X,Y, f a = pY , p′X,Y, f b = F (f) pX .

If L is the equalizer of a and b, and k : L → P the canonical morphism,
we see that the universal property of L as an equalizer is equivalent to the
statement that the morphisms pX k : L → F (X) form commuting triangles
with the morphisms F (f) and are universal for this property. Thus, the
object L together with the morphisms pX k has the property characterizing
lim←−F.

The result for colimits follows by duality. ut

Exercise 8.6:5. Verify the assertion following the phrase “we see that”, near
the end of the above proof.

Of course, some limits or colimits may exist even if the category does not
have enough (co)products and (co)equalizers to obtain them by the above
lemma. Such a case is noted in part (iv) of the next exercise. (But the most
useful part of this exercise is (i), and the most difficult, surprisingly, is (ii).)
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Exercise 8.6:6. Let C be a category.
(i) Show that an initial object of C is equivalent to a colimit of the
unique functor from the empty category into C.
(ii) Show that such an initial object is also equivalent to a limit of the
identity functor of C.
(iii) State the corresponding results for a terminal object.
(iv) Give an example where the limit of (ii) exists, but C does not satisfy
the hypotheses needed to get this from Proposition 8.6.6.

Here is another degenerate case of the concept of limit:

Exercise 8.6:7. Characterize the categories D with the property that ev-
ery constant functor from D to any category C, i.e., any functor of the
form ∆(C) : D → C (C ∈ Ob(C)) has a limit given by the object C
itself, with universal cone consisting of identity morphisms of C. State the
corresponding result for colimits.

We have seen that a product or coproduct of objects in a category may or
may not coincide with their product or coproduct in a subcategory to which
they also belong. E.g., the coproduct of two abelian groups in the category
of all groups and their coproduct in the category of all abelian groups are
different, since the former is generally nonabelian. We note below that for full
subcategories, such phenomena occur if and only if the constructed object in
the larger category fails to lie in the subcategory.

Lemma 8.6.7. Let C be a category, B a full subcategory of C, I : B→ C
the inclusion functor, and F : D → B a functor from an arbitrary category
into B.

If lim←− IF exists (loosely, if there exists “a limit of the system of objects
F (X) in the larger category C”), and if as an object it belongs to B, then
this same object, with the same cone to the objects F (X), constitutes a limit
lim←−F (loosely, it is also “a limit of the given system within the subcategory
B”).

The same is true for colimits lim−→ IF and lim−→F. ut

Exercise 8.6:8. (i) Prove the above lemma.
(ii) Does the above result remain true if the hypothesis that the subcat-
egory B is full in C is deleted? If not, does it help to add the hypothesis
that not only the object lim←− IF, but also the projection maps from this
object to the values of F belong to B ?

The example of the coproduct of two abelian groups in Ab and in Group
shows that if we merely assume in the above lemma that lim−→ IF exists, this
does not guarantee that it belongs to B. By duality, one can get from this
colimit example an analogous example for limits. (Using what category and
subcategory?)

Another way that the same object can be a limit of two related functors
is examined in
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Exercise 8.6:9. Given functors D0
D−→ D1

F−→ C, note that if F has a
limit L = lim←−F, then the cone from L to F induces a cone from L to
FD, and we can look for conditions under which L, with this cone, is also
a limit of FD. In particular, we can ask which functors D : D0 → D1
have the property that this is true for all functors F with domain D1
which have limits.

Exercise 8.5:1 answered this question for functors D : (P0)cat →
(P1)cat induced by inclusions of partially ordered sets P0 ⊆ P1. Inves-
tigate the same question for functors D between general (i.e., arbitrary
small, or perhaps legitimate) categories; that is, look for necessary and/or
sufficient conditions on a functor D for this property to hold.

We indicated in the last two paragraphs of §7.10 that if a category C has
finite products, then any functor category CE will also have such products,
which can be computed “objectwise”. To formulate the analogous result for
general limits and colimits, suppose C and E are categories and E an
object of E; then let us write cE : CE → C for the “E-th coordinate
functor”, taking functors and morphisms of functors to their values at the
object E. Likewise, if f : E1 → E2 is a morphism in E, then cf : cE1 → cE2

will denote the induced morphism of coordinate functors. You should find it
easy to verify

Lemma 8.6.8. Let C, D and E be categories. Then if all functors D→ C
have limits, so do all functors D → CE. Namely, given F : D → CE,
the object L = lim←−D

F of CE can be described as the functor taking each

E ∈ Ob(E) to lim←−D
cE F, and each f ∈ E(E1, E2) to lim←−D

cf ◦ F.
Likewise, if all functors D→ C have colimits, then all functors D→ CE

have colimits, which are similarly constructed “object- and morphism-wise”.
ut

Exercise 8.6:10. Prove Lemma 8.6.8 for the case of limits.

8.7. What respects what?

It is natural to ask what one can say about limits and colimits of systems of
objects constructed by adjoint functors, about the values of adjoint functors
on objects constructed by limits and colimits, and similar questions for other
sorts of universal constructions.

Some quick examples: It is not hard to see that the free group on a disjoint
union of sets, X t Y, is the coproduct of the free groups on X and Y. If
we look similarly at the free group on the coequalizer of a pair of set maps,
f, g : X ⇒ Y we find that it is the coequalizer of the induced maps of free
groups, F (f), F (g) : F (X) ⇒ F (Y ). On the other hand, a direct product
of free groups is in general not a free group, in particular not the free group
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on the direct product set. So the free group construction seems to respect
colimits, but not limits.

If we look at its right adjoint, the underlying set functor, we find the
opposite: The underlying set of a product or equalizer of groups is the product
or equalizer of the underlying sets of the groups (that is how we constructed
products and equalizers of groups), but the underlying set of a coproduct of
groups is not the coproduct (disjoint union) of their underlying sets, both
because the group operation within this coproduct generally produces new
elements from the elements of the two given groups, and because the two
identity elements fall together in this coproduct. Similarly, when we take a
coequalizer of two group homomorphisms f, g : G⇒ H, more identifications
of elements are forced than in the set-theoretic coequalizer: not only must
pairs of elements f(a) and g(a) (a ∈ |G|) fall together, but also pairs such
as f(a) b and g(a) b (a ∈ |G|, b ∈ |H|).

These examples suggest the general principle that “left universal construc-
tions respect left universal constructions, and right universal constructions
respect right universal constructions”. We shall prove a series of theorems of
that form in this and the next section.

We have seen left universal constructions in four guises: initial objects,
representing objects for covariant set-valued functors, left adjoint functors,
and colimits. Since an initial object of a category may be described as the
object representing a certain trivial set-valued functor (Exercise 8.2:7) or as
the colimit of a functor from a certain trivial category (Exercise 8.6:6(i)),
let us focus on relations among the remaining three types of constructions.
These give us six unordered pairs of constructions to consider. The first of
these pairs would correspond to the question of whether the construction
of an object representing one covariant set-valued functor U “respects” the
construction of an object representing another such set-valued functor V ; but
I see no meaning to give this question. However, for the next case, concerning
the relation between representing objects for covariant set-valued functors on
the one hand, and left adjoint functors on the other, there is a nice sense in
which these respect one another. We give this, along with its dual, as

Theorem 8.7.1. Suppose D
U-
�
F

C are adjoint functors, with U the

right adjoint and F the left adjoint, and with unit η and counit ε. Then

(i) If A : C → Set is a representable functor, with representing object
R ∈ Ob(C) and universal element u ∈ A(R), then AU : D → Set
is also representable, with representing object F (R) and universal element
A(η(R))(u) ∈ A(U(F (R))).

Likewise,

(ii) If B : Dop → Set is representable, with representing object R ∈
Ob(D) and universal element u ∈ B(R), then B F : Cop → Set is repre-
sentable, with representing object U(R) and universal element B(ε(R))(u) ∈
B(F (U(R))).
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Proof. In the first situation, AU(−) ∼= C(R, U(−)) ∼= D(F (R),−), showing
that AU is represented by F (R). The identification of the universal element,
corresponding to the identity morphism in D(F (R), F (R)) is straightfor-
ward. The second situation is the dual of the first. ut

As an example, suppose we wish to construct the ring with a universal
pair of elements x, y satisfying the relation x y = y x2. We notice that this
ring-theoretic relation is “actually a monoid relation”; the formal statement
is that the functor we want to represent can be written AU, where U is the
forgetful functor from Ring1 to Monoid, and A the functor associating to
any monoid S the set of pairs (x, y) of elements of S satisfying x y = y x2.
It is not hard to see that we can construct our ring by first forming the
monoid R presented by these generators and relation, and then passing to
the monoid ring ZR, i.e., applying the left adjoint to U, and that this is an
instance of the above theorem. Note that the universal ring elements x and
y satisfying the given equation are the images of the corresponding universal
monoid elements, under the canonical map η(R) : R→ U(F (R)) (informally,
the inclusion map R → ZR). Applying η(R) to this pair of elements of R
corresponds to applying A(η(R)) to the element (x, y) ∈ A(R), as in the
statement of the theorem.

The above example makes it clear that Theorem 8.7.1 is a powerful tool,
and that it indeed deserves to be described as saying that “left adjoint func-
tors respect the construction of objects representing covariant set-valued
functors”.

Note, however, that, the sense in which the latter statement is true is
rather idiosyncratic; the formulation involves both the left adjoint functor
and its right adjoint, and it does not appear to be a special case of any
natural concept of a left adjoint functor respecting a general construction,
or of a general functor respecting the construction of representing objects.
There is a similarly idiosyncratic sense in which “left adjoint functors respect
other left adjoint functors”; this is Theorem 8.3.10, already proved, which
says that the composite of the left adjoints of two functors is the left adjoint
of their composite (in the opposite order).

In contrast, when one looks at how our three sorts of left universal con-
struction interact with colimits (these three cases being all we have left to
consider of our six possible sorts of interaction), one finds that there is a nat-
ural definition of an arbitrary functor’s respecting a colimit. We will examine
that concept in the next section, and verify the remaining cases of our obser-
vation that left universal constructions respect left universal constructions,
and hence, dually, that right universal constructions respect right universal
constructions.

Exercise 8.7:1. Prove the following converse to the first assertion of The-
orem 8.7.1: If U : D → C is a functor such that for every representable
functor A : C → Set, the composite functor AU : D → Set is repre-
sentable, then U has a left adjoint. Also state the dual result.
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8.8. Functors respecting limits and colimits

Here is the definition of a functor “respecting” a limit or colimit.

Definition 8.8.1. Let C, C′ be categories, and F : C→ C′ a functor.
Then if S : E→ C is a functor into C, having a limit lim←−S, with cone of

projection maps pE : lim←−S → S(E) (E ∈ Ob(E)), one says that F respects
the limit of S if the object F (lim←−S), together with the cone of morphisms
F (pE) : F (lim←−S)→ F (S(E)) from this object to the functor FS : E→ C′,
is a limit of the functor FS.

We shall say that F respects small limits if for every functor S from a
small category E to C which has a limit, F respects the limit of S. We shall
say that F respects large limits if this is true without the restriction that E
be small. Likewise, we shall say that F respects pullbacks, terminal objects,
small products, large products, small inverse limits, large inverse limits, etc.,
if it respects all instances of the sort of limit named.

Dually, if S : E → C is a functor having a colimit lim−→S, with cone of
coprojection maps qE : S(E) → lim−→S, then we shall say that F respects
the colimit of S if the object F (lim−→S), with the cone from FS to it given
by the morphisms F (qE) : F (S(E)) → F (lim−→S), is a colimit of FS; and
we will say that F respects small colimits, large colimits, pushouts, initial
objects, small or large direct limits, etc., if it respects all colimits having these
respective descriptions.

In all of these situations, we may use “commutes with” as a synonym for
“respects”.

(Many authors, e.g., Mac Lane [19], again following the topological asso-
ciations of the word “limit”, call a functor respecting limits “continuous”,
and one respecting colimits “cocontinuous”. But we will not use these terms
here.)

The distinctions between the “small” and “large” cases of the above def-
inition are technically necessary, but there are situations where they can be
ignored:

Observation 8.8.2 Suppose that for each universe U we are given a con-
dition P (U) on functors between U-legitimate categories, such that

(a) For every universe U, all functors F between U-legitimate categories
that satisfy P (U) respect U-small limits (respectively, U-small colimits; or
U-small limits or colimits of a particular sort, such as products or coprod-
ucts), and

(b) Functors F satisfying P (U) also satisfy P (U′) for all universes U′ ⊇ U.
(The commonest case will be where P (U) does not refer to U; e.g., where it
is a condition such as “F is a right adjoint functor”.)

Then all functors F satisfying P (U) in fact respect U-large limits (re-
spectively, U-large colimits, products, coproducts, etc.).
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Hence, in discussing properties P which are preserved, in the sense of (b)
above, under enlarging the (usually unnamed) universe, if we make assertions
that all functors F satisfying P “respect limits” etc., we need not specify
“small” or “large”.

Proof. Regard any U-large limit as a U′-small limit for a universe U′ ⊇ U,
and apply (a) with U′ in the role of U. ut

The above observation will allow us to ignore the small / large distinction
in formulating the results of this section. For instance, since the properties of
being left and right adjoints do not depend on the universe, we do not need
to worry about smallness in stating

Theorem 8.8.3. Left adjoint functors respect colimits, and right adjoint
functors respect limits.

Proof. Let D
U-
�
F

C be adjoint functors, with U the right and F the

left adjoint, and suppose S : E→ C has a colimit L, with coprojection maps
qE : S(E)→ L (E ∈ Ob(E)). Recall that L represents the functor

(8.8.4) CE(S, ∆(−)) : C −→ Set,

i.e., the construction taking each object C ∈ Ob(C) to the set of cones
CE(S, ∆(C)) and acting correspondingly on morphisms, and that the cone
(qE)E∈Ob(E) is the universal element for this representing object.

Applying Theorem 8.7.1 to the statement that L represents (8.8.4), we
see that F (L) will represent the functor D→ Set given by

(8.8.5) CE(S, ∆(U(−))) = CE(S, U∆(−)) ∼= DE(FS, ∆(−));

in other words, it will be a colimit of FS.
The universal cone could hardly be anything but (F (qE))E∈Ob(E); but we

need to check this formally. By Theorem 8.7.1, to get this universal element
we apply to L the unit η of our adjunction, getting a morphism η(L) : L→
UF (L), apply the functor CE(S, ∆(−)) to it, getting a set map

CE(S, ∆(η(L))) : CE(S, ∆(L)) −→ CE(S, ∆(UF (L))),

and apply this set map to our original universal cone. Now the above set
map is given by left composition with η(L), so it transforms our origi-
nal cone (qE) from S to L into the cone (η(L) qE) from S to UF (L).
Following (8.8.5), we identify cones from the functor S to objects U(D)
(D ∈ Ob(D)) with cones from FS to the objects D by use of the given
adjunction. This identification works by applying F to the given morphisms,
then applying the counit of the adjunction to the codomains of the resulting
morphisms. So the morphisms η(L) qE of our cone are first transformed to
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F (η(L) qE) = F (η(L))F (qE), then composed on the left with ε(F (L)). By
Theorem 8.3.8(iii), the latter morphism is left inverse to F (η(L)), so the
composite is F (qE), as claimed.

The assertion about right adjoint functors and limits follows by duality.
ut

For example, suppose (C, U) is a concrete category having free objects on
all sets, i.e., such that U has a left adjoint F. Then we see by applying the
above theorem to appropriate colimits in Set that a free object in C on a
disjoint union of sets is a coproduct of the free objects on the given sets, and
that a free object on the empty set is an initial object. (These facts were noted
for particular cases in Chapter 4.) The fact that right adjoints respect limits
tells us, likewise, that for C and U as above, if we call U(X) the “underlying
set” of X ∈ Ob(C), then underlying sets of product objects, terminal objects,
equalizers, and inverse limits are, respectively, direct products of underlying
sets, the one-element set, equalizers of underlying sets, and inverse limits of
underlying sets. This explains why, in so many familiar cases, the construction
of the latter objects begins by applying the corresponding construction to
underlying sets. (The perceptive reader may note that what this actually does
is reduce these many facts to the one unexplained fact that the underlying
set functors of the categories arising in algebra tend to have left adjoints –
though they rarely have right adjoints.)

Exercise 8.8:1. (i) Combining the above theorem with Lemma 7.8.11, ob-
tain results on how left and right adjoint functors behave with respect to
epimorphisms and monomorphisms.
(ii) The results you get will not say that both left and right adjoint functors
preserve both epimorphisms and monomorphisms. Find examples showing
that the implications not proved in part (i) do not, in general, hold.

(For some related observations, positive and negative, cf. Exercise
7.7:9(v)-(vi) and Exercise 7.8:8.)

Let us look next at how limits and colimits interact with objects that
represent functors. In this form, there is not an obvious question to ask; but
we can ask whether representable functors respect limits and colimits. Our
definition of a functor F respecting a limit or colimit assumed F covariant,
so to cover contravariant as well as covariant representable functors, we also
need a name for the dual property:

Definition 8.8.6. Let C, C′ be categories, and F a contravariant functor
from C to C′, i.e., a functor Cop → C′.

Then if S : E→ C is a functor having a limit lim←−S, with projection maps
pE : lim←−S → S(E), one says that F turns the limit of S into a colimit if the
object F (lim←−S), together with the cone from the functor FS : Eop → C′

to this object given by the morphisms F (pE) : F (S(E)) → F (lim←−S), is a
colimit of that functor (equivalently, if, viewing lim←−S and (pE) as an object
and a cone of morphisms in Cop which comprise a colimit of the functor
Sop : Eop → Cop, the functor F respects this colimit).
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This yields the obvious definitions of statements such as that F “turns
small limits into colimits”, “turns pullbacks into pushouts”, “turns terminal
objects into initial objects”, etc..

We define analogously the concept of F turning the colimit of a functor
S into a limit (and thus the concepts of turning coproducts into products,
pushouts into pullbacks, etc.).

We can now state

Theorem 8.8.7. Let C be a category. Then covariant representable functors
V : C→ Set respect limits, while contravariant representable functors on C,
W : Cop → Set, turn colimits (in C) into limits (in Set).

Sketch of proof. The second statement is equivalent to the first applied to
the category Cop, so it suffices to prove the first assertion.

Without loss of generality we may take V = hR where R ∈ Ob(C). Let L
be the limit of a functor S : E→ C. Thus, L is given with a universal cone
to S, i.e., a universal Ob(E)-tuple of morphisms pE : L → S(E) making
commuting diagrams with the morphisms S(f) arising from morphisms f
in E. Applying hR, we get a cone of set maps from the set hR(L) = C(R, L)
to the sets C(R, S(E)). The fact that it is a cone tells us that each element
of C(R, L) determines, under these maps, a family of elements, one for each
of the sets C(R, S(E)), that is respected by the maps hR(S(f)).

Moreover, the universal property of L tells us that each system of elements
of the C(R, S(E)) that is respected by the maps hR(S(f)) arises in this
way from a unique element of C(R, L). Now limits over E in Set are given
by Ob(E)-tuples of elements satisfying just these compatibility conditions;
so we see that lim←−E

hR(S(E)) and its universal cone to the sets hR(S(E))

can be identified with hR(L) and its universal cone to these same sets. Thus,
the functors lim←−E

(hR ◦−) and hR lim←−E
agree on objects. Their behavior on

morphisms is determined by compatibility with maps among cones, and so
also agrees. ut

Exercise 8.8:2. (i) Show by example that covariant representable func-
tors Ab→ Set need not respect colimits. In fact, give examples of failure
to respect coproducts, failure to respect coequalizers, and failure to respect
direct limits.
(ii) Similarly show by examples that contravariant representable functors
on Ab in general fail to turn products, equalizers, and inverse limits into
coproducts, coequalizers and direct limits respectively.

Finally, we come to the interaction of colimits with colimits, and of limits
with limits. Suppose B : D × E → C is a bifunctor. Then each object D
of D induces a functor B(D,−) : E → C, and each morphism f : D →
D′ in D yields a morphism of functors, B(f,−) : B(D,−) → B(D′,−).
(Cf. Lemma 7.10.1 and preceding discussion.) If for each D the functor
B(D,−) has a colimit, let us write these objects lim−→E

B(D, E) ∈ Ob(C).



8.8 Functors respecting limits and colimits 329

The morphisms between functors B(D,−) induce morphisms among these
colimit objects (cf. (8.6.4) and preceding display), so that the construction of
lim−→E

B(D, E) from D becomes a functor lim−→E
B(−, E) : D→ C. Suppose

this functor in turn has a colimit, which we write lim−→D
(lim−→E

B(D, E)). Then
the composites of coprojections

(8.8.8)
B(D0, E0) −→ lim−→E

B(D0, E) −→ lim−→D
(lim−→E

B(D, E))

(D0 ∈ Ob(D), E0 ∈ Ob(E))

constitute a cone of morphisms from the B(D0, E0) to our iterated colimit,
and it is straightforward to verify that the latter object, together with this
cone, has the universal property of lim−→D×EB(D, E).

Exercise 8.8:3. (i) Prove the above claim, that if lim−→D
(lim−→E

B(D, E))

exists, the morphisms (8.8.8) form a cone with respect to which the right
hand object satisfies the universal property of lim−→D×EB(D, E).

(ii) On the other hand, give an example where lim−→D×EB(D, E) exists,

but lim−→D
(lim−→E

B(D, E)) does not.

This gives us the first isomorphism of (8.8.10) in the next theorem. By
symmetry, we likewise have the second isomorphism if the rightmost colimit
exists. The isomorphisms of the second display similarly hold under the dual
hypotheses.

Theorem 8.8.9. Colimits commute with colimits, and limits commute with
limits.

Precisely, let B : D×E→ C be a bifunctor. Then

(8.8.10) lim−→D
(lim−→E

B(D, E)) ∼= lim−→D×EB(D, E) ∼= lim−→E
(lim−→D

B(D, E)),

in the sense that if the left side of the above display is defined, then this object
also has the universal property of the middle object, via the cone of morphisms
(8.8.8), and similarly, if the right side is defined, it has the property of the
middle object via the analogous cone. Hence, if both sides are defined, they
are isomorphic.

Likewise

(8.8.11) lim←−D
(lim←−E

B(D, E)) ∼= lim←−D×EB(D, E) ∼= lim←−E
(lim←−D

B(D, E))

in the same sense. ut

As formulated, (8.8.10) is not an instance of a functor “respecting” co-
limits in the precise sense of Definition 8.8.1, because the minimalist hy-
potheses we assumed in the above theorem do not make lim−→D

a functor

on all of CD. If we in fact assume that all functors from D to C have
colimits (e.g., if C has small colimits and D is small), then the isomor-
phism lim−→D

(lim−→E
(B(D, E))) ∼= lim−→E

(lim−→D
(B(D, E))) becomes a case of
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Theorem 8.8.3, since lim−→D
becomes a left adjoint functor CD → C. How-

ever, the identification of the common value of the two iterated colimits as
lim−→D×EB(D, E) must still be stated and proved separately. (In the same

spirit, if C has small coproducts, the covariant case of Theorem 8.8.7 follows
from Theorem 8.8.3 and Exercise 8.3:3.)

The case of (8.8.10) where E is the empty category says that colimits
respect initial objects; i.e., that if I is an initial object of C, then for any
D, the diagram ∆(I) ∈ CD has colimit I. For instance, the coproduct in
Ring1 of two copies of Z is again Z. The next exercise examines variants
of this result.

Exercise 8.8:4. (i) Show, conversely, that if an object I of a category C
has the property that for all small categories D, the functor ∆(I) ∈ CD

has a colimit isomorphic to I, then I is an initial object of C.
(Contrast Exercise 8.6:7, which asks for a description of those categories

D such that this property holds for all objects of C.)
(ii) Can you characterize those objects I of a category C for which the
hypothesis of (i) holds for all nonempty small categories D ?

(iii) Show that in Ring1 (or if you prefer, CommRing1), every ring of
the form Z/nZ has the property of (ii).

Despite the similar nomenclature, category-theoretic double limits behave
quite differently from double limits in topology. The contrast is explored in

Exercise 8.8:5. (i) For nonnegative integers i, j, define bij to be 1
if i > j, 2 if i ≤ j. Show that as limits of real-valued functions,
limi→∞(limj→∞ bij) and limj→∞(limi→∞ bij) exist and are unequal.

(ii) Let the set ω × ω be partially ordered by setting (i, j) ≤ (i′, j′) if
and only if i ≤ i′ and j ≤ j′. Show that there exist functors (directed
systems) B : (ω × ω)cat → Set satisfying card(B(i, j)) = bij , for the
function bij defined in (i).

(iii) Deduce from Theorem 8.8.9 that a functor as in (ii) can never have
the property that for each i, the given morphisms B(i, j) → B(i, j+1)
and B(i, j)→ B(i+1, j) are isomorphisms for all sufficiently large j.
(iv) Establish the result of (iii) directly, without using the concept of
category-theoretic colimit.

In earlier sections, there were several exercises asking you to determine
whether functors F were representable or had right or left adjoints. If you
go back over the cases where F turned out not to be representable, or not
to have an adjoint, you will find that, whatever ad hoc arguments you may
have used at the time, each of these negative results can be deduced from
Theorem 8.8.7 or 8.8.3 by noting that the F in question fails to respect some
limit or colimit.

Since limits and colimits come in many shapes and sizes, it is useful to note
that to test whether a functor F respects these constructions, it suffices to
check two basic cases.
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Corollary 8.8.12 (to proof of Proposition 8.6.6). Let C, D be cate-
gories and F : C→ D a functor.

If C has small colimits, then F respects such colimits if and only if it
respects coequalizers and respects coproducts of small families of objects.

Likewise, if C has small limits, then F respects these if and only if it
respects equalizers, and products of small families. ut

One can break things down further, if one wishes:

Exercise 8.8:6. (i) Let C be a category having coproducts of pairs of
objects, and hence of finite nonempty families of objects. Show that the
universal property of a coproduct of an arbitrary family I

Xi is equiva-
lent to that of a direct limit, over the directed partially ordered set of finite
nonempty subsets I0 ⊆ I, of the finite coproducts

I0
Xi.

(ii) Deduce that a category has small colimits if and only if it has co-
equalizers, finite coproducts, and colimits over directed partially ordered
sets; and that a functor on such a category will respect small colimits if
and only if it respects those three constructions.

State the corresponding result for limits.
(iii) For every two of the three conditions “respects equalizers”, “respects
finite products”, “respects inverse limits over inversely directed partially
ordered sets” (the conditions occurring in the dual to the result of (ii)),
try to find an example of a functor among categories having small limits
which satisfies those two conditions but not the third. As far as possible,
use naturally occurring examples.

You might look at further similar questions; e.g., whether you can find
an example respecting both finite and infinite products, but not inverse
limits; or whether you can still get a full set of examples if you break the
condition of respecting finite products into the two conditions of respecting
pairwise products and respecting the terminal object (the product of the
empty family).

One can go into this more deeply. I do not know the answers to most of
the questions raised in

Exercise 8.8:7. Let A denote the (large) set of all small categories, and B
the (large) set of all legitimate categories. Define a relation R ⊆ A×B by
putting (E, C) ∈ R if all functors E→ C have colimits.
(i) The above relation R induces a Galois connection between A and
B. Translate results proved about existence of colimits in Proposition 8.6.6
and part (ii) of the preceding exercise into statements about the closure
operator ∗∗ on A.
(ii) Investigate further the properties of the lattice of closed subsets of A.
Is it finite, or infinite? Can you characterize the induced closure operator
on the subclass of A or of B consisting of categories Pcat for partially
ordered sets P ?

The above questions concerned existence of colimits. To study preser-
vation of colimits, let C denote the class of functors F whose domain and
codomain are legitimate categories having small colimits, and let us define
a relation S ⊆ A× C by putting (E, F ) ∈ S if F : C → D respects the
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colimits of all functors E→ C. This relation induces a Galois connection
between A and C; so let us ask
(iii) Can you obtain results relating the lattice of closed subsets of A under
this new Galois connection and the lattice of subsets of A closed under
the Galois connection of part (i)? If they are not identical, investigate
the structure of the new lattice. (You will have to use a notation that
distinguishes between the two Galois connections.)

In studying situations where we do not know that one functor respects
the (co)limit of another, but where the two (co)limits in question both exist,
there is a natural way to compare them:

Definition 8.8.13. If E
S−→ C

F−→ D are functors such that lim−→S and
lim−→FS both exist, then by the comparison morphism

lim−→FS −→ F (lim−→S)

we shall mean the unique morphism from the former object to the latter
which makes a commuting diagram with the natural cones of maps from the
functor FS to these two objects (namely, the universal cone from FS to
lim−→FS, and the cone obtained by applying F to the universal cone from S
to lim−→S. The existence and uniqueness of this map follow from the universal
property of the former cone.)

Likewise, if lim←−S and lim←−FS both exist, then by the comparison mor-
phism

F (lim←−S) −→ lim←−FS

we shall mean the unique morphism which makes a commuting diagram with
the obvious cones from these two objects to the functor FS.

In particular, we may use the term “comparison morphism” in connection
with coproducts, products, coequalizers, equalizers, etc., regarding these as
colimits and limits.

These comparison morphisms measure whether the functor F respects
these colimits and limits. I.e., comparing Definitions 8.8.13 and 8.8.1 we have

Lemma 8.8.14. Given S and F as in the first paragraph of Defini-
tion 8.8.13, the functor F respects the colimit of S if and only if the com-
parison morphism lim−→FS → F (lim−→S) is an isomorphism. Likewise, under
the assumptions of the second paragraph of that definition, F respects the
limit of S if and only if the comparison morphism F (lim←−S)→ lim←−FS is an
isomorphism. ut

Exercise 8.8:8. Suppose C, D and E are categories such that C has
colimits of all functors D → C, and also of all functors E → C, so that
lim−→D

becomes a functor CD → C and lim−→E
a functor CE → C. Show

that for any bifunctor B : D × E → C, the above definition yields com-
parison morphisms lim−→D

(lim−→E
B(D, E))→ lim−→E

(lim−→D
B(D, E)) and also
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lim−→E
(lim−→D

B(D, E)) → lim−→D
(lim−→E

B(D, E)), and that these are inverse

to one another. This gives another proof of the isomorphism between the
two sides of (8.8.10) under these hypotheses.

Earlier in this section, I said that there was no obvious way to talk about
limits or colimits “respecting” the construction of objects representing func-
tors, and we looked instead at the subject of representable functors respecting
limits and colimits. But there are actually some not-so-obvious results one can
get on limits and colimits of objects that represent functors. Conveniently,
these reduce to statements that certain functors respect limits and colimits.
You can develop these in

Exercise 8.8:9. (i) Show that the covariant Yoneda embedding C →
SetC

op

respects small limits, and that the contravariant Yoneda em-
bedding Cop → SetC turns small colimits into limits. (Idea: combine
Lemma 8.6.8 and Theorem 8.8.7.)
(ii) Turn the above results into statements on the representability of set-
valued functors which are limits or colimits of other representable functors,
and characterizations of the objects that represent these.
(iii) Deduce the characterization, noted near the beginning of §4.6, of pair-
wise coproducts of groups defined by presentations, and the assertion of
Exercise 8.5:7, that every group is a direct limit of finitely presented groups.
(iv) Show by example that the covariant Yoneda embedding of a cate-
gory need not respect small colimits, and that the contravariant Yoneda
embedding need not turn small limits into colimits.

(v) Suppose C, D, E are categories, with E small, and U : E → CD

a functor such that each of the functors U(E) : D→ C has a left adjoint
F (E). Under appropriate assumptions on existence of small limits and/or
colimits in one or more of these categories, deduce from preceding parts of
this exercise that lim←−E

U(E) exists (as an object of CD), and that (as a

functor D→ C) it has a left adjoint, constructible from the F (E).
(vi) Show by example that the analogous statement about colimits of func-
tors which have left adjoints is false.

8.9. Interaction between limits and colimits

Since limits are right universal constructions and colimits are left universal,
these two sorts of constructions cannot be expected to respect one another
in general. However, there are important special cases where they do. We ob-
served in §8.5 (and will prove formally in the next chapter) that one can form
the direct limit of any directed system of algebras with finitary operations
by taking the direct limit of their underlying sets, and putting operations
on this set in a natural manner. The essential reason for this is that algebra
structures are given by operations |A| × · · · × |A| → |A| on sets, and that
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in Set, direct limits commute with finite products – although, generally,
colimits do not.

When we ask whether a given limit and a given colimit commute, there
are potentially two comparison morphisms to consider, one a case of the
comparison morphism that measures whether a limit is respected by a gen-
eral functor, the other of the comparison morphism for a colimit and a gen-
eral functor. A priori, one of these might be an isomorphism and the other
not, or they might give different isomorphisms between the same objects.
Fortunately, these anomalies cannot occur; as we shall now prove, the two
comparison morphisms coincide. (Note that these morphisms go in the same
direction, because the comparison morphism for limits goes into the limit
object, while the comparison morphism for colimits comes out of the co-
limit object. Contrast the interaction between limits and limits, or between
colimits and colimits, where the two comparison morphisms go in opposite
directions, and, as shown in Exercise 8.8:8, are inverse to one another.)

Lemma 8.9.1. Suppose C, D and E are categories, such that C has
colimits of all functors with domain D, and has limits of all functors with
domain E; and let B : D×E→ C be a bifunctor. Then the two comparison
morphisms

lim−→D
lim←−E

B(D, E) −→ lim←−E
lim−→D

B(D, E)

coincide, their common value being characterizable as the unique morphism
cB such that for every D0 ∈ Ob(D) and E0 ∈ Ob(E), the following diagram
commutes:

(8.9.2)

B(D0, E0) -q(D0, E0)
lim−→D

B(D, E0)

6

p(E0)

lim←−E
lim−→D

B(D, E)

�
�
�
�
��7

cB

lim−→D
lim←−E

B(D, E)-q(D0)
lim←−E

B(D0, E)

6

p(D0, E0)

Here p(D0, E0) and p(E0) denote the E0-th projection maps out of the re-
spective limits lim←−E

B(D0, E) and lim←−E
lim−→D

B(D, E), and q(D0, E0) and

q(D0), the D0-th coprojection morphisms into the colimits lim−→D
B(D, E0)

and lim−→D
lim←−E

B(D, E).
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Proof. Let us first take cB to be the comparison map between the two indi-
cated objects of (8.9.2) which tests whether the construction lim←−E

: CE → C,

regarded simply as a functor (and not specifically as a limit) respects lim−→D
.

We shall verify that this is the unique morphism making the family of dia-
grams (8.9.2) commute, i.e., giving the same morphisms via the two routes
from the lower left to the upper right corners. The dual argument will then
clearly show the same for the other comparison map, proving the lemma.

The defining property of the colimit-comparison morphism cB is that it
respects the cones from the family of objects lim←−E

B(D0, E) (D0 ∈ Ob(D))
to the two objects it connects, where the cone to its domain is the universal
one for the colimit over D, and consists of the bottom arrows of the diagrams,
while the cone to the codomain consists of maps, which we may called r(D0) :
lim←−E

B(D0, E) → lim←−E
lim−→D

B(D, E) gotten by applying lim←−E
(−, E) to

the family of coprojection maps (q(D0, E0))E0∈Ob(E) (top arrow in (8.9.2);
cf. Lemma 8.6.8). Now when we apply lim←−E

(−, E) to such a family, the
resulting morphism is characterized by the condition that for each E0, it
form a commuting square with the projection maps to the objects indexed
by E0 (cf. (8.6.5)). In our case, those projection maps are the vertical arrows
in (8.9.2); thus the condition is that for all E0, our map r(D0) should
form a commuting square with the three arrows above it. Since by the above
definition of cB , the map r(D0) also equals the composite of the two arrows
below it, (8.9.2) will commute for all D0 and E0; and we see from the
universal properties involved that cB is the unique morphism making this
happen. ut

Before proving that in certain cases the above comparison morphism is an
isomorphism, let us note some elementary cases where it is not.

Exercise 8.9:1. Let D and E each be the category with object-set {0, 1},
and no morphisms other than identity morphisms.
(i) Suppose L is a lattice, Lpos its underlying partially ordered set, and
C = (Lpos)cat. For these choices of C, D and E, say what it means to
give a bifunctor B as in Lemma 8.9.1, verify that the indicated limits and
colimits exist, and identify the morphism cB of the lemma. Show that even
if C is the 2-element lattice, this morphism can fail to be an isomorphism.
(ii) Analyze similarly the case where C = Set, and D, E are again as
above.

We shall now prove our positive result, which includes the claim in the
first paragraph of this section about direct limits of finite products in Set.
The proof will involve chasing elements in objects of Set, and we shall see
subsequently that the corresponding statement with Set replaced by a gen-
eral category C is false. In thinking about what the result says, you might
begin with the case where D = ωcat (ω the partially ordered set of natu-
ral numbers) and E is either the two-object category such that limits over
E are equalizers, or the three-object category such that limits over E are
pullbacks, or the one-object category Gcat for G a finitely generated group;
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and convince yourself that the assertion of the proposition is true in one or
more of these cases, before reading the proof for the general case.

Let us note a piece of notation that will be used in the proof. If B : D×E→
C is a bifunctor, D an object of D, and f : E1 → E2 a morphism of E, then
one often writes B(D, f) for the induced morphism B(D, E1)→ B(D, E2),
which is, strictly, B(idD, f). Similarly, given a morphism g of D and an
object E of E, one may write B(g, E) for B(g, idE).

Proposition 8.9.3. If D is a category of the form Pcat, for P a directed
partially ordered set, and E is a nonempty category which has only finitely
many objects, and whose morphism-set is finitely generated under compo-
sition, then for any bifunctor B : D × E → Set, the morphism cB of
Lemma 8.9.1 is an isomorphism. (Briefly: “In Set, direct limits commute
with finite limits.”)

Proof. Let E0, . . . , Em−1 be the objects of E, and f0, . . . , fn−1 a gener-
ating set for the morphisms of E, with

(8.9.4) fj ∈ E(Eu(j), Ev(j)).

Given elements D ≤ D′ in the partially ordered set P, let us write gD,D′

for the unique morphism D → D′ in Pcat = D. Projection and coprojection
morphisms associated to limits and colimits of our system will be named as
in (8.9.2).

To show surjectivity of cB , let x be any element of lim←−E
lim−→D

B(D, E).

For each of the finitely many objects Ei of E, consider p(Ei)(x) ∈
lim−→D

B(D, Ei). By the construction of direct limits in Set (second para-

graph of Lemma 8.5.3), there must exist for each i a D(i) ∈ P = Ob(D),
such that this element arises from some xi ∈ B(D(i), Ei), i.e.,

(8.9.5) p(Ei)(x) = q(D(i), Ei)(xi) (i = 0, . . . , m−1).

Since the partially ordered set P is directed, we can find D0 ∈ P majorizing
all the D(i). Thus we have images of all the xi at the “D0 level”; let us
denote these

(8.9.6) x′i = B(gD(i), D0
, Ei)(xi) ∈ B(D0, Ei) (i = 0, . . . , m−1).

In view of the commutativity relations in the description of lim−→D
B(D, Ei),

(8.9.5) and (8.9.6) imply

(8.9.7) p(Ei)(x) = q(D0, Ei)(x
′
i) (i = 0, . . . , m−1).

Now the definition of lim←−E
lim−→D

B(D, E) as a limit tells us that the sys-

tem of elements on the left-hand side of (8.9.7) is “respected” by all mor-
phisms of E, equivalently, by the generating family of morphisms fj . That
is, recalling that fj has domain Eu(j) and codomain Ev(j), the map
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(8.9.8)
lim−→D

B(D, fj) : lim−→D
B(D, Eu(j)) → lim−→D

B(D, Ev(j))

carries p(Eu(j))(x) to p(Ev(j))(x) (j = 0, . . . , n− 1).

It is not necessarily true that the system of preimages x′i ∈ B(D0, Ei) that
we have found for these elements satisfy the corresponding relations, i.e., that
B(D0, fj) carries x′u(j) to x′v(j); but by the construction of direct limits in

Set referred to earlier, applied to the direct limit objects of (8.9.8), we see
that for each j, there is some D′(j) ≥ D0 such that the corresponding
relation holds, namely

B(D′(j), fj) (B(gD0, D′(j), Eu(j))(x
′
u(j))) =

B(gD0, D′(j), Ev(j))(x
′
v(j)) (j = 0, . . . , n− 1).

Hence taking D1 majorizing all the D′(j) ’s, and letting

x′′i = B(gD0, D1
, Ei)(x

′
i) ∈ B(D1, Ei) (i = 0, . . . , m− 1)

we have the desired “lifting” of the system of equations (8.9.8):

B(D1, fj)(x
′′
u(j)) = x′′v(j) (j = 0, . . . , n− 1).

That is, the f ’s do respect the x′′i . Now since every morphism of E is a
composite of the fj , every morphism of E similarly respects the x′′i ; so
the x′′i define an element x′′ ∈ lim←−E

B(D1, E). The element q(D1)(x′′) ∈
lim−→D

lim←−E
B(D, E) is the required inverse image of x under cB . (Cf. (8.9.2).)

The proof that cB is one-to-one is similar, but easier; indeed, it does
not need finite generation of the morphisms of E, but only the finiteness
of the object-set. Suppose x, y ∈ lim−→D

lim←−E
B(D, E) with cB(x) = cB(y).

Since D is directed, there will exist D0 ∈ Ob(D) such that we can write
x and y as the images of some x0, y0 ∈ lim←−E

B(D0, E). By assumption,

these elements fall together when mapped into lim←−E
lim−→D

B(D, E), which

means that for each i, the projections p(D0, Ei)(x0) and p(D0, Ei)(y0) fall
together in lim−→D

B(D, Ei). By the construction of direct limits in Set, this

means that for each i there is some D(i) ≥ D0 such that the images of
these elements already agree in B(D(i), Ei). Let D1 ∈ Ob(D) majorize all
these D(i). Thus the images of x0 and y0 fall together in all the B(D1, Ei),
hence in lim←−E

B(D1, E). Hence in lim−→D
lim←−E

B(D, E), x = y. ut

Exercise 8.9:2. Show that the above proposition remains true if the condi-
tion that E be nonempty is replaced by the condition that D be nonempty,
but fails when both are empty. The proof we gave for the proposition does
not explicitly refer to the nonemptiness of E; where is it used implicitly?
(Note that a statement that something is true “for all Ei ” does not require
that the set of Ei be nonempty – it is vacuously true if the set is empty.
So you need to find something less obvious than that.)
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The next exercise shows that in the above proposition, neither the assump-
tion that E has finite object-set nor the assumption that its morphism-set
is finitely generated can be dropped.

Exercise 8.9:3. (i) Show that direct limits in Set do not commute with
infinite products. In fact, give both an example where the comparison map
fails to be one-to-one, and an example where it fails to be onto.

Now, a product over a set X is a limit over the category Xcat having
object-set X and only identity morphisms; thus, the morphism-set of that
category may be regarded as generated by the empty set. Hence in the
examples you have just constructed, E has infinite object-set, but finitely
generated morphism-set.
(ii) To show that finite generation of the morphism-set cannot be dropped
either, let E = Gcat for G a non-finitely-generated group, and let P be
the partially ordered set of all finitely generated subgroups H ⊆ G. Take
the direct limit over P of the G-sets G/H, examine the action of lim←−E
on this direct limit, and show that this gives the desired counterexample.

The above examples show the need for our hypotheses on E. What about
the condition that D have the form Pcat for P a directed partially ordered
set? A simple example of a partially ordered set that is not directed is

r
@r�r,

while some examples of categories not having the form Pcat for any partially
ordered set are the two-object category · ⇒ ·, and the one-object category
Zcat where Z is the infinite cyclic group. So

Exercise 8.9:4. Give examples showing that the fixed-point-set construc-
tion on Z-sets (which takes limits over a one-object category with finitely
generated morphism set) respects neither pushouts, nor coequalizers, nor
orbit-sets of actions of Z commuting with the given action.

Part (i) of the next exercise shows that we cannot interchange the hy-
potheses on D and E in Proposition 8.9.3. As one can see from part (iii),
this is equivalent to saying that Proposition 8.9.3 does not remain true if we
replace the category Set by Setop; in particular, we cannot replace Set in
that proposition by a general category having small limits and colimits.

Exercise 8.9:5. (i) Show that inverse limits in Set do not commute with
coequalizers.
(ii) Show, on the other hand, that inverse limits in Set do commute with
small coproducts.
(iii) Translate the results of (i) and (ii) into statements about construc-
tions in Setop.

Though by Exercise 8.9:3(ii), the finite generation hypothesis of Proposi-
tion 8.9.3 cannot be dropped, the next exercise shows that it can sometimes
be weakened. (Cf. [51].)

Exercise 8.9:6. If S is a monoid, then a left congruence on S means an
equivalence relation ∼ on |S| such that y ∼ z =⇒ x y ∼ x z. It is easy
to verify that an equivalence relation ∼ is a left congruence if and only if
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the natural structure of left S-set on |S| induces a structure of left S-set
on |S|/∼. Given any subset R ⊆ |S| × |S|, there is a least left congruence
on |S| containing R, the left congruence “generated by” R. We shall call
the set |S| × |S| itself the improper left congruence on S.
(i) Show that the following conditions on a monoid S are equivalent:
(a) The improper left congruence on S is finitely generated. (b) The
1-element S-set is finitely presented. (c) The fixed-point-set functor
S-Set→ Set respects direct limits.
(ii) Show that the monoids satisfying the equivalent conditions of (i) in-
clude all finitely generated monoids, and all monoids having a right zero
element (an element z such that x z = z for all x).
(iii) Find a monoid S which satisfies the equivalent conditions of (i), but
such that Sop does not.
(iv) Deduce from (ii) or (iii), or, preferably, from each of them, that the
class of categories E with finitely many objects such that limits over E
respect direct limits of sets is strictly larger than the class of such categories
with finitely generated morphism sets.
(v) Can you generalize the result of (i) to get a necessary and sufficient
condition on a category E (perhaps under the assumption that it has only
finitely many objects, or some weaker condition) for colimits over E to
respect direct limits of sets?

We noted in the last paragraph of the proof of Proposition 8.9.3 that the
one-one-ness part of the conclusion did not require finite generation of the
morphism set of E. It also does not require the non-emptiness assumption
on the object-set; moreover, even the assumption that the object-set be finite
can be weakened, using the idea of Lemma 8.6.2, to say that it contains a
“good” finite subset. Thus, you can easily verify

Corollary 8.9.9 (to proofs of Proposition 8.9.3 and Lemma 8.6.2).
Let D be a category of the form Pcat, for P a directed partially ordered set,
and let E be a category with only finitely many objects, or more generally,
having a finite family of objects E0, . . . , Em−1 such that every object E
admits a morphism Ei → E for some i. Then for any bifunctor B : D×E→
Set, the comparison morphism cB of Lemma 8.9.1 is one-to-one. ut

Let us note next that the role of finiteness in all the above considerations is
easily generalized. The interested reader will find that under the next defini-
tion, the proofs of our proposition and corollary yield the proposition stated
below.

Definition 8.9.10. If α is a cardinal and P a partially ordered set, then
P will be called <α-directed if every subset of P of cardinality <α has an
upper bound in P.

Proposition 8.9.11. Let α be an infinite cardinal. If D is a category of
the form Pcat, for P a <α-directed partially ordered set, and E is a non-
empty category which has <α objects, and whose morphism-set is generated
under composition by a set of <α morphisms (which, except in the case
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α = ω, is equivalent to saying that E has <α morphisms), then for any
bifunctor B : D × E → Set, the morphism cB of Lemma 8.9.1 is an iso-
morphism. (Briefly: “In Set, <α-directed direct limits commute with limits
over <α-generated categories.”)

Further, the one-one-ness of cB continues to hold if we weaken the hy-
potheses on E to say merely that there is a set S of <α objects of E such
that every object of E admits a morphism from a member of S. ut

Here are a few more exercises on commuting limits and colimits, some of
them open-ended.

Exercise 8.9:7. Generalizing part (ii) of Exercise 8.9:5, determine the class
of all small categories E such that limits over E in Set commute with
coproducts.

Exercise 8.9:8. Let G be a group or monoid, let (Xi)i∈P be an inverse
system of G-sets, and let cX : lim−→Gcat

lim←−i∈P Xi → lim←−i∈P lim−→Gcat
Xi be

the associated comparison morphism. (In the case where G is a group,
recall that lim−→Gcat

is the orbit-set construction of Exercise 8.6:1.)

(i) Show that if G is a group and P is countable, then cX is surjective.
(Hint: Use Exercise 8.5:6(ii).)
(ii) Does the result of (i) remain true for G a monoid? For P not nec-
essarily countable? If either of these generalizations fails, can you find any
additional conditions under which it again becomes true?
(iii) What can you say (positive or negative) about conditions under which
cX will be one-to-one?

Exercise 8.9:9. (i) In the spirit of Exercise 8.8:7, investigate the Galois
connection between the set of small categories D and the set of small
categories E determined by the relation “colimits over D commute with
limits over E in Set. ”
(ii) Investigate, similarly, the Galois connections (still on the class of all
small categories) obtained by replacing “ Set ” in (i) with one or more other
natural categories; e.g., Ab.

We have been considering the interaction between limits and colimits. One
can also look at the interaction between limits and left adjoint functors, and
between right adjoint functors and colimits. For example

Exercise 8.9:10. Does the abelianization functor ( )ab : Group→ Ab re-
spect inverse limits? Products? Equalizers? In each case where the answer
is negative, is it one-one-ness, surjectivity, or both properties of the com-
parison morphism that can fail? (Cf. Exercise 4.7:1.)

A different sort of “comparison morphism” is considered in

Exercise 8.9:11. Given functors D
F−→ E

S−→ C such that S and SF
both have colimits in C, describe a natural morphism (in one direction
or the other) between these colimit objects, and examine conditions under
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which these morphisms will or will not be invertible. (Cf. Exercise 8.5:1.)
Also state the corresponding results for limits.

8.10. Some existence theorems

Having defined several sorts of universal objects, and established facts about
them, it would be nice to have some general results on when such objects
exist.

Basic results on the existence of algebras with universal properties must
wait for the next chapter, where we will set up a general theory of algebras.
What we can prove before then are relative results, to the effect that if in a
category one can perform certain constructions, then one can perform others;
for instance, Proposition 8.6.6 was of this sort. With this limitation in mind,
can we abstract any of the methods by which we proved the existence of free
groups in Chapter 3?

The construction by terms modulo consequences of the identities depends
on the fact that one is considering algebras; generalizing this will be one of
the first things we do in Chapter 9.

The normal form description is still more specialized. As mentioned toward
the end of §3.4, different sorts of algebras vary widely as to whether such
results hold.

But the subobject of a big direct product approach of §3.3 seems amenable
to a category-theoretic development, and we shall in fact obtain below several
results that have evolved from that construction. The approach is due to Peter
Freyd.

We know how to translate the concept of direct product into category
theoretic terms. There were two other key ideas in the construction of §3.3: a
cardinality estimate, which allowed us to find a small set of groups to take the
direct product of, and the passage to “the subgroup of the product generated
by the given family”. The first of these will simply be made a hypothesis –
that there exists a small set of objects with an appropriate property. What
about the concept of “subalgebra generated”? We know that there is not a
canonical concept of “subobject” in category theory, but is there one that is
appropriate to this proof?

We saw at various points in Chapters 3 and 4 that if we had an object sat-
isfying one of our left universal properties, except possibly for the uniqueness
of the factoring maps, then the added condition of uniqueness was equivalent
to the object being generated by the appropriate set (e.g., Exercise 3.1:2, and
end of proof of Proposition 4.3.3). To put things negatively, in the case of the
universal property of a free group on X, we saw in Exercise 3.1:1 that if our
candidate F for a free group was not generated by the image of X, then we
could get a pair of group homomorphisms from F into some group which
agreed on the elements of X, but were not equal on all of F. This suggests



342 8 Universal constructions

that the subgroup generated by X may be obtainable as an equalizer, using
pairs of morphisms having equal composites with the image of X. That is
the idea which we shall abstract below.

Repeating the progression in the first half of this chapter, let us start
with an existence result for initial objects. In reading the next lemma and
its proof, you might think of the case where C is the category of 4-tuples
(G, a, b, c) with G a group and a, b, c ∈ |G|, and of the principle that
guided us to the subgroup-of-a-product construction, that if one such object
(G, a, b, c) is mappable to another such object (H, a′, b′, c′), then the set of
relations satisfied by a, b, c in G is contained in the set of relations satisfied
by a′, b′, c′ in H.

Lemma 8.10.1. Let C be a (legitimate) category having small limits. Sup-
pose there exists a small set of objects S ⊆ Ob(C), such that for every
X ∈ Ob(C) there is a Y ∈ S with C(Y, X) nonempty. Then C has an
initial object.

Proof. Let J = Y ∈S Y ∈ Ob(C). For every X ∈ Ob(C) there is at least
one morphism from J to X, since we can compose the projection of J to
some Y ∈ S with a morphism Y → X. Hence our hypothesis on the set of
objects S has been concentrated in this one object J, and we may henceforth
forget S and work with J.

We wish to form the “intersection of the equalizers of all pairs of maps
from J into objects of C ”. If we were working in a category of algebras, this
would make sense, for even though all such pairs of maps do not form a small
set, the underlying set of J would be small, and hence the set of subalgebras
that are equalizers of such pairs of maps would be small, and we could take
its intersection. That argument is not available here; but it turns out that,
just as we were able to use the family S as a substitute for the class of all
objects in forming our product J, so it can serve as a substitute for the class
of all objects in this second capacity, though a less obvious argument will be
needed. Moreover, since the hypothesis on S has been concentrated in the
object J, we may use J in place of S in this function.

So let us form a product
(u, v)

J of copies of J indexed by the set of all

pairs of morphisms u, v ∈ C(J, J). (Since C is legitimate, such pairs form
a small set.) Let a, b : J ⇒ (u, v)J be defined by the conditions that for all

u, v ∈ C(J, J), a followed by the projection of the product onto the (u, v)
component gives u, and b followed by that projection gives v. Let us form
the equalizer i : I → J of this pair of morphisms. Note that by the universal
property of I,

(8.10.2) u i = v i for any two endomorphisms u, v of J.

Since J can be mapped to every object of C, we can find a morphism
going the other way, x : J → I. Now suppose c is any endomorphism of I.
By (8.10.2), the morphisms I → J given by i, i x i, and i c x i are equal.
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But by Lemma 8.6.2 (second sentence), i is a monomorphism; hence we
can cancel it on the left and conclude that idI , x i, and c x i are equal.
Substituting the equation x i = idI into c x i = x i, we get c = idI ; so I
has no nonidentity endomorphisms.

I also inherits from J the property of having morphisms into every object
of C, so we can now forget J and work with I only.

We claim that I is an initial object of C. We know it has morphisms into
every X ∈ Ob(C); consider two such morphisms u, v ∈ C(I, X). We may
form their equalizer, k : K → I, and take an arbitrary morphism the other
way, d : I → K. Then k d is an endomorphism of I, hence k d = idI . By
choice of k, u k = v k, hence u k d = v k d, i.e., u = v; so I has exactly one
morphism into each object of C, as claimed. ut

Exercise 8.10:1. The final part of the proof of the above lemma uses the
facts that (a) the object I of C has morphisms into all objects, (b) I has
no nonidentity endomorphism, and (c) C has equalizers. Do (a) and (b)
alone imply that I is initial in C ?

For some perspective on the above result, recall Exercise 8.6:6, which
showed that an initial object of a category C is equivalent to a colimit of
the unique functor from the empty category to C, and also to a limit of the
identity functor of C. Now in the study of categories of algebraic objects (for
instance, the category of groups with 3-tuples of distinguished elements), one
does not have, to begin with, any easy way of constructing colimits, even for
as trivial a functor as the one from the empty category! One can, however,
construct products and equalizers using the corresponding constructions on
the underlying sets of one’s algebras; hence one can get all small limits. This
suggests trying to construct an initial object as a limit of the identity functor
of the whole category. The difficulty is, of course, that the domain of that
functor is not small. Hence one looks for a small set S of objects of C which
“get around enough” to serve in place of the set of all objects.

In fact, if this had been used as our motivation for the above lemma, we
would have gotten a proof in which the initial object I was constructed in
one step, as the limit of the inclusion functor of the full subcategory with
object-set S into C. But I preferred the present approach because the char-
acterization of limits of identity functors is itself not easy to prove. In [19] you
can find both versions of the proof, as Theorem 1 on p. 116 and Theorem 1
on p. 231 respectively.

In results such as the above, the assumption that there exists a small set
S which, for the purposes in question, is “as good as” the set of all objects,
is known as the “solution-set condition”.

On, now, to our next result in this family. Since a representing object for
a functor U : C → Set is equivalent to an initial object in an appropri-
ate auxiliary category C′, let us see under what conditions we can apply
Lemma 8.10.1 to such an auxiliary category to get a representability result.
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By Theorem 8.8.7, if U is representable it must respect limits, so the condi-
tion of respecting limits must somehow be a precondition for the application
of Lemma 8.10.1 in this way. The next result shows that, indeed, for the aux-
iliary category C′ to have small limits is equivalent to U respecting such
limits.

Lemma 8.10.3. Let C be a category, U : C → Set any functor, and C′

the category whose objects are pairs (X, x) with X ∈ Ob(C) and x ∈ U(X),
and whose morphisms are morphisms of first components respecting second
components (in the notation of Exercise 7.8:30, the comma category (1 ↓ U)).
Let V : C′ → C denote the forgetful functor taking (X, x) to X. Then

(i) If D is a small category and G : D → C a functor having a limit in
C, the following conditions are equivalent:

(a) U respects the limit of G; in other words, the comparison morphism
c : U(lim←−D

G)→ lim←−D
UG is a bijection of sets.

(b) Every functor F : D→ C′ satisfying V F = G has a limit in C′.

Hence,

(ii) If C has small limits, then C′ will have small limits if and only if U
respects small limits.

Sketch of proof. We shall prove (i), from which (ii) will clearly follow.
Note that a functor F that “lifts G ” as in (b) is essentially a compatible

way of choosing for each X ∈ Ob(D) an element x ∈ UG(X); hence it
corresponds to an element y ∈ lim←−D

UG. Now assuming (a), such an element

y has the form c(z) for a unique z ∈ U(lim←−D
G), and it is immediate that

the pair (lim←−D
G, z) is a limit of F in C′, giving (b).

Conversely, assuming (b), let y be any element of lim←−D
UG. As noted,

this corresponds to a functor F : D→ C′, and by (b) F has a limit (Z, z) in
C′. The cone from this limit object to F, applied to first components, gives
a cone from Z to the objects G(X), under which the second component, z
is carried to the components of y; hence the map Z → lim←−D

G induced by

this cone carries z ∈ U(Z) to an element w ∈ U(lim←−D
G), which is taken by

c to y ∈ lim←−D
UG. This establishes the surjectivity of c.

Suppose now that c also takes another element w′ ∈ U(lim←−D
G) to y.

By the universal property of (Z, z), there is a morphism lim←−D
G → Z car-

rying w′ to z; composing this with our morphism Z → lim←−D
G we get an

endomorphism of lim←−D
G carrying w′ to w. But all these morphisms, and

hence this endomorphism in particular, respect cones to G in C, hence by
the universal property of lim←−D

G, this endomorphism must be the identity

morphism of lim←−D
G. This shows that w′ = w, proving one-one-ness of c.

ut

Exercise 8.10:2. Give the details of the proof of (i) =⇒ (ii) above.
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Exercise 8.10:3. In part (i) of the above lemma, we assumed that the func-
tor G had a limit. We may ask whether this assumption is needed in prov-
ing (b) =⇒ (a), or whether the existence of the limits assumed in (b)
implies this.

To answer this question, let C be the category whose objects are pairs
(G, S) where G is a group and S a cyclic subgroup of G (a subgroup
generated by one element), and where a morphism (G, S)→ (H, T ) means
a homomorphism G→ H which carries the subgroup S onto the subgroup
T. Let U : C→ Set be the functor which carries each pair (G, S) to the
set of cyclic generators of S, i.e., U(G, S) = {s ∈ |S| | S = s }.

Show how to define U on morphisms. Show that C does not, in gen-
eral, have products of pairs of objects, but that the category C′, defined
as in the above lemma, has all small limits, hence, in particular, pairwise
products. Apply this example to answer the original question.

The reader should verify that Lemmas 8.10.1 and 8.10.3 now give the
desired criterion for representability, namely

Proposition 8.10.4. Let C be a category with small limits, and U : C →
Set a functor. Then U is representable if and only if

(a) U respects small limits, and

(b) there exists a small set S of objects of C such that for every object Y
of C and y ∈ U(Y ), there exist X ∈ S, x ∈ U(X), and f ∈ C(X, Y ) such
that y = U(f)(x). ut

Finally, let us get from this a condition for the existence of adjoints. (In
reading the next result, observe that for D = Group and U its underlying-
set functor, condition (b) below was precisely what we had to come up with
in showing the existence of free groups on arbitrary sets Z.)

Theorem 8.10.5 (Freyd’s Adjoint Functor Theorem). Let C and D
be categories such that D has small limits. Then a functor U : D→ C has
a left adjoint F : C→ D if and only if

(a) U respects small limits, and

(b) for every Z ∈ Ob(C) there exists a small set S ⊆ Ob(D) such that
for every Y ∈ Ob(D) and y ∈ C(Z, U(Y )), there exist X ∈ S, x ∈
C(Z, U(X)) and f ∈ D(X, Y ) such that y = U(f)(x).

Proof. The existence of a left adjoint to U is equivalent by Theorem
8.3.8(ii) to the representability, for every Z ∈ Ob(C), of the functor
C(Z, U(−)) : D→ Set. Condition (b) is clearly the form that condition (b)
of the preceding proposition takes for this class of functors. As for condi-
tion (a), we know by Theorem 8.8.3 that it, too, is necessary for the existence
of a left adjoint, so it suffices to show that it implies that each set-valued func-
tor C(Z, U(−)) respects limits. If we write this functor as hZ U, and recall
that covariant representable functors hZ respect limits, this implication is
immediate. ut
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Exercise 8.10:4. Show the converse of the observation used in the last step
of the above proof: If C and D are categories, and U : D→ C a functor
such that for every Z ∈ Ob(C), hZ U respects limits, then U respects
limits.

I remarked in §8.8 that for every example we had seen of a functor that
was not representable or did not have a left adjoint, the nonrepresentability
or nonexistence of an adjoint could be proved by showing that the functor did
not respect some limit. We can now understand this better. On a category
having small limits, the only way a functor respecting these limits can fail to
have a left adjoint or a representing object is if the solution-set condition fails.
Since the solution-set condition says “a small set is sufficient”, its failure must
involve uncircumventable set-theoretic difficulties, which are rare in algebraic
contexts. However, knowing now what to look for, we can find examples. The
next exercise gives a simple, if somewhat artificial example. The example in
the exercise after that is more complicated, but more relevant to constructions
mathematicians are interested in.

Exercise 8.10:5. Let D be the subcategory of Set whose objects are all
sets (or if you prefer, all ordinals; in either case, “small” is understood, since
by definition Set is the category of all small sets), and whose morphisms
are the inclusion maps among these. Show that D has small colimits (and
has limits over all nonempty categories, though this will not be needed),
but has no terminal object.

Hence, letting C = Dop, the category C has small limits (and colimits
over nonempty categories) but no initial object. Translate the nonexistence
of an initial object for C to the nonrepresentability of a certain functor
U : C→ Set which respects limits (cf. Exercise 8.2:7).

The results of this section would imply the existence of an initial object
of C, and of a representing object for U, if a certain solution-set condition
held. State this condition, and note why it does not hold.

The next exercise validates the comment made in §6.2, that because the
class of complete lattices is not defined by a small set of operations, it fails in
some ways to behave like classes of “ordinary” algebras. The exercise shows
that the solution-set condition required for the existence of the free complete
lattice on 3 generators fails, and indeed, that there is no such free object.

Exercise 8.10:6. First, a preparatory observation:
(i) Show that every ordinal has a unique decomposition α = β+n, where
β is a limit ordinal (possibly 0) and n ∈ ω. Let us call α even or odd
respectively according as the summand n in this decomposition is even or
odd.

Now let α be an arbitrary ordinal, let S = α∪{x, y} where x, y are
two elements that are not ordinals, and let L be the lattice of all subsets
T ⊆ S such that (a) if T contains x and all ordinals less than an odd
ordinal β ∈ α, then it contains β, and (b) if T contains y and all ordinals
less than an even ordinal β ∈ α, then it contains β.
(ii) Show that the complete sublattice of L generated by the three ele-
ments {x}, {0, y} and α (i.e., the closure of this set of three elements
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under arbitrary meets and joins within L) has cardinality ≥ card(α).
(This is an extension of the trick of Exercise 6.3:9.)
(iii) Deduce that there can be no free complete lattice on 3 generators.

(This was first proved in [84], by a different construction. Three proofs
of the similar result that there is no free complete Boolean algebra on
countably many generators are given in [79], [84] and [132].)

This is not to say that a class of algebras having a large set of primitive
operations cannot have free objects on all sets. The next exercise gives an
example of one that does.

Exercise 8.10:7. Complete ∨-semilattices with least elements, like complete
lattices, have an α-fold join operation for every cardinal α. Neverthe-
less:
(i) Show that a complete ∨-semilattice with least element generated by
an X-tuple of elements has at most card(P(X)) elements.
(ii) Deduce from Freyd’s Adjoint Functor Theorem that there exist free
complete ∨-semilattices with least elements on all sets. (This despite the
fact that complete ∨-semilattices with least elements are, as partially or-
dered sets, the same objects as nonempty complete lattices!)
(iii) Does the category of ∨-complete lattices with least element behave,
in this respect, like that of complete ∨-semilattices with least element, or
like that of complete lattices? I.e., does it have free objects on all sets or
not?

In §4.17, where we constructed the Stone-Čech compactification of a topo-
logical space, we found that one way to obtain the solution-set condition was
via the fact that in a compact Hausdorff space, continuous maps to the unit
interval [0, 1] separate points. (See the discussion beginning in the para-
graph just before the one containing (4.17.7).) Freyd [10, Exercise 3-M, p. 89]
cf. [19, §V.8] abstracts this observation to give a variant of Theorem 8.10.5,
called the “special adjoint functor theorem”, in which the solution-set hy-
pothesis is replaced by an assumption that there exists such an object, called
a “cogenerator” of the category, together with a smallness assumption on
sets of monomorphisms. However, since the existence of cogenerators is not
as common in algebra as the direct verifiability of the solution set condition,
we will not develop that result here.

You may have noticed that in this section, I have not followed my usual
practice of stating every result both for left and for right universal construc-
tions. That practice is, of course, logically unnecessary, since one result can
always be deduced immediately from the other by putting Cop for C and
making appropriate notational translations. In earlier sections I nonetheless
gave dual pairs of formulations, because both statements were generally of
comparable importance. However, when one studies categories of algebras,
objects characterized by right universal properties are usually easier to con-
struct directly than those characterized by left universal properties, so we
have little need for results obtaining the former from the latter; hence my
one-sided presentation. (It is also true that short-term generalizations about
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what cases are important may fail in the longer run! However, we can always
call on the duals of the results of this section if we find we need them.)

Here is a somewhat vague question, to which I don’t know an answer.

Exercise 8.10:8. Suppose a functor U has a left adjoint F, which in turn
has a left adjoint G. Can one conclude more about U itself than the
results that we have shown to follow from the existence of F ? In other
words, are there any nice necessary conditions for existence of double left
adjoints, comparable to the property of respecting limits as a condition for
existence of a single left adjoint?

8.11. Morphisms involving adjunctions

I am not planning on using the results of this section in subsequent chapters,
so the reader may excuse a little sketchiness. (However, the material in the
next section will be referred to in subsequent chapters, and should be read
with your usual vigilance.)

Let C and D be categories, and D
U-
�
F

C adjoint functors. We recall

the isomorphism which characterizes their adjointness:

(8.11.1) C(−, U(−)) ∼= D(F (−),−).

Suppose now that we have functors from a third category into each of
these categories, P : E → C and Q : E → D. It is not hard to verify that
if we formally “substitute P and Q into the blanks” in (8.11.1), we get a
bijection between sets of morphisms of functors:

CE(P, UQ) ←→ DE(FP, Q).

As one would expect, this bijection is functorial in P and Q, i.e., respects
morphisms P → P ′, Q → Q′; in other words, writing F◦ and U◦ for the
operations of composing on the left with F and U respectively, the above
bijection gives an isomorphism of bifunctors CE ×DE → Set :

(8.11.2) CE(−, U ◦ −) ∼= DE(F ◦ −, −).

This means that we have an adjoint pair of functors on functor categories,

DE
U◦-
�
F◦

CE. We can also describe this adjunction in terms of its unit

and counit; these will be η ◦ : Id(CE) → (UF ) ◦ and ε ◦ : (FU) ◦ → Id(DE),
where η and ε are the unit and counit of the adjunction between U and
F. In fact, the quickest way to prove that U◦ and F◦ are adjoint is to



8.11 Morphisms involving adjunctions 349

note that the equations in η and ε which establish the adjointness of U
and F (Theorem 8.3.8(iii)) give equations in η ◦ and ε ◦ establishing the
adjointness of U◦ and F ◦ .

The above fits with our comment at the end of §7.9 that a functor category
such as CE or DE behaves very much like its codomain category, C or D.
What that observation does not prepare us for is that analogous results hold
for composition on the right with adjoint functors. Given adjoint functors
U and F, still as in (8.11.1) above, let us take a category B and functors
R : D→ B, S : C→ B. I claim we get a bijection

BD(SU, R) ←→ BC(S, RF )

and thus an isomorphism

(8.11.3) BD(− ◦ U, −) ∼= BC(−, − ◦ F ),

i.e., a pair of adjoint functors, BD
◦F-
�
◦U

BC, where this time ◦U is the left

adjoint and ◦F the right adjoint. I don’t know a way of seeing this directly
from (8.11.1), but it comes out easily if we check the formal properties of the
unit and counit ◦ η and ◦ ε.

Let us cook up a random example. We shall take for U and F the
familiar case of the underlying set functor on groups and the free group
functor; so C = Set, D = Group. To avoid overlap with the result
we proved earlier about composition of adjoints (Theorem 8.3.10), let us
take for R and S functors which are not adjoints on either side: Let
B = ∨-Semilattice0, the category of upper semilattices with least ele-
ments 0, i.e., with arbitrary finite joins, including the empty join, and let
R : Group → ∨-Semilattice0 take a group G to the upper semilattice
of subgroups of G, and S : Set → ∨-Semilattice0 take a set X to the
upper semilattice of equivalence relations on X. We make these behave in
the obvious way on morphisms: given a group homomorphism h : G → H,
R(h) takes each subgroup of G to its image under h, while given a set-map
f : X → Y, S(f) takes each equivalence relation e on X to the equivalence
relation on Y generated by {(f(x), f(y)) | (x, y) ∈ e}. A morphism from
S U to R thus means a way of associating to every equivalence relation on
the underlying set of a group a subgroup of that group, in a way that respects
joins (including the empty join), and respects maps induced by group homo-
morphisms. Though I truly chose the functors without specific examples of
such morphisms in mind, there turn out to exist several constructions with
these properties: Given an equivalence relation E on the underlying set of
a group G, one can form (a) the subgroup of G generated by the elements
x y−1 for (x, y) ∈ E, (b) the subgroup generated by the elements y−1x, as
well as the subgroups generated by (c) both types of elements and (d) neither
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(the trivial subgroup); and each of these constructions can easily be seen to
have the properties required to be a morphism of functors.

On the other hand, a morphism from S to RF means a way of associating
to every equivalence relation on a set X a subgroup of the free group F (X),
again respecting joins and morphisms. The adjointness result stated above
implies that there should be such a morphism S → RF corresponding to each
of the morphisms S U → R just listed; and indeed, these can be described
as associating to an equivalence relation E on X the subgroup of F (X)
generated by the elements x y−1, respectively y−1x, respectively both, re-
spectively neither, for (x, y) ∈ E. To get these morphisms formally from the
morphisms (a)-(d) above, we look at any equivalence relation E ∈ S(X), use
it and the natural map X → U(F (X)) to induce an equivalence relation on
U(F (X)), i.e., a member of S(U(F (X))), then apply the chosen morphism
S U → R.

You can look further into the above example in

Exercise 8.11:1. Let U, F, S and R be as in the above example. Given
any set of nonzero integers, I ⊆ Z−{0}, let mI : SU → R associate to each
equivalence relation E on the underlying set of a group G the subgroup
of G generated by all the elements xi y−i ((x, y) ∈ E, i ∈ I).
(i) Show that the mI are morphisms of functors, and are all distinct.
(ii) Try to determine whether these are all the morphisms S U → R. Are
there any morphisms which respect finite joins (including empty joins) but
not infinite joins?

Returning to the question of why adjointness is preserved not only by
the construction (−)E but also (with roles of right and left reversed) by
the construction B(−), the explanation seems to be that the definition of ad-
jointness can be expressed as the condition that certain equations hold among
given functors and morphisms in the Cat-enriched structure (§7.11) of Cat,
namely the equations of Theorem 8.3.8(iii), and that these equations will
be preserved by any functor preserving Cat-enriched structure. And (−)E

and B(−) both do so, one covariantly and the other contravariantly. (For
an analogous but simpler situation, observe that, although conditions on a
morphism a in a category such as being an epimorphism or a monomorphism
are not preserved by arbitrary functors, the conditions of left, right and two-
sided invertibility are preserved, because they come down to the existence
of another morphism b satisfying one or both of the equations a b = idX ,
b a = idY , and these conditions are preserved by functors. The formulation
of adjointness in terms of unit and counit morphisms in Theorem 8.3.8(iii),
is similarly “robust”.)

To complicate things a bit further, consider next any two functors P and
Q (the vertical arrows below), any adjoint pair of functors between their
domain categories, and any adjoint pair of functors between their codomain
categories:
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(8.11.4)

B
-U

F
� C

?

P

?

Q

D �
V -

G
E

(No commutativity assumed in this diagram!) Now we may apply on the one
hand our isomorphisms 8.11.2 involving composition on the left with adjoint
pairs of functors, and on the other hand our isomorphisms 8.11.3 involving
composition on the right with such pairs, getting four bijections of morphism-
sets

(8.11.5)

EB(QU, V P ) -� DB(GQU, P )

?

6

?

6

EC(Q, V PF ) -� DC(GQ, PF ).

Because composition with functors on the left commutes with composition
with other functors on the right, the above diagram of bijections commutes.
This result is statement (iii) of the next proposition; the preceding observa-
tions of this section comprise statements (i) and (ii).

Proposition 8.11.6. Suppose D
U-
�
F

C are adjoint functors, with F the

left adjoint and U the right adjoint, and with unit η : IdC → UF and counit
ε : FU → IdD. Then

(i) For any category E, the functors DE
U◦-
�
F◦

CE are adjoint, with F◦

the left adjoint, U◦ the right adjoint, unit η ◦ : IdCE → UF◦ and counit
ε ◦ : FU◦ → IdDE .

(ii) For any category B, the functors BD
◦F-
�
◦U

BC are adjoint, with ◦U

the left adjoint, ◦F the right adjoint, unit ◦ η : IdBC → ◦UF and counit
◦ ε : ◦ F U → IdBD .

(iii) Given two pairs of adjoint functors as in (8.11.4), the square of isomor-
phisms of bifunctors EC ×DB → Set
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(8.11.7)

EB(− ◦ U, V ◦ −) ∼= DB(G ◦ − ◦ U, −)

∼= ∼=

EC(−, V ◦ − ◦ F ) ∼= DC(G ◦ −, − ◦ F )

commutes. ut

Exercise 8.11:2. Give the details of the proof of parts (i) and/or (ii) of the
above proposition.

My reason for setting down the above observations is to help understand
a better known result, which we can get from (8.11.5) by taking B = D,
C = E, and for P, Q the identity functors of these categories.

Corollary 8.11.8. Suppose D
U-
�
F

C and D
V-
�
G

C are two pairs of

adjoint functors between a common pair of categories C and D (F and
G the left adjoints, U and V the right adjoints). Then there is a natural
bijection i : DC(G, F )←→ CD(U, V ) (an instance of the diagonal bijection
of (8.11.7) above, described explicitly below). In other words, morphisms in
one direction between left adjoints correspond to morphisms in the other di-
rection between right adjoints.

Description of the bijection. Given f ∈ DC(G, F ), one may apply U : D→
C on the right to get

f ◦ U ∈ DD(GU, FU).

Composing with the counit morphism εU, F : FU → IdD we get (εU, F )(f ◦
U) ∈ DD(GU, IdD). Finally, using the adjunction between G and V in a
manner analogous to our above use of the adjunction between F and U, we
turn this into the desired member of CD(U, V ), namely

i(f) = (V ◦ εU, F )(V ◦ f ◦ U) (ηV,G ◦ U). ut

As an example, let U and V both be the underlying set functor Group→
Set, so that F and G are both the free group functor Set→ Group. Then
the above result says that there is a natural bijection between endomorphisms
of these adjoint functors. We have already looked at endomorphisms of U ;
in the language of Exercises 3.3:6 they are the “functorial generalized group-
theoretic operations in one variable”, which we found were just the derived
group-theoretic operations in one variable, i.e., the operations of exponenti-
ation by arbitrary integers n. (Cf. also Exercises 7.9:4(ii), 8.2:10.)

As for endomorphisms of F, it is not hard to see that such an endomor-
phism is determined by the endomorphism it induces on the free group on
one generator. That endomorphism will send the generator x to xn for some
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integer n; conversely, we easily verify that for each n, there exists an endo-
morphism of the whole functor F with this behavior on the free group on
one generator; hence endomorphisms of F also correspond to exponentiation
by arbitrary integers n.

In the above example, because U = V and F = G, it is hard to see that
the direction of the morphisms has been reversed. So for another example,
let C = Group and D = CommRing1. Fix a positive integer n, and
let U be the functor taking each commutative ring with 1, R, to the group
GL(n, R) of n × n invertible matrices over R, and V the functor taking
the same R to its group of invertible elements (units). Clearly there is an
important morphism a : U → V, the map taking each invertible n×n matrix
to its determinant. The left adjoint F of U takes every group A to the
commutative ring F (A) presented by generators and relations that create a
universal image of A in the group of n × n invertible matrices over F (A),
and likewise the left adjoint G of V takes a group A to the commutative
ring G(A) with a universal image of A in its group of units. (The latter
is easily seen to be the group ring of the abelianization of A.) If we look
at the determinants of the matrices over F (A) comprising the universal
n × n matrix representation of A, we see that these give a homomorphism
of A into the group of units of F (A), which by the universal property of
G(A) is equivalent to a ring homomorphism G(A) → F (A). This gives the
morphism of functors G → F in (CommRing1)Group corresponding to

our determinant morphism U → V in GroupCommRing1

.
Mac Lane [19, p. 98, top] calls a pair of morphisms of functors related

under the bijection of Corollary 8.11.8 conjugate.
Of course, we should have proved more about this phenomenon than we

have stated in Corollary 8.11.8; in particular, that the conjugate of the com-
posite of two morphisms between three right adjoint functors D −→−→

−→
C is

the composite of their conjugates in reversed order, i.e., that conjugation
constitutes a contravariant equivalence between the category of all functors
D→ C having left adjoints and the category of all functors C→ D which
have right adjoints; and likewise that conjugacy behaves properly with re-
spect to composition of functors. Once one verifies these statement, one can
look at the situation as follows: Within the Cat-based category Cat, sup-
pose we define the subcategory RightAdj to have the same objects as Cat,
to have for morphisms those functors which are right adjoints (equivalently,
have left adjoints) in Cat, while its morphisms-of-morphisms are again un-
restricted (that is, if functors F, G : C⇒ D both lie in RightAdj, we let
the morphisms F → G be the same in RightAdj as in Cat). Suppose
we likewise form the subcategory LeftAdj, as above except that the func-
tors are those that are left adjoints in Cat. Then we get an equivalence of
Cat-based categories RightAdj ≈ LeftAdjop. (Actually, one needs a nota-
tion to show that there is a “double op ” here, applying both to composition
of functors and to composition of morphisms of functors!) One might most
elegantly consider a third Cat-category, Adj, isomorphic to these two and
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defined to have adjoint pairs of functors for its morphisms, and conjugate
pairs of morphisms of functors for its morphisms of morphisms. For more
details, see [19, pp. 97-102].

We could also have brought into the statement of Corollary 8.11.8 the
upper right-hand and lower left-hand corners of (8.11.5). For instance, in the
case involving groups and commutative rings discussed above, the reader can
easily describe a morphism IdGroup → V F, i.e., a functorial way of mapping
each group A into the group of units of the commutative ring with a universal
n× n representation of A, again based on the determinant function, and a
morphism GU → IdCommRing1 , i.e., a functorial way of mapping the group
ring on the abelianization of the group of invertible n × n matrices over a
ring R into R, yet again based on the determinant.

Here is another twist on the ideas we have discussed.

Exercise 8.11:3. Suppose C, D, E are categories and A : E×D→ C a
functor. For each Z ∈ Ob(E), let us write UZ for the functor A(Z,−) :
D → C, and suppose each of these functors UZ has a left adjoint FZ .
In the spirit of §8.8, examine the relation between the condition that the
system of functors UZ : D → C indexed by E have a limit or colimit in
CD, and that the system of functors FZ : C→ D have a limit or colimit
in DC.

8.12. Contravariant adjunctions

The concept of an adjoint pair of functors is self-dual, in the sense that if we

write down the definition of adjointness of D
U-
�
F

C, put Cop and Dop

in place of C and D, and describe the resulting structure in language natural
for our new C and D, the result has the same form as the original definition,
though with the roles of C and D interchanged, and hence likewise U and
F, and η and ε.

But since the concept of adjunction involves more than one category, it also
has “partial dualizations”. For instance, if in the definition of adjunction we
only replace C by Cop, we get a condition on a pair of functors Cop � D.
Note that the one going to the right is a contravariant functor from C to D,
and the other is equivalent to a contravariant functor from D to C, i.e., a
functor Dop → C. Writing it in the latter form, we arrive at a setup which
is symmetric, that is, in which the two categories and the two functors play
equivalent roles – but which is not self-dual. We describe this construction
and its dual in the definition below.

When we defined ordinary adjunctions, we wrote the isomorphism of bi-
functors “ C(−, U(−)) ∼= D(F (−),−) ”, with the tacit understanding that
the first argument “− ” on the left matched the first argument on the right,
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and similarly for second arguments. But below, the first argument on one side
of our isomorphism will represent the same variable as the second argument
on the other side. To make this clear, I will use distinct place-holders, “− ”
and “∼ ”, for the two arguments.

Definition 8.12.1. Let U : Cop → D and V : Dop → C be contravariant
functors between categories C and D.

Then a contravariant right adjunction between U and V means an iso-
morphism

(8.12.2) C(−, V (∼)) ∼= D(∼, U(−))

of bifunctors Cop × Dop → Set, where “− ” denotes the C-valued argu-
ment and “∼ ” the D-valued argument; equivalently, an adjunction between
U : Cop → D and the functor V op : D → Cop corresponding to V, with
U the right and V op the left adjoint; equivalently, an adjunction between
V : Dop → C and Uop : C → Dop, with V the right and Uop the left
adjoint.

Likewise, a contravariant left adjunction between U and V means an
isomorphism

(8.12.3) C(V (∼), −) ∼= D(U(−), ∼)

of bifunctors C×D→ Set, equivalently, an adjunction between V (left) and
Uop (right); equivalently, an adjunction between U (left) and V op (right).

Of course, these two new kinds of adjointness also have descriptions cor-
responding to the other ways of describing adjoint functors noted in Theo-
rem 8.3.8. For instance, given U : Cop → D, to find a contravariant right
adjoint to U is equivalent to finding, for each object D of D, a represent-
ing object for the contravariant functor D(D, U(−)) : Cop → Set; in other
words, an object RD of C with a map D → U(RD), which is universal
among objects of C with such maps.

As an example of a contravariant right adjunction, let C = Set and
D = Bool1, the category of Boolean rings, and let U be the contravariant
functor taking every set S to the Boolean ring P(S) of its subsets. Then
given any Boolean ring B, there is a universal set SB with a homomorphism
B → P(SB). Namely, SB is the set of all homomorphisms g : B → 2 (where
2 denotes the 2-element Boolean ring), and the universal map B → P(SB)
takes each x ∈ B to the set of g such that g(x) = 1. It is easy to verify
that this is a homomorphism, and that any homomorphism f : B → P(T )
for any set T factors through the above map, via the map T → SB taking
each t ∈ T to the map gt : B → 2 having value 0 at those b ∈ B with
t /∈ f(b) and 1 at those with t ∈ f(b). We will see further examples, and
some of their interesting properties, in §10.12.

When we have a contravariant right adjunction, it is of interest to look
for a natural interpretation of the common value of the two sides of (8.12.2).
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For instance, in the example just discussed, for T a set and B a Boolean
ring, how can we describe the common value of Set(T,Bool1(B, 2)) ∼=
Bool1(B,P(T )) ? It is not hard to see that a member of either set can
be thought of as a function T × |B| → 2 such that, when one fixes the
|B|-coordinate and varies the T -coordinate, one simply has a set-map, while
when one fixes the T -coordinate and varies the |B|-coordinate, one has a
homomorphism of Boolean rings.

In another direction,

Exercise 8.12:1. Show that if P and Q are partially ordered sets, then a
contravariant right adjunction between Pcat and Qcat is equivalent to a
Galois connection between P and Q, in the generalized sense character-
ized in the last sentence of Exercise 6.5:2.

Contravariant left adjunctions rarely come up in algebra. In fact, it is
shown in [48] that all such adjunctions among the kind of categories of alge-
bras we will be studying in this course (varieties of algebras, to be defined in
§9.4) must be very degenerate.

It may seem peculiar that we get three phenomena – covariant adjointness,
contravariant right adjointness, and contravariant left adjointness – as the
orbit of one phenomenon (the first of these) under a group of symmetries
(interchanging C and Cop and interchanging D and Dop) that seems to
have the structure Z2×Z2. In fact, there is another sort of symmetry that we
have implicitly used: interchanging the roles of C and D. Together with the
symmetries just noted, this gives an action of D8, the 8-element symmetry
group of the square. The set of distinct phenomena that we find depends on
our choice of what constructions to consider “essentially the same”. When the
set of choices we have made is formalized, the set of “distinct” constructions
turns out to take the form of a double-coset space H\D8/K, where H and
K are certain 2-element subgroups of D8; and that double coset space indeed
has three elements [58].

Incidentally, there is yet another sort of symmetry one can consider: that
given by reversing the direction (and hence order of composition) of the func-
tors in our statements. In general, results of category theory are not preserved
by this transformation, because Cat is not equivalent to Catop. But con-
cepts and results which are not specific to Cat, but can be formulated or
proved for arbitrary Cat-based categories, may be dualized in this way. We
noted in the preceding section that the concept of adjointness is meaningful
in an arbitrary Cat-based category; hence we can apply this duality to it.
It turns out to take each of the three kinds of adjointness to itself, leaving
the roles of C, D, ε and η unchanged, but interchanging U and F. In-
deed, the invariance of adjointness under this symmetry is the reason for the
unexpected result, Proposition 8.11.6(ii).

Exercise 8.12:2. Prove the claim made above that Cat is not equivalent
to Catop. (You can do this by finding an appropriate statement which
holds for Cat but whose dual does not.)
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One might ask why, if Cat is not equivalent to Catop, the concept of
Cat-based category should be invariant under reversing order of composi-
tion. Briefly, this is because in applying that reversal to a statement about
a Cat-based category X, one does not replace Cat by Catop in the def-
inition of the categories X(C,D) occurring in the statement. Rather, one
replaces composition maps X(D, E) × X(C, D) → X(C, E) by maps in
which the order of the product is reversed; in other words, one uses the
fact that the product bifunctor on Cat is symmetric. (Replacing Cat
by Catop would instead redefine composition as being given by functors
X(C, E)→ X(D, E) X(C, D).)

This is similar to the fact that though Set is non-self-dual, the symmetry
of its product bifunctor allows us to define a functor (−)op : Cat → Cat,
and use this in ordinary (i.e., Set-based) category theory to prove the dual
of any true result.



Chapter 9

Varieties of algebras

We are at last ready to set up a general theory of algebras!

We recall our convention that a fixed universe U is assumed chosen, and
that when the contrary is not stated, a “set” (or for emphasis, “small set”)
means a set which is a member of U, while a “category” means a U-legitimate
category.

We will begin by formalizing some of the ideas we sketched in §§2.4-2.7.
(The reader who was not previously familiar with them might review those
sections before beginning this formal development.)

9.1. The category Ω-Alg

In studying structures consisting of a set |A| given with some operations,
we will want to say that two such structures are of the same type if we have
indexed their operations in the same way, with corresponding operations
having the same arities (cf. §2.4). Hence, below, we shall define a “type” to
be an index set for the operations, with an arity associated to each of its
members.

Without loss of generality one could index the operations by a cardinal,
and also take the arities to be cardinals; and indeed, one or both of these
assumptions is usually made. But allowing more general index sets and arities
in our definition involves no complication, so let us do so.

Definition 9.1.1. A type will mean a pair Ω = (|Ω|, ariΩ), where |Ω| is a
set, and ariΩ (written ari when there is no danger of ambiguity) is a map
from |Ω| to sets. The elements s ∈ |Ω| are called the operation-symbols of Ω,
and for each such s, the set ari(s) is called the arity of the operation-symbol
s. (As mentioned in §2.4, a more common notation in the literature for the
arity of s is n(s).)

358
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Ω is called finitary if all of its operation-symbols have finite arity, i.e., if
for all s ∈ |Ω|, card(ari(s)) < ω.

We will call a type Ω conventional if |Ω| is a cardinal, and for each
s ∈ |Ω|, ari(s) is a cardinal. In this situation, Ω may be expressed by giving
the arity function as a tuple of cardinals, (ari(0), ari(1), . . . ).

Definition 9.1.2. If Ω is a type, then an algebra of type Ω, or Ω-algebra,
will mean a pair A = (|A|, (sA)s∈|Ω|), where |A| is a set, and for each

s ∈ |Ω|, sA is an ari(s)-ary operation on |A|, i.e., a map |A|ari(s) → |A|.

For example, the type Ω which indexes the operations of groups has three
operation-symbols, which we may write µ, ι, ε, with ari(µ) = 2, ari(ι) = 1,
ari(ε) = 0. Every group is an algebra of this type, but not every algebra of
this type is a group, since there are algebras of this type not satisfying the
associative, inverse and identity laws. If we replaced this by a “conventional
type” and followed the usage that represents a type by its arity function, we
would say that groups are certain algebras “of type (2, 1, 0). ”

If R is a ring, then right or left R-modules can be described as certain
algebras of type Ω, where |Ω| = {+, −, 0} t |R|, and all these operation-
symbols are unary except +, which is binary, and 0, which is zeroary. Here
the first three operations specify an additive group structure, while the re-
maining, generally infinite family give the scalar multiplications by members
of R. To translate this type into conventional notation, one would index |R|
by a cardinal α, and let |Ω| be the cardinal 3 + α; here the notational
convenience of allowing more general sets for |Ω| is clear!

For an example in which it is natural to regard some operations as having
for their arities sets other than cardinals, let n be a fixed positive integer,
and for every commutative ring R, let d denote the determinant function
taking n × n matrices over R to elements of R. Suppose one wishes to
construct from each commutative ring R = (|R|,+, −, 0, ·, 1) the object
(|R|,+, −, 0, d), i.e., to study the set of elements of R as an additive group
with an n× n “determinant” operation. One would conventionally consider
d as n2-ary, which would mean writing a typical value as d(x0, . . . , xn2−1).
But it is more natural to treat d as an (n × n)-ary operation, and write
d(x00, x01, . . . , xn−1n−1), i.e., to call the typical argument of d the (i, j)
argument where 0 ≤ i, j < n, rather than the m-th argument where m =
n i+ j.

If there were a significant advantage in restricting ourselves to conventional
algebra-types, then we might say, “Let us use conventional types in our formal
development. We can always translate our results into the form appropriate
to a particular area of mathematics when we make our applications.” But I
see no advantage in such a restriction. At some points we will indeed find
it convenient to restrict attention to cardinal-valued arities, but we will still
put no restriction on the set of operation-symbols.

Let us note in passing the unfortunate ambiguity of the word “algebra”.
There is the ring-theoretic concept of “an algebra over a commutative ring”,
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and the present much broader concept used in General Algebra. It would be
desirable if a new word could be coined to replace one of them; but there
is a large literature in both fields, so it would be hard to get such a change
accepted. Since the literature in ring theory is the more enormous of the two,
I suppose it is the General Algebra definition that would have to change.

In situations where there is a danger of misunderstanding, authors gen-
erally specify “an algebra over a commutative ring k ” on the one hand, or
“an algebra in the sense of Universal Algebra” on the other. The Russians
shorten the latter phrase to “a universal algebra”, which is easier to say, but
somewhat inappropriate, since it suggests an object with a universal property.
(The term “algebra in the sense of Universal Algebra” should now presum-
ably be changed to “algebra in the sense of General Algebra”, for the reasons
mentioned in §1.5.)

Incidentally, what is the original source of the word “algebra”? It goes
back to a 9th century Arabic text, Al-jabr w’al-muqābalah. This title is com-
posed of two technical terms concerning the solving of equations, whose lit-
eral meanings are something like “restoration and comparison”. This title was
transliterated, rather than translated, into medieval Latin, so that the book
became known as Algebra, which eventually became the name of the subject.
Not only this work but also its author, abu-Ja‘far Muh.ammed ibn-Mūsā,
has entered mathematical language: He was known as Al-Khuwārizmi, “the
person from Khuwarizm”. This name was rendered as algorism, and, further
distorted in English, has become the word algorithm.

Of course, we want to make the set of Ω-algebras into a category, so:

Definition 9.1.3. A homomorphism between algebras of the same type
means a map of underlying sets which respects operations.

Precisely, if A and B are algebras of type Ω, a homomorphism A→ B
means a set map f : |A| → |B | such that for each s ∈ |Ω| and (xi)i∈ari(s) ∈
|A|ari(s), one has

f(sA((xi)i∈ari(s))) = sB((f(xi))i∈ari(s)).

For each type Ω, the category of all Ω-algebras, with these homomor-
phisms as the morphisms, will be denoted Ω-Alg.

Note that when applying a set map to a tuple of elements, one generally
drops one pair of parentheses, e.g., shortens f((x1, x2, x3)) to f(x1, x2, x3),
or f((ai)i∈I) to f(ai). So the above equation saying that f respects s can
be written f(s(xi)) = s(f(xi)). If one abbreviates the ari(s)-tuple (xi) to x
and uses parenthesis-free notation for functions, one can still further shorten
this to f s x = s f x, or, distinguishing between f, which acts on elements
of |A|, and the induced map which acts componentwise on ari(s)-tuples of
such elements, f s x = s fari(s) x.

Definition 9.1.4. Let A be an Ω-algebra.
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Then a subalgebra of A means an Ω-algebra B such that |B | ⊆ |A|, and
such that the operations of B are restrictions of the corresponding operations
of A; equivalently, such that the inclusion map |B | → |A| is a homomor-
phism B → A. Thus, the subalgebras of A correspond to the subsets of
|A| closed under the operations of A. If B is a subalgebra of A we will,
by a slight abuse of notation, write “B ⊆ A ”. We shall consider the set of
subalgebras of A to be partially ordered by inclusion (of underlying sets).

A homomorphic image of A means an algebra B given with a homomor-
phism f : A→ B which is surjective on underlying sets.

Another notational problem: If A is an algebra, and if we have shown
that some subset S ⊆ |A| is closed under the operations of A, we have no
simple notation for the subalgebra of A whose underlying set is S. We shall
give such algebras ad hoc names when we refer to them, though it would be
tempting to fall back on the sloppy usage which does not distinguish between
an algebra and its underlying set.

Lemma 9.1.5. If A is any Ω-algebra, the set of subalgebras of A is “closed
under intersections”; i.e., for every set of subalgebras Bi of A (i ∈ I),
the intersection of the underlying sets,

⋂
I |Bi|, is the underlying set of a

subalgebra, which we may loosely call
⋂
I Bi. Hence the subalgebras of A

form a complete lattice, with meets given by intersections of underlying sets.
If X is any subset of |A|, the intersection of the underlying sets of all

subalgebras of A containing X will be the underlying set of the least subal-
gebra containing X, called the subalgebra generated by X. We shall say that
A is generated by a subset X ⊆ |A| if the subalgebra of A generated by X
is all of A. ut

As we observed in Chapter 2, a zeroary operation on a set is equivalent to a
choice of a distinguished element of that set. Note that if Ω is a type without
zeroary operation-symbols, then the empty set can be made an Ω-algebra in
a unique way. On the other hand, the empty set does not admit any zeroary
operations, so if Ω has any operation-symbols of arity 0, all Ω-algebras are
nonempty. The least element of the subalgebra lattice of an algebra A of any
type Ω will be the subalgebra generated by the empty set; this can also be
described as the subalgebra generated, under the operations of positive arity,
by the values of the zeroary operations. So if the type has zeroary operations,
this least subalgebra is nonempty, while if it does not, it is empty.

Empty algebras sometimes constitute special cases in algebraic consider-
ations, and many general algebraists avoid this “problem” by requiring, in
their definitions, that all algebras have nonempty underlying sets. But the
problem gets back at them: For instance, they can no longer define subalgebra
lattices as above, since when an algebra has no zeroary operations, an inter-
section of nonempty subalgebras can be empty. Thus they make definitions
such as “the subalgebra lattice of an algebra A consists of all subalgebras of
A, and also the empty set if A has no zeroary operations.” I feel strongly
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that it is best not to exclude empty algebras, but to allow them when dealing
with a type without zeroary operations, and accept the need to occasionally
mention them as exceptions to some statements.

Let us note that in the category Ω-Alg we can construct products in
the manner to which we have become accustomed: If (Ai)i∈I is a family of
Ω-algebras, then the set I

|Ai| becomes an Ω-algebra P under componen-
twise operations; that is, for each s ∈ |Ω|, and each ari(s)-tuple of elements
of I |Ai|, say

(aj)j∈ari(s) = ((aij)i∈I)j∈ari(s) ∈ |P |ari(s) = (
I
|Ai|)ari(s),

we define
sP (aj) = (sAi((aij)j∈ari(s)))i∈I .

The resulting algebra P is easily seen to have the universal property of
the product

I
Ai in Ω-Alg. Products in Ω-Alg are often called by the

traditional name, direct products.
Similarly, given a pair of homomorphisms of Ω-algebras f, g : A → B,

their equalizer as set maps will be the underlying set of a subalgebra of A,
and that subalgebra will constitute an equalizer of f and g in Ω-Alg.

Since general limits can be constructed from products and equalizers
(Proposition 8.6.6), we have

Proposition 9.1.6. Let Ω be any type. Then the category Ω-Alg has small
limits, which can be constructed by taking the limits of the underlying sets
and making them Ω-algebras under pointwise operations.

Explicitly, if D is a small category and F : D → Ω-Alg a functor, then
the set

lim←−D
|F (D)| = {(aD) ∈

D∈Ob(D)
|F (D)| |

(∀D1, D2 ∈ Ob(D), ∀ f ∈ D(D1, D2)) aD2
= F (f)(aD1

)}

is the underlying set of a subalgebra of
D
F (D), which constitutes a limit

of F in Ω-Alg. ut

Exercise 9.1:1. Show that if empty algebras are excluded from Ω-Alg, the
resulting category can fail to have small limits.

On the other hand, colimits and other left-universal constructions are not,
in general, the same in Ω-Alg as in Set. We will construct general colimits
in §9.3; but there are two cases that we can obtain now. We first need to note

Lemma 9.1.7. Let A be an Ω-algebra and E ⊆ |A| × |A| an equivalence
relation on |A|. Then the following conditions are equivalent:

(a) The set |A|/E can be made the underlying set of an Ω-algebra A/E
in such a way that the canonical map |A| → |A|/E is a homomorphism
A→ A/E.
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(b) E is the equivalence relation on |A| induced by a homomorphism of
Ω-algebras with domain A. (I.e., there exists an Ω-algebra B and a homo-
morphism f : A→ B such that E = {(x, y) ∈ |A| × |A| | f(x) = f(y)}.)
(c) E is the underlying set of a subalgebra of A×A.

Further, if R is any subset of |A| × |A|, and E the intersection of all
underlying sets of subalgebras of A × A which contain R, and which form
equivalence relations on |A|, then E will again be the underlying subset of a
subalgebra, and will form an equivalence relation; and A/E will be universal
(initial) among algebras B given with homomorphisms f : A→ B such that
for all (r, s) ∈ R, f(r) = f(s). ut

Definition 9.1.8. If A is an Ω-algebra, then an equivalence relation E on
|A| which is the underlying set of a subalgebra of A×A (as in condition (c)
of the above lemma) will be called a congruence on the algebra A, and A/E
(defined as in condition (a) thereof) will be called the quotient algebra (or
factor-algebra) of A by the congruence E.

The complete lattice of all congruences on A is called the congruence
lattice of A. The least congruence containing a given subset R ⊆ |A|× |A| is
called the congruence on A generated by R, and the quotient of A by this
congruence is often called the algebra obtained by imposing on A the family
of relations R, or loosely, the family of relations (x = y)(x, y)∈R.

I say “loosely” in the last sentence because (as we noted in passing in
§4.3), there is an abuse of notation in writing such a relation as “x = y ”.
The symbol x = y usually denotes a proposition, i.e., an assertion about
elements of A, and this proposition is generally false in the case where the
relation is one we wish to impose on A ! What is true is that in our quotient
algebra the images of x and y satisfy the corresponding relation; and when
there is no danger of ambiguity, one may denote these images by the same
symbols x and y as the original elements of A, so that x = y becomes a
true statement in that quotient algebra. But in more precise notation, the
statement which is true in the latter algebra must be written using modified
symbols, e.g., x = y or [x] = [y]. We will be precise about this here; but in
informal algebraic use, the language of “imposing the relation x = y on A ”
is very convenient.

Many workers in General Algebra and Logic make a convention half-way
between these extremes, defining “relations” or “identities” to be symbols of
the form “x ≈ y ”. (E.g., [20, p. 234].) These are essentially just our ordered
pairs (x, y), written in a more suggestive form. A notation that allows one
to avoid ambiguity while using the same symbols for elements of different
algebras is that of Model Theory, where one writes A/E |= x = y to mean
“x = y holds in A/E ”, so that this is distinguishable from A |= x = y.

Exercise 9.1:2. (i) Show that in the context of Lemma 9.1.7, if the type
Ω is finitary, then the three equivalent conditions of that lemma are also
equivalent to the condition
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(c′) For every s ∈ |Ω| and every ari(s)-tuple

((a0, b0), . . . , (aari(s)−1, bari(s)−1)) ∈ Eari(s) ⊆ (A×A)ari(s)

such that ai 6= bi for at most one i ∈ ari(s), one has
sA((a0, b0), . . . , (aari(s)−1, bari(s)−1)) ∈ E.

(ii) Show that the analog of (i) is not in general true if the type Ω is not
finitary.

Using the quotient algebra construction, we immediately get

Lemma 9.1.9. For any type Ω, the category Ω-Alg has coequalizers.
Namely, the coequalizer of a pair of maps f, g : A ⇒ B may be con-
structed as (B/E, q), where E is the congruence on B generated by
{(f(x), g(x)) | x ∈ |A|}, and q : B → B/E is the canonical map. ut

The other left universal construction that we can get easily is that of direct
limit, assuming appropriate restrictions on the arities of our operations.

Lemma 9.1.10. If Ω is a finitary type (Definition 9.1.1) then Ω-Alg has
direct limits, i.e., colimits over directed partially ordered sets. Namely, sup-
pose J is a directed partially ordered set and A : Jcat → Ω-Alg a functor,
whose values at objects and morphisms of Jcat will be written respectively
Aj (j ∈ J) and A(j, j′) (j ≤ j′ ∈ J) . Then the Ω-algebra structures
of the algebras Aj induce an Ω-algebra structure on the set-theoretic direct
limit lim−→J

|Aj | which makes it a direct limit algebra, lim−→J
Aj , with the same

coprojection maps as for the set-theoretic direct limit.
More generally, if α is an infinite cardinal, and Ω a type in which all

arities have cardinality < α, then the category Ω-Alg has direct limits over
all <α-directed partially ordered sets (Definition 8.9.10), again constructed
by giving an Ω-algebra structure to the direct limit of the underlying sets.

Proof. We will prove the general case. Let |L| = lim−→J
|Aj |, and let qj : |Aj | →

|L| (j ∈ J) be the coprojection maps. We wish to define an Ω-algebra
structure on |L|. Given s ∈ |Ω| and an ari(s)-tuple (xi)i∈ari(s) of elements
of |L|, let us write each xi as qj(i)(yi) for some j(i) ∈ J and yi ∈ |Aj(i)|.
Because J is <α-directed and card(ari(s)) < α, we can choose j ∈ J
majorizing all the j(i). Taking such a j, and letting zi = A(j(i), j)(yi) ∈
A(j) for each i, we have

(9.1.11) xi = qj(zi) for all i ∈ ari(s).

To define sL, let us say that whenever we have a family (xi) ∈ |L|ari(s)

expressed as in (9.1.11) for some j ∈ J, we will let

sL(xi) = qj(sAj (zi)) ∈ |L|.

The verification that these operations sL are well-defined, and that the
resulting Ω-algebra L has the universal property of lim−→A, are straightfor-
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ward, again by the method of “going far enough out along the <α-directed
set J ”. ut

Exercise 9.1:3. Write out these final verifications.

As noted at the beginning of §8.9, the “reason” the above lemma holds is
that in Set, direct limits respect finite products (a case of Proposition 8.9.3)
and more generally, that direct limits over <α-directed partially ordered
sets respect α-fold products (Proposition 8.9.11). Similarly, Proposition 9.1.6
holds because arbitrary products in Set (indeed, in any category) respect
arbitrary limits (Theorem 8.8.9).

We shall prove in §9.3 that Ω-Alg has general colimits, so the arity-
restrictions of the above lemma are not needed for the existence statements
to hold. But they are needed for the direct limits in question to have the
description given. Indeed

Exercise 9.1:4. Show by example that the last sentence of the first para-
graph of Lemma 9.1.10 fails if the assumption that Ω is finitary is dropped.
Specifically, show that there may not exist an algebra with underlying set
the direct limit of the |Aj |, and having the universal property of lim−→Ai.

Exercise 9.1:5. Let M be a monoid. As mentioned in Exercise 8.9:6, a left
congruence on M means an equivalence relation ∼ on |M | such that for
all a, b, c ∈ M one has a ∼ b =⇒ c a ∼ c b. (We will not call on that
exercise here, though part (i) below asks you to prove a slight strengthening
of a result referred to there as “easy to verify”.)
(i) Show that a binary relation ∼ on |M | is a left congruence if and
only if there exists a left action of M on a set X, and an element x ∈ X,
such that ∼ is {(a, b) ∈ |M | × |M | | a x = b x}.
(ii) If G is a group and M = Gmd (the monoid obtained by “forgetting”
the inverse operation of G, as in §4.11), show that the left congruences on
M are in natural bijective correspondence with the subgroups of G. (Not,
as might seem more natural, with the submonoids of M.)
(iii) (Open question of E. Hotzel [89].) If a monoid M has ascending chain
condition on left congruences, must M be finitely generated?

It has been shown [103] that if M has ascending chain condition on
both left and right congruences, then it is indeed finitely generated. (Stu-
dents wishing to read that paper might want to have the standard reference
work [68] in hand, since semigroup theorists use some rather idiosyncratic
terminology.)

Incidentally, the converse to the statement asked for in (iii) is not true.
This can be seen from (ii), and the fact that a finitely generated group
need not have ascending chain condition on subgroups.

Exercise 9.1:6. Let us call an Ω-algebra “just infinite” if it is infinite, but
every proper homomorphic image (i.e., every image under a non-one-to-one
homomorphism) is finite.
(i) Show that if Ω has only finitely many operations, and all are finitary,
then every infinite finitely generated Ω-algebra has a just-infinite homo-
morphic image.
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(ii) Can any of the above hypotheses be dropped? Or can you find any
variant results in which one or more occurrences of “finite” and/or “infi-
nite” are replaced by “< α ” and/or “≥ α ” for a more general choice of
cardinal α ?

Exercise 9.1:7. (i) Suppose Ω is a type having only finitely many oper-
ations, all of finite arities, and let A, B be finitely generated Ω-algebras.
Must A×B be finitely generated?
(ii) If the answer to part (i) is yes, can the assumptions on Ω be dropped
or weakened? If, on the other hand, the answer is no, can you find additional
assumptions on Ω and/or A and B that will make the assertion true?

9.2. Generating algebras from below

We want to construct other left universal objects in Ω-Alg – free algebras,
coproducts, arbitrary small colimits, etc.. In general, these will contain el-
ements created by applying operations of Ω to tuples of the elements we
start with, further elements obtained by applying the operations to elements
we get in this way, and so on. Whatever methods we use to justify these
constructions must involve showing that this iteration process “eventually
ends”.

“Eventually” does not mean in a finite number of steps, of course – even
in constructing algebras with operations of finite arity such as groups, we
needed countably many iterations to get the full set of such elements. When
we have infinitary operations, we may have to continue longer than that.

To see how long, let us examine the process by which a subset of an algebra
generates a subalgebra. Let Ω be an arbitrary type, and A an Ω-algebra.
Given a subset X ⊆ |A|, define a sequence of subsets of |A| indexed by the
ordinals:

(9.2.1)

S(0) = X,

S(α+1) = S(α) ∪ {sA(xi) | s ∈ |Ω| and xi ∈ S(α)

for all i ∈ ari(s)},
S(α) =

⋃
β <α S

(β) if α is a limit ordinal > 0.

We see by induction that the S(α) ’s increase monotonically. Since |A| is
a small set, S(α) and S(α+1) cannot be distinct for all cardinals α, and
clearly as soon as one such pair is equal, the chain becomes constant. The
constant value S that it assumes will contain S(0) = X and be closed
under the operations sA; moreover, by induction on α, each S(α), and so
in particular, S, is contained in every subalgebra of A containing X. Hence
S is the underlying set of the least subalgebra of A containing X, i.e., the
subalgebra generated by X.
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We now want to bound in terms of properties of Ω the least value of α
for which S(α) = S. (Above, we implicitly bounded it in terms of card |A|.)

We know how to show that if Ω is finitary, S = S(ω). Namely, given
finitely many elements s0, . . . , sn−1 ∈ S(ω), all of the si will have been
reached by some finite step S(N), hence the value of any operation of A on
this family lies in S(N+1), and hence in S(ω); so S(ω+1) = S(ω),

The next case is that of a type Ω in which all operations have arities of
cardinality ≤ ω, equivalently, < ω1. (Recall that ω1 denotes the first un-
countable ordinal.) It is then no longer true that the above process converges
by the ω-th step: If s ∈ |Ω| is ω-ary, and we can find for each nonnega-
tive n an element xn which first appears in S(n), then S(ω) will not in
general contain sA(x0, x1, . . . , xn, . . . ). Rather, this will appear in S(ω+1),
and further elements obtained from it under the operations of A will in gen-
eral appear at still later steps. However, I claim that this process stabilizes by
the ω1-th step. Indeed, given a countable (possibly finite) family of elements
xi ∈ S(ω1), each occurs in some S(αi) for a countable ordinal αi ∈ ω1, hence
all the xi will occur in S(α) where α = sup(αi), and this ordinal α is still
< ω1, since sup(αi) is ≤ the ordinal sum of the αi (defined as in (5.5.11)),
which has cardinality equal to the cardinal sum of the card(αi), which is
a countable sum of countable cardinals, hence countable. For α so chosen,
the value at (x0, x1, . . . , xn, . . . ) of any operation of countable arity lies
in S(α+1) ⊆ S(ω1), showing that S(ω1) is closed under the operations of A,
and hence that (9.2.1) stabilizes by the ω1 th step. The next exercise has
you show that in this statement, we cannot replace the estimate ω1 by any
smaller ordinal (such as ω2 or ωω).

Exercise 9.2:1. Let γ be any uncountable ordinal, and let A be an algebra
with underlying set γ and three operations: the zeroary operation taking
the value 0 ∈ γ, the unary operation taking α ∈ γ to α+ 1 if α+ 1 < γ,
or to 0 if α+1 = γ, and the ω-ary operation taking (α0, α1, . . . ) to

⋃
αi

if this is < γ, to 0 otherwise. Taking X = ∅ ⊆ |A|, determine explicitly
the sequence of subsets S(α), and show that this sequence does not become
constant until S(ω1).

The same argument will show that if all members of |Ω| have arity ≤ ω1,
then we get our desired algebra as S(ω2), that if all arities are ≤ ω2, we get
it as S(ω3), etc.; and it might appear that the proper general statement is
that if α is any infinite ordinal of cardinality greater than the arities of all
members of |Ω|, then S(α) is closed under the operations of Ω.

But this is not quite correct. The first value of α for which it fails is ωω. If
A has operations of arities ω, ω1, ω2, etc. (all the infinite cardinals < ωω),
then the chain of subalgebras S(ω) ⊆ S(ω1) ⊆ S(ω2) ⊆ . . . may be strictly
increasing. If we now choose an element xi ∈ S(ωi+1) − S(ωi) for each i, we
get a countable family of elements of S(ωω), and the value of an operation of
(merely!) countable arity on this family cannot be expected to lie in S(ωω).
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Exercise 9.2:2. Construct an explicit example with the properties sketched
above, i.e., an algebra A all of whose operations have arities < ωω, and
a subset X ⊆ |A|, such that the chain of subsets S(α) does not reach its
maximum value till S(ωω+1). (Suggestion: Adapt the idea of the preceding
exercise.)

To state the right choice of α, we recall from Definition 5.5.18 that an
infinite cardinal α is called regular if, as a partially ordered set, α has no
cofinal subset of cardinality < α, and that a cardinal that is not regular is
called singular. What we have run into is the first singular infinite cardinal,
ωω. Fortunately, regular cardinals are quite abundant: as shown in Exer-
cise 5.5:14, the cardinal ω is regular, and every infinite successor cardinal,
i.e., every cardinal of the form ωα+1 for α an ordinal, is also regular. We
can now show

Lemma 9.2.2. Let Ω be a type, and γ a regular infinite cardinal such that
card(ari(s)) < γ for all s ∈ |Ω| (e.g., the least such regular cardinal). Then
for any Ω-algebra A, and any subset X ⊆ |A|, if we define the chain of sets
S(α) by (9.2.1), then S(γ) is closed under the operations of A, hence is the
underlying set of the subalgebra of A generated by X.

Proof. Consider any s ∈ |Ω| and elements xi ∈ S(γ) (i ∈ ari(s)). Since
γ is a limit ordinal, S(γ) =

⋃
β <γ S

(β), hence each xi lies in some S(βi)

(βi ∈ γ). Since card(ari(s)) < γ and γ is regular, the set {βi | i ∈ ari(s)} is
not cofinal in γ, hence that set is majorized by some β < γ. For this choice
of β, all xi lie in S(β), hence s(xi) ∈ S(β+1) ⊆ S(γ), as required. ut

In the next section we will apply the above result to the construction of
left universal objects.

For later use, we record the following generalization of the familiar ob-
servation that if an algebra with finitary operations is generated by a set
X, each element of the algebra can be expressed in terms of finitely many
elements of X.

Lemma 9.2.3. Let Ω be a type, and γ a regular infinite cardinal such that
card(ari(s)) < γ for all s ∈ |Ω|. Let A be any Ω-algebra, and X any
generating set for A. Then each element of |A| belongs to the subalgebra of
A generated by a subset X0 ⊆ X of cardinality < γ.

Sketch of proof. It is easy to verify that under the given hypothesis the set
of elements of |A| belonging to subalgebras generated by < γ elements of
X forms a subalgebra. As it contains X, it must be all of |A|. ut

Exercise 9.2:3. Write out the easy verification referred to. Show that the
result becomes false if the regularity assumption on γ is deleted.

It may now seem anomalous that in our results on direct limits over
<α-directed partially ordered sets, Proposition 8.9.11 and Lemma 9.1.10,
we did not have to assume α regular! This is explained by
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Exercise 9.2:4. Show that if α is a singular infinite cardinal and J a
<α-directed partially ordered set, then J is also <α+-directed, where α+

is the successor cardinal to α.
Thus, if J is <α-directed for a cardinal α greater than the arities

of all operations of Ω, it is in fact <α′-directed for a regular cardinal α′

greater than the arities of those operations.

We could have avoided using the concept of regular cardinal in this sec-
tion by taking γ in our results to be “the successor cardinal of the least
infinite upper bound of the arities of the operation-symbols of Ω ”. However,
in the case where Ω is finitary, this would have given γ = ω1, whereas the
development we have used shows that ω suffices in that important case.

Exercise 9.2:5. (i) Let Ω be a finitary type, and A an Ω-algebra. Show
that a subalgebra of A is finitely generated if and only if it is compact as
an element of the lattice of subalgebras of A. (Cf. Lemma 6.3.6.)
(ii) Deduce that a congruence on A is finitely generated if and only if it
is a compact element of the lattice of congruences.
(iii) Deduce, in turn, that the subalgebra lattice, respectively the congru-
ence lattice, has ascending chain condition if and only if every subalgebra
of A, respectively every congruence on A, is finitely generated.
(iv) Show that in each of the preceding “if and only if” statements, one
direction can fail if Ω is not finitary, but the other will continue to hold.

9.3. Terms and left universal constructions

Given a type Ω and a set X, Lemma 9.2.2 can be used to obtain a bound on
the size of an Ω-algebra generated by an X-tuple of elements, and hence to
establish the solution set hypotheses needed by the existence results for left
universal constructions developed in §8.10. Now such a bound can be thought
of as an estimate of the number of “Ω-algebra terms in an X-tuple of variable-
symbols”, and rather than just giving the existence proof suggested above, we
can, with little additional work, construct such a set of terms, thus laying the
groundwork for the more explicit approach to universal constructions that
was sketched in §3.2.

Let us first define precisely the concept of a “term”. At the beginning of
this course (Definition 2.5.1) we described the set of “group-theoretic terms in
the elements of X ” as a set T given with certain structure: a map of X into
it, and a family of “formal group-theoretic operations” satisfying some further
conditions. If we make the corresponding definition for Ω-algebras, we see that
the “formal operations” in fact make the set T into an Ω-algebra. (We could
not similarly say that formal operations made the set of group-theoretic terms
into a group, because they did not satisfy the group identities. But in the
present development, we are studying algebras of type Ω in general, before
introducing identities.) So we state the definition accordingly:
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Definition 9.3.1. Let Ω be any type, and X any set. Then an “ Ω-term
algebra on X” will mean a pair (F, u), where F is an Ω-algebra, and
u : X → |F | a set map, such that

(i) the map u : X → |F |, and all the maps sF : |F |ari(s) → |F | are one-to-
one,

(ii) the images in |F | of the above maps are disjoint,

(iii) F is generated as an Ω-algebra by u(X).

Note that the first two parts of the above definition can be stated as a single
condition: If we write t for disjoint union of sets, and consider the map u
and the operations sF as defining a single map X t

⊔
s∈|Ω| |F |ari(s) → |F |,

then (i)-(ii) say that this map is one-to-one.

Since the concept of Ω-algebra involves no identities, the idea of construct-
ing free objects by taking “terms modulo identities” simplifies in this case
to

Lemma 9.3.2. Let Ω be any type, and X any set. Suppose there exists an
Ω-term algebra (F, u) on X. Then (F, u) is a free Ω-algebra on X.

Proof. To prove that (F, u) has the universal property of a free Ω-algebra
on X, suppose A is an Ω-algebra and v : X → |A| any set map. We wish
to construct a homomorphism f : F → A such that v = f u. Intuitively, f
should represent “substitution of the elements v(x) for the variable-symbols
u(x) in our terms”.

Let us write |F | as the union of a chain of subsets S(α) as in (9.2.1),
starting with the generating set S(0) = u(X). Assume recursively that f
has been defined on all the sets S(β) with β < α; we wish to extend f
to S(α). If α = 0, S(α) consists of elements u(x) (x ∈ X), all distinct,
and we let f(u(x)) = v(x) ∈ |A|. If α is a successor ordinal β + 1, then
an element which first appears in S(α) will have the form sF (ti), where
s ∈ |Ω| and each ti ∈ |S(β)|. Thus the f(ti) have already been defined,
and we define f(sF (ti)) = sA(f(ti)). If α is a nonzero limit ordinal, then
S(α) =

⋃
β<α S(β), and having defined f consistently on S(β) for all β < α,

we have defined it on S(α).
In each case, the one-one-ness condition (i) and the disjointness condi-

tion (ii) of Definition 9.3.1 insure that if an element of F occurs at some
stage as u(x) or sF (ti), it cannot occur (at the same or another stage) in a
different way as u(x′) or s′F (t′i). Hence our definition of f is unambiguous.
By construction, f is a homomorphism of Ω-algebras and satisfies f u = v;
and by (iii) it is unique for this property. ut

We have not proved the converse statement, that if a free Ω-algebra on
X exists, it will be an Ω-term algebra on X. We would want this if we
planned to prove the existence of free algebras first and deduce from this the
existence of term algebras, but we shall be going the other way. However,
this implication is not hard to prove; I will make it
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Exercise 9.3:1. Show (without assuming the existence of Ω-term algebras)
that if (F, u) is a free Ω-algebra on X, then it is an Ω-term algebra on
X.

(Hint: If F fails to satisfy one of conditions (i)-(iii) of Definition 9.3.1,
you want to find a pair (A, v) for which the universal property of (F, u)
fails. If condition (iii) fails, make A a subalgebra of F ; if (i) or (ii) fails,
obtain A by replacing one element p of F by two elements p1 and p2,
and defining the operations appropriately on |F | − {p} ∪ {p1, p2}. Since
the operations of Ω-algebras are not required to satisfy any identities, any
definition of these operations yields an Ω-algebra.)

Let us now prove

Theorem 9.3.3. Let Ω be any type, and X any set. Then there exists an
Ω-term algebra on X; equivalently, a free Ω-algebra on X.

Proof. Let ∗ be any element not in |Ω|, and γ an infinite regular cardinal
which is > card(ari(s)) for all s ∈ |Ω|. We define recursively a chain
(S(α))α≤γ of sets of ordered pairs, by taking

S(0) = {(∗, x) | x ∈ X},
S(α+1) = S(α) ∪ {(s, (xi)) | s ∈ |Ω|, (xi) ∈ (S(α))ari(s)},
S(α) =

⋃
β <α S

(β) if α is a limit ordinal with 0 < α ≤ γ.

Let |F | = S(γ), and define u : X → |F |, and maps sF : |F |ari(s) → |F |
(s ∈ |Ω|), by

u(x) = (∗, x) (x ∈ X),

sF (xi) = (s, (xi)) (s ∈ |Ω|, (xi) ∈ |F |ari(s)).

That the operations sF carry |F | = S(γ) into itself follows from our choice
of γ, by the same argument we used in proving Lemma 9.2.2. Thus these
operations make |F | an Ω-algebra F. That F satisfies conditions (i)-(ii)
of Definition 9.3.1 follows from the set-theoretic fact that an ordered tuple
uniquely determines its components. To get (iii), one verifies by induction
that any subalgebra containing X must contain each S(α). ut

I will mention that the technique of explicit induction or recursion on the
forms of elements, which we have used in proving Lemma 9.3.2 and Theo-
rem 9.3.3, will hardly ever have to be used after this point. Beginners often
assume that they need to use such methods when proving results to the effect
that if an algebra A is generated by a set X of elements having an appropri-
ate sort of property P, then all elements of A satisfy P (e.g., Exercise 9.2:3
above). But in fact, such results can generally be obtained more simply by
verifying that the set of elements of A satisfying P is closed under the alge-
bra operations, hence forms a subalgebra containing X, hence is all of |A|.
Likewise, if we want to construct a homomorphism on the free algebra A on
a set X given its values on elements of X, we can do this using the universal
property of A as a free object. In the case of free objects of Ω-Alg, we have
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just proved by recursion on elements that a certain object has that universal
property, but this one application of that method will free us from having to
repeat that argument in similar situations.

Since we have free Ω-algebras on all sets X, these give a left adjoint to
the underlying-set functor from Ω-Alg to Set.

Exercise 9.3:2. Show how we could, alternatively, have gotten the exis-
tence of such an adjoint using Freyd’s Adjoint Functor Theorem (Theo-
rem 8.10.5) and Lemma 9.2.2.

Let us fix a notation for these functors.

Definition 9.3.4. The underlying-set functor of Ω-Alg and its left adjoint,
the free algebra functor, will be denoted UΩ : Ω-Alg→ Set and FΩ : Set→
Ω-Alg respectively.

When there is no danger of misunderstanding, we may abbreviate a symbol
such as FΩ({x0, . . . , xn−1}) to FΩ(x0, . . . , xn−1).

The “danger of misunderstanding” referred to is that the symbol FΩ(X)
for the free Ω-algebra on a set X might be misinterpreted, under the above
convention, as meaning the one-generator free algebra FΩ({X}). But in con-
text, there is almost never any doubt as to whether a given entity is meant
to be treated as a free generator, or as a set of free generators.

There is another sort of looseness in our usage, which we noted in Chap-
ter 3. Although we have formally defined free algebras to be pairs (F, u), we
also sometimes use the term for the first components of such pairs, thought
of as algebras “given with” the set-maps u. (E.g., when we spoke of the
free-algebra functor above, the values of the functor were algebras F, not or-
dered pairs (F, u); the maps u are the values of the unit of the adjunction,
u = η(X) : X → UΩ(FΩ(X)).) At other times, we speak of an algebra F as
being free on a given set of its elements, without specifying an indexing of
this set by any external set (though we can always index it by its identity
map to itself). Finally, we may speak of an algebra as being “free”, meaning
that there exists a generating set on which it is free, without choosing a par-
ticular such set, as when we say that “any subgroup of a free abelian group
is free abelian”. So we need to be sure it is always clear which version of the
concept we are using.

The next exercise shows that in a category of the form Ω-Alg, and in
certain others, the last two of the above senses of “free algebra” essentially
coincide.

Exercise 9.3:3. (i) Show that a free Ω-algebra is free on a unique set of
generators. That is, if (F, u) is a free Ω-algebra, then the image in |F | of
the set map u (and hence in particular, the cardinality of the domain of
u) is determined by the Ω-algebra structure of F. (Hint: Definition 9.3.1.)
(ii) Is the analogous statement true for free groups? Free monoids? Free
rings?
(iii) Same question for free upper (or lower) semilattices.
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(iv) Same question for free lattices. (If you know the structure theorem
for free lattices this is not hard. Even if you do not, a little ingenuity will
yield the answer by a direct argument.)

Exercise 9.3:4. (i) Show that every subalgebra A of a free Ω-algebra F
is free.

We mentioned above the fact (proved in the standard beginning gradu-
ate algebra course) that the corresponding statement holds for free abelian
groups. It is also a basic (though harder to prove) result of group theory
that it holds for free groups. But
(ii) Is the analogous statement true for free monoids? Free rings? Free
upper semilattices? Free lattices?

Exercise 9.3:5. (i) Let Ω be a finitary type without zeroary operation
symbols, and FΩ(x) the free Ω-algebra on a single generator x. Show
that the monoid of endomorphisms End(FΩ(x)) (under composition) is a
free monoid. If you wish, you may for simplicity assume that |Ω| consists
of a single binary operation-symbol (since even in this case, the description
of the free generating set for the monoid End(FΩ(x)) is nontrivial).
(ii) Does the result of (i) remain true if the assumption that Ω is finitary
is removed?
(iii) Show that the corresponding result is never true if Ω has zeroary
operations. Can you describe the monoid in this case?
(iv) If all operation-symbols of Ω have arity 1, describe the monoid
End(FΩ(x)) precisely in terms of |Ω|.

The next result is easily seen from the explicit description of free
Ω-algebras in our proof of Theorem 9.3.3.

Corollary 9.3.5 (to proof of Theorem 9.3.3). If a : X → Y is an in-
jective (respectively surjective) map of sets, then the induced map of free
Ω-algebras FΩ(a) : FΩ(X)→ FΩ(Y ) is likewise injective (surjective) on un-
derlying sets. ut

We can also get the above result from a very general observation, though
in that case we need a special argument to handle the free algebra on the
empty set:

Exercise 9.3:6. (i) Show that every functor A : Set → Set carries sur-
jective maps to surjective maps, and carries injective maps with nonempty
domains to injective maps. (Hint: Use right and left invertibility.)
(ii) Show that (i) becomes false if the qualification about nonempty do-
mains is dropped.
(iii) Show, however, that if A has the form UF, where U is a functor
from some category to Set, and F is a left adjoint to U, then A carries
maps with empty domain to injective maps.
(iv) Deduce Corollary 9.3.5 from the above result without calling on an
explicit description of free Ω-algebras.
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Using free algebras, we can obtain other left universal constructions. A
basic tool will be

Definition 9.3.6. Let Ω be a type, X a set, and (FΩ(X), uX) a free
Ω-algebra on X. An Ω-algebra relation in an X-tuple of variables will mean
an element (s, t) ∈ |FΩ(X)| × |FΩ(X)| (often informally written “ s = t ”).
An X-tuple v of elements of an Ω-algebra A is said to satisfy the relation
(s, t) if the unique homomorphism f : FΩ(X)→ A such that fuX = v has
the property f(s) = f(t).

If Y ⊆ |FΩ(X)| × |FΩ(X)| is a set of relations, then an Ω-algebra pre-
sented by generators X and relations Y will mean an initial object (B, w)
in the category whose objects are pairs (A, v) with A an Ω-algebra and v
an X-tuple of elements of |A| satisfying all the relations in Y, and whose
morphisms are homomorphisms of first components respecting second com-
ponents; equivalently, a representing object for the functor Ω-Alg → Set
associating to every Ω-algebra A the set of X-tuples v satisfying all the
relations in Y. Such an algebra B will be denoted X | Y Ω-Alg, or, when
there is no danger of ambiguity, X | Y .

(If we wanted to be more precise, we might write our relations as
(s, t, (FΩ(X), uX)), since formally, a given pair of elements s and t can
belong to underlying sets of various free algebras. But to avoid messy nota-
tion, we will assume that there is no ambiguity as to which free algebra is
meant. Also, strictly speaking, the object presented by the generating set X
and relation set Y should be given as a pair ( X | Y , w), where w is the
canonical map X → | X | Y |. But again we will speak of it as X | Y ,
and leave it understood that w is there if we need to refer to it.)

Theorem 9.3.7. Let Ω be a type. Then Ω-Alg has algebras X | Y pre-
sented by arbitrary sets of generators X and relations Y.

Proof. X | Y can be constructed as the quotient of FΩ(X) by the con-
gruence generated by Y (Definition 9.1.8). ut

Exercise 9.3:7. Give an alternative proof of the above theorem using the
results of §8.10.

Exercise 9.3:8. At the end of §4.5 we introduced the term residually finite
to describe a group G with the property that for any two elements x 6=
y ∈ |G|, there exists a homomorphism f of G into a finite group such that
f(x) 6= f(y). The same definition applies to Ω-algebras, for arbitrary Ω.

Show that if Ω is a finitary type, then every finitely related Ω-algebra
(i.e., every Ω-algebra that has a presentation X | Y with Y finite) is
residually finite.

(In contrast, we constructed in Exercise 7.8:27 a finitely related group
G that was not residually finite. There is no contradiction between these
results, because that G, though finitely related as a group, is not finitely
related as an Ω-algebra for Ω the type to which groups belong; it is pre-
sented by the finitely many group-theoretic relations that we used, and
infinitely many instances of the group identities.)
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Exercise 9.3:9. This exercise will show that finitely related Ω-algebras tend
to have large free subalgebras.

Let Ω be a finitary type, X a finite set, and (F, uF ) a free Ω-algebra
on X.
(i) Show that for every element a ∈ |F | not belonging to the subalge-
bra generated by the empty set, there exists a subalgebra A ⊆ F not
containing a, such that |F | − |A| is finite.

(ii) Let Y = {(s0, t0), . . . , (sn−1, tn−1)} ⊆ |F |2. Show that an algebra A
isomorphic to X | Y Ω can be obtained from F by (roughly – you fill in
the details) the following two steps.

(a) Define a certain algebra B with underlying set |F |, and with opera-
tions and distinguished X-tuple of elements uB that differ from those of
F in a total of at most n places. (I.e., such that the number of elements
of X at which uB differs from uF , and the number of ari(s)-tuples at
which the various sB differ from the sF , add up to at most n. The
idea is to slightly modify the structure of F so as to make the relations
of Y hold in B.) And then,
(b) Let A be the subalgebra of B generated by uB(X) under the
operations sB .

(iii) Show from (i) and (ii) that if Ω has no zeroary operations, and Y
is as in part (ii) above, then X | Y Ω has a subalgebra C such that
| X | Y Ω| − |C| is finite and C is isomorphic to a subalgebra of A,
hence, by Exercise 9.3:4, is free.

After working out your proof, you might see whether you can weaken
the assumption that Ω have no zeroary operations, replacing it either with
a weaker condition on Ω, or with a condition on Y.

Returning to our task of obtaining basic universal constructions in Ω-Alg,
let us prove

Theorem 9.3.8. The category Ω-Alg has all small colimits.

Proof. By Proposition 8.6.6 (last statement), it is enough to show that Ω-Alg
has coequalizers of pairs of morphisms, and has small coproducts. We ob-
tained coequalizers in Lemma 9.1.9; we shall now construct the coproduct of
a small family of Ω-algebras (Ai)i∈I .

We assume without loss of generality that the Ai have disjoint underlying
sets (since we can replace them with disjoint isomorphic algebras if they
do not). Let A be the algebra presented by the generating set

⋃
|Ai| and,

for relations, all the relations satisfied within the separate Ai ’s. (Precisely,
we take for relations the images in |FΩ(

⋃
I |Ai|)| × |FΩ(

⋃
I |Ai|)|, under

the canonical maps FΩ(|Aj |) → FΩ(
⋃
I |Ai|), of all the relations (s, t) ∈

|FΩ(|Aj |)|× |FΩ(|Aj |)| holding in the given algebras Aj .) It is easy to verify
that A is the desired coproduct. ut

We end this section with two exercises which assume familiarity with basic
point-set topology, and which concern certain algebras with a single binary
operation. The first exercise sets up a general construction and establishes
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some of its properties, to give you the feel of things. The second restricts at-
tention to a particular instance of this construction, and asks you to establish
a seemingly bizarre universal property of that object.

Exercise 9.3:10. Let the set 2ω of all sequences (ι0, ι1, . . . ) of 0’s and 1’s
be given the product topology induced by the discrete topology on {0, 1}.
(The resulting space can be naturally identified with the Cantor set.) Let
us define two continuous maps α, β : 2ω → 2ω, by letting

(9.3.9) α(ι0, ι1, . . . ) = (0, ι0, ι1, . . . ), and β(ι0, ι1, . . . ) = (1, ι0, ι1, . . . ).

Thus, 2ω is the disjoint union of the two copies of itself, α(2ω) and β(2ω).
Now,

(9.3.10) let Ω be the type determined by a single binary operation ∗,

and let us define a covariant functor H from the category HausTop
of Hausdorff topological spaces to Ω-Alg. For every space S, the set
|H(S)| will be HausTop(2ω, S), i.e., the space of continuous S-valued
functions on 2ω. Thus, these sets are given by the covariant hom-functor
h2ω : HausTop → Set. To describe the binary operation, let u, v ∈
|H(S)|. Then we define u ∗ v to be the function 2ω → S such that

(9.3.11) (u ∗ v)(α(x)) = u(x), (u ∗ v)(β(x)) = v(x), (x ∈ 2ω).

Thus, if we identify 2ω with the Cantor set, u ∗ v is the map whose
graph on the first half of that set looks like the graph of u compressed
horizontally, and whose graph on the second half of the Cantor set is a
similarly compressed copy of the graph of v. Let H(S) = (|H(S)|, ∗).
(i) Show that for every S, the map ∗ : |H(S)| × |H(S)| → |H(S)| is
bijective.
(ii) Let S be any Hausdorff topological space and X any finite subset of
|H(S)|. Let X0 be the set of those x ∈ X which, as maps 2ω → S, are
constant, and X1 the set of x ∈ X which are not constant, and such that
x does not belong to the Ω-subalgebra of H(S) generated by X − {x}.
Show that the Ω-subalgebra of H(S) generated by X can be presented
by the generating set X0 ∪X1, and the relations x ∗ x = x for x ∈ X0.
(iii) Deduce that the set of nonconstant elements of H(S) forms a subalge-
bra N every finitely generated subalgebra of which is free. Show, however,
that if S contains a homeomorphic copy of 2ω, then N itself is not free.

(Can you find necessary and sufficient conditions on S for N to be
free?)

Our definition above of the element u ∗ v involved its composites on the
right with α and β. We shall now let our construction take its tail in its
mouth, by applying it with S = 2ω. Since elements of the resulting algebra
also have 2ω as codomain, we can also compose them on the left with α and
β.

Exercise 9.3:11. Let α, β : 2ω → 2ω and H : HausTop → Ω-Alg be
defined as in the first two paragraphs of the preceding exercise, and let
A = H(2ω), an Ω-algebra with underlying set HausTop(2ω, 2ω).
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(i) Show that each of the Ω-algebra homomorphisms H(α), H(β) : A→
A is an embedding, and that A is the coproduct in Ω-Alg of the images
of these homomorphisms.

This is equivalent to saying that A is a coproduct of two copies of
itself, with coprojection maps H(α) and H(β); or, fixing an arbitrary co-
product of two copies of A and calling it A A, and calling its coprojection
maps q0 and q1, it is equivalent to saying that the unique homomorphism
f : A A→ A satisfying f q0 = α and f q1 = β is an isomorphism.

We now come to the strange universal property. Let mA : A → A A
be the inverse of the above map f.
(ii) Show that if B is any Ω-algebra given with a homomorphism
mB : B → B B, there exists a unique homomorphism θ : B → A such
that the following diagram commutes:

B -
mB

B B

?

θ

?

θ θ

A -mA
A A.

(Since our construction of A uses topology, the same will necessarily be
true of the proofs of (i) and (ii). Note, however, that the statements of
these properties of A are purely algebraic. We will be able to make sense
of the above universal property in Chapter 10.)

9.4. Identities and varieties

Here is a definition that needs no introduction!

Definition 9.4.1. Let Ω be a type, X a set, and (FΩ(X), uX) a free
Ω-algebra on X. An identity in an X-tuple of variables will mean an ele-
ment (s, t) ∈ |FΩ(X)| × |FΩ(X)|, i.e., formally the same thing as a relation,
and likewise often informally written “ s = t ”. However an Ω-algebra A will
be said to “satisfy” the identity (s, t) if and only if every X-tuple v of el-
ements of |A| satisfies (s, t) as a relation; that is, if and only if for every
homomorphism f : FΩ(X)→ A, one has f(s) = f(t).

The next result relates identities in different sets of variables.

Lemma 9.4.2. Let Ω be a type, X a set, and (s, t) ∈ |FΩ(X)| × |FΩ(X)|
an identity in an X-tuple of variables. Then if f : X → Y is a one-to-one
set map, an Ω-algebra A satisfies the identity (s, t) if and only if it satisfies
the identity in a Y -tuple of variables, (FΩ(f)(s), FΩ(f)(t)).
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Hence if γ is an infinite cardinal such that γ ≥ card(ari(s)) for all s ∈
|Ω|, every identity (s, t) in any set X of variables is equivalent to an identity
(s′, t′) in a γ-tuple of variables (i.e., there is an identity (s′, t′) ∈ |FΩ(γ)| ×
|FΩ(γ)| which is satisfied by an Ω-algebra A if and only if A satisfies (s, t)).

Proof. First statement: It is easy to see (without assuming the given map f
one-to-one) that for any map f : X → Y and any Y -tuple of elements of
|A|, v : Y → |A|, the induced X-tuple v f : X → |A| will satisfy the relation
(s, t) if and only if v satisfies the relation (FΩ(f)(s), FΩ(f)(t)). Hence if A
satisfies (s, t) as an identity it will likewise satisfy (FΩ(f)(s), FΩ(f)(t)) as
an identity. The converse will hold for f a one-to-one map if we can show
that every map w : X → |A| can be written v f for some v : Y → |A|. It is
clear how to define v on elements of the one-to-one image of X in Y under
f. If |A| is nonempty, we can extend this map by giving v arbitrary values
on other elements of Y. If |A| is empty, on the other hand, then there can
be no homomorphisms to A from the algebra FΩ(X) (which is nonempty
because it contains s and t) so this case is vacuous. (An empty algebra sat-
isfies every identity (s, t), because the hypothesis of the implication defining
“satisfaction” can never hold.)

Now let γ be as in the second statement, and let γ′ denote the successor
cardinal to γ. Then γ′ will be a regular cardinal (by Exercise 5.5:14(i))
which is greater than the arity of every operation of Ω; hence given any set
X and any s, t ∈ |FΩ(X)|, Lemma 9.2.3 tells us that s and t lie in the
subalgebra generated by some subset X0 ⊆ X of cardinality < γ′, hence
≤ γ; hence the set X0 can be mapped injectively into γ. Hence applying
the first statement of this lemma to the inclusion of X0 in X on the one
hand, and to an embedding of X0 in γ on the other, we see that (s, t) is
equivalent to some identity in a γ-tuple of variables. ut

Thus, for the purpose of studying families of identities satisfied by
Ω-algebras, and classes of algebras determined by identities, we can restrict
ourselves to identities in a γ-tuple of variables for γ as above. In particular,
identities in a countable set of variables suffice for finitary algebras, and even
for algebras all of whose operations have countable arity.

In making the second assertion of the above lemma, why have we looked
at a cardinal such that all operations have cardinalities ≤ γ, rather than fol-
lowing the pattern recommended earlier, of looking at cardinals that strictly
bound the quantities we are interested in? Although generally speaking, the
latter pattern gives one greater flexibility in stating conditions, in this case
the conclusion we wanted was that there was a single free algebra in terms of
which all our identities could be expressed, so we wanted a particular value
for the cardinality of a generating set; and the non-strict inequalities used
above yielded the smallest such cardinal.

Unfortunately, to study direct limits later in this section, we will also want
a cardinal satisfying strict inequalities. Hence
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Convention 9.4.3 For the remainder of this section, Ω will denote a fixed
type, γ0 will denote an infinite cardinal that is ≥ ari(s) for all s ∈ |Ω|, and
γ1 will denote a regular infinite cardinal that is > ari(s) for all s ∈ |Ω|. An
identity will mean an Ω-algebra identity in a γ0-tuple of variables.

In writing identities, we shall often write xα for the image u(α) ∈
|FΩ(γ0)| of α ∈ γ0. We may also at times write x, y, etc., for x0, x1,
etc..

Note that if the smallest possible choice for γ1 is a successor cardinal, then
the smallest possible choice for γ0 is its predecessor, while if the smallest
choice for γ1 is a limit cardinal, the smallest choice for γ0 is the same
cardinal. In particular, in the classical case, where all operations are finitary,
ℵ0 can be used for both γ0 and γ1.

The next exercise shows that when all arities are 0 or 1, one can do better
than described above (though we will not use this result in what follows).

Exercise 9.4:1. Show that if all operation-symbols of Ω are of arity ≤ 1,
then the statement of Lemma 9.2.3 holds with γ = 2 (even though 2 is
not a regular cardinal), and deduce that the final statement of Lemma 9.4.2
also holds for γ = 2. On the other hand, show by example that it does not
hold for γ = 1.

Let us denote the set of all Ω-algebra identities by

(9.4.4) IΩ = |FΩ(γ0)| × |FΩ(γ0)|.

Thus we have a relation of satisfaction (Definition 9.4.1) defined between ele-
ments of the large set Ob(Ω-Alg) of all Ω-algebras and elements of the small
set IΩ of all identities. If C is a (not necessarily small) set of Ω-algebras, let
us for the moment write C∗ for the set of identities satisfied by all members
of C, and if J is a set of identities, let us write J∗ for the (large) set of
Ω-algebras that satisfy all identities in J. The theory of Galois connections
(§6.5) tells us that the two composite operators ∗∗ will be closure operators,
that every set J∗ or C∗ will be closed under the appropriate closure op-
erator ∗∗, and that the operators ∗ give an antiisomorphism between the
complete lattice of all closed sets of algebras and the complete lattice of all
closed sets of identities.

In talking about this Galois connection, it is obviously not convenient to
apply to sets of algebras our convention that sets are small if the contrary is
not stated; so we make

Convention 9.4.5 For the remainder of this chapter, we suspend for sets
of algebras (as we have done from the start for object-sets of categories) the
assumption that sets are small if the contrary is not stated.

(However, we still assume that any set of algebras is a subset of our uni-
verse U if the contrary is not stated; i.e., the smallness convention still ap-
plies to the underlying set of each algebra.)
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Definition 9.4.6. A variety of Ω-algebras means a full subcategory V of
Ω-Alg having for object-set the set J∗ of algebras determined by some set
J of identities. The variety with object-set J∗ will be written V(J). A
category is called a variety of algebras if it is a variety of Ω-algebras for some
type Ω.

If V is a variety, an algebra belonging to V will be called a V-algebra.
The least variety of Ω-algebras whose object-set contains a given set C of
algebras, that is, the full subcategory of Ω-Alg with object-set C∗∗, is called
the variety generated by C, written Var(C).

An equational theory for Ω-algebras means a subset of IΩ (i.e., a set
of identities for Ω-algebras) which can be written C∗ for some set C of
Ω-algebras; C∗ is called the equational theory of the class C. If C is a full
subcategory of Ω-Alg, then we may also call the equational theory of Ob(C)
“the equational theory of C. ” The least equational theory containing a set
J of identities, namely, J∗∗, is called the equational theory generated by J.

Examples: The categories we have named Group, Ab, Monoid,
Semigroup, Ring1, CommRing1, ∨-Semilattice, ∧-Semilattice and
Lattice are all varieties of algebras (up to trivial notational adjustment;
e.g., we originally defined an object of Group as a 4-tuple (|G|, µ, ι, ε);
under Definition 9.1.2 it must be described as a pair (|G|, (µ, ι, ε))). For
every group G, the category G-Set is a variety; for every ring R the cate-
gory R-Mod is a variety, and for every commutative ring k the category of
all associative k-algebras is a variety. For every type Ω, the whole category
Ω-Alg is a variety (the greatest element in the complete lattice of varieties
of Ω-algebras, definable by the empty set of identities. Its equational the-
ory consists of the tautological identities (s, s).) Taking for Ω the trivial
type, with no operation-symbols, we see that Set is (again, up to a trivial
notational adjustment) a variety.

If C is the full subcategory of Monoid consisting of those monoids all
of whose elements are invertible, then C is not a variety of algebras, since
invertibility is not an identity; nevertheless, this category is equivalent (Def-
inition 7.9.5) to the variety Group.

Finally, some categories we have looked at which are not varieties, and
are not in any obvious way equivalent to varieties, are POSet, Top,
Setop, RelSet, the category of complete lattices, the full subcategory of
CommRing1 consisting of the integral domains, and the category of torsion-
free groups (groups without elements of finite order other than e). How to
determine whether or not any of these is nonetheless equivalent to some va-
riety of algebras is a question we are not yet ready to tackle.

Remark 9.4.7. An algebra A satisfies the identity x0 = x1 if and only if
all its elements are equal. Hence an algebra satisfying this identity satisfies
all identities; i.e., {(x0, x1)}∗∗ = IΩ, the greatest element of the lattice of
equational theories of Ω-algebras. The corresponding variety of Ω-algebras is
the least element of the lattice of such varieties, and consists of algebras with
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at most one element. If Ω has any zeroary operation-symbols, then this vari-
ety consists only of one-element algebras, which are all isomorphic; thus the
variety is equivalent to the category 1 with only one object and its identity
morphism. If Ω has no zeroary operations, then this least variety contains
both the empty algebra and all one-element algebras, and is equivalent to the
2-object category 2.

Let us prove some easy results about varieties.

Proposition 9.4.8. Let V ⊆ Ω-Alg be a variety. Then:

(i) Any subalgebra of an algebra in V again lies in V.

(ii) The limit lim←−D
A(D), taken in Ω-Alg, of any functor A from a small

category D to V ⊆ Ω-Alg again lies in V.

(iii) Any homomorphic image of an algebra in V again lies in V.

(iv) The direct limit (colimit) lim−→Aj , taken in Ω-Alg, of any <γ1-directed
system of V-algebras again lies in V. (For γ1 see Convention 9.4.3.
Lemma 9.1.10 describes this direct limit.)

In particular, the category V has small limits, has coequalizers, and has
colimits of <γ1-directed systems, and all of these constructions are the same
in V as in Ω-Alg.

Proof. It is straightforward that if an algebra satisfies an identity, any subal-
gebra or homomorphic image satisfies the same identity, giving (i) and (iii),
and that a direct product of algebras satisfying an identity again satisfies
that identity. Since arbitrary limits can be constructed using products and
equalizers, and in Ω-Alg equalizers are certain subalgebras, we get (ii).

To show (iv), let L be the direct limit in Ω-Alg of a <γ1-directed system
of algebras (Ai)I of V, let (s, t) be an identity of V, say involving the
first α < γ1 variables, which we regard as an identity (s′, t′) in an α-tuple of
variables, and let v be an α-tuple of elements of L. By Lemma 9.1.10 (second
paragraph) |L| is the direct limit of the sets |Ai|, hence by <γ1-directedness
of I, we can find an i ∈ I such that Ai contains an inverse image of each
component of v. The α-tuple formed from these inverse images will satisfy
the relation (s′, t′), hence so does v, its image. Hence L satisfies the identity
(s′, t′), and hence the equivalent identity (s, t). Knowing that L ∈ Ob(V),
its universal property as a direct limit in Ω-Alg implies the corresponding
property in V. (This was Lemma 8.6.7.) ut

Remark 9.4.9. If we consider classes of algebras defined by sorts of propo-
sitions more general than identities, involving logical operators such as ∃,
=⇒ and ∨ (for instance, torsion-free groups, and integral domains, both
mentioned above, divisible groups, which were considered in Exercise 7.7:5,
and fields, considered in Exercises 3.3:3 and 3.3:4), we find, in general, that
one or more of the statements of Proposition 9.4.8 fail. This is why we stated
in Chapter2 that it was “better” to define the concept of group using three
operations and the identities (2.2.1), than using just one operation, and the



382 9 Varieties of algebras

more complicated conditions (2.2.2). Of course, it is also worth studying what
results are true of classes of algebras defined by other sorts of propositions,
and these are also studied in General Algebra. But this course cannot cover
everything, and varieties form a very broad, important, and well-behaved
class, on which we will focus here.

The parts of the preceding proposition saying that certain constructions
have the same form in V as in Ω-Alg, together with some earlier results
yield:

Corollary 9.4.10. Let V be a variety of Ω-algebras. Then

(i) The forgetful functor from V to Set respects limits, and respects co-
limits over <γ1-directed partially ordered sets.

(ii) The inclusion functor into V of any subvariety W respects these con-
structions, and also respects coequalizers.

(iii) Direct limits in V over <γ1-directed partially ordered sets respect limits
in V over categories D having < γ1 objects and whose morphism-sets are
generated by < γ1 morphisms. ut

Exercise 9.4:2. Verify that the above corollary indeed follows from results
we have proved in this and earlier sections.

We saw in Lemma 7.9.4 that if a category C is given with a concept of a
subobject of an object, then one likewise gets a concept of a subfunctor of a
C-valued functor. Let us make, for future reference

Definition 9.4.11. If V is a variety of algebras, then unless the contrary is
stated, references to subfunctors of V-valued functors F are to be interpreted
with “subobject” meaning “subalgebra”.

Thus, for any category C and functor F : C→ V, a subfunctor G of F
is (essentially) a construction associating to every X ∈ Ob(C) a subalgebra
G(X) ⊆ F (X), in such a way that for every morphism f : X → Y of C, the
V-algebra homomorphism F (f) carries G(X) ⊆ F (X) into G(Y ) ⊆ F (Y ).

The subfunctors of group- and vector-space-valued functors considered in
the exercises following Lemma 7.9.4 are examples of this concept. (If you
didn’t do the last part of Exercise 7.9:11, this might be a good time to look
at it again.)

We can now prove for general varieties a pair of facts that we noted earlier
in many special cases.

Proposition 9.4.12. A morphism f : A→ B in a variety V is one-to-one
if and only if it is a monomorphism, and is surjective if and only if it is a
coequalizer map.
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Proof. One direction of each statement is immediate: As we saw in Exer-
cise 7.8:8, if f is one-to-one on underlying sets, then it is a monomorphism,
while we have observed that coequalizers in V are coequalizers in Ω-Alg,
and that these are surjective.

To get the converse statements, consider the congruence E associated
to f. This is the underlying set of a subalgebra C of A × A, hence it is
an object of V, and the projections of this object onto the two factors are
morphisms C ⇒ A having the same composite with f. The coequalizer
of these projections is A/E ∼= f(A), hence if f is surjective, f is indeed
a coequalizer map. On the other hand, if f has the cancellation property
defining a monomorphism, these two projections must be equal, which means
that E can contain no nondiagonal elements of |A| × |A|, which says that
f is one-to-one.

(Remark: These arguments are not valid in an arbitrary full subcategory
of V, since such a subcategory may contain f : A→ B without containing
C; cf. Exercise 7.7:5(i). On the other hand, they can be extended to a wide
class of full subcategories, for instance, the subcategory of all finite objects
of V, where Exercise 7.8:8 is not applicable.) ut

The above result does not discuss the relation between onto-ness and being
an epimorphism, nor between one-one-ness and the condition of being an
equalizer map. If f is onto, then by the above proposition it is a coequalizer
map, hence by Lemma 8.6.2, it is an epimorphism; likewise, by that lemma
an equalizer map is a monomorphism, hence by the above proposition, is one-
to-one. Neither of the converse statements is true, but they have a surprising
relationship to one another:

Exercise 9.4:3. (i) Show that if a variety V of algebras has an epimor-
phism which is not surjective (cf. Exercise 7.7:6(iii)) then it also has a
one-to-one map which is not an equalizer.
(ii) Is the converse to (i) true?

Exercise 9.4:4. The proof of Proposition 9.4.12 used the facts that V is
closed in Ω-Alg under products and subalgebras. Which of these two
conditions is missing in the example from Exercise 7.7:5 mentioned in that
proof? Can you also find an example in which only the other condition is
missing?

We turn now to constructions which are not the same in a variety V and
the larger category Ω-Alg. We will get these via the next lemma. Let us
give both the proof of that result based on the “big direct product” idea
(Freyd’s Adjoint Functor Theorem), and the one based on “terms modulo
consequences of identities”.

Lemma 9.4.13. If V is a variety of Ω-algebras, the inclusion functor of V
into Ω-Alg has a left adjoint.
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First proof. We have seen that V has small limits and that these are re-
spected by the inclusion functor into Ω-Alg, so by Freyd’s Adjoint Functor
Theorem, it suffices to verify the solution-set condition. If A ∈ Ob(Ω-Alg),
then every Ω-algebra homomorphism f of A into a V-algebra B factors
through the quotient of A by the congruence E associated to f. Since the
factor-algebra A/E is isomorphic to a subalgebra of B, it belongs to V.
Hence the set of all factor-algebras of the given Ω-algebra A which belong
to V, with the canonical morphisms A→ A/E, is the desired solution-set.

Second proof. Let V be V(J), the variety determined by the set of iden-
tities J ⊆ |FΩ(γ0)| × |FΩ(γ0)|. Given A ∈ Ob(Ω-Alg), let E ⊆ |A| × |A|
be the congruence on A generated by all pairs (f(s), f(t)) with (s, t) ∈ J,
and f : FΩ(γ0) → A a homomorphism. Then it is straightforward to verify
that A/E belongs to V, and is universal among homomorphic images of A
belonging to V. ut

We shall call the above left adjoint functor the construction of imposing
the identities of V on an Ω-algebra A. Note that if we impose the identities
of V on an algebra already in V, we get the same algebra.

We can now get the rest of the constructions we want:

Theorem 9.4.14. Let V be a variety of Ω-algebras. Then V has small
colimits, objects presented by generators and relations, and free objects on
all small sets. All of these constructions can be achieved by performing the
corresponding constructions in Ω-Alg, and then imposing the identities of
V on the resulting algebras (i.e., applying the left adjoint obtained in the
preceding lemma).

Proof. The existence of these constructions in Ω-Alg was shown in Theo-
rems 9.3.8, 9.3.7 and 9.3.3. That left adjoints respect such constructions was
proved in Theorems 8.8.3, 8.7.1, and 8.3.10. ut

We note the

Corollary 9.4.15 (to proof of Lemma 9.4.13). If V ⊆W are varieties
of Ω-algebras, then the inclusion functor of V in W has a left adjoint, given
by the composite of the inclusion of W in Ω-Alg with the left adjoint of the
inclusion of V in Ω-Alg.

Proof. Given an algebra A in W, the assertion to be proved is that if we
regard A as an object of Ω-Alg and as such impose on it the identities of V,
the resulting V-algebra B will be universal as a V-algebra with a W-algebra
homomorphism of A into it. This is immediate because a W-algebra homo-
morphism A→ B is the same as an Ω-algebra homomorphism A→ B. ut

We remark that the proof of the above corollary from Lemma 9.4.13 is
not a case of Theorem 8.3.10 (on composites of left adjoints). Rather, it can
be regarded as a special case of some important results not yet discussed.
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One, which will come in the next chapter, gives general conditions for a
functor among varieties to have a left adjoint. It can also be gotten from
Lemma 9.4.13 using a result on subcategories whose inclusion functors have
left adjoints (“reflective subcategories” [19, §IV.3]).

Exercise 9.4:5. Give an example of a variety V in which the free algebra
on one generator x is also generated non-freely by some element y.

The next exercise, which leads up to an open question in part (iii), is about
the left adjoint to the inclusion functor Bool1 → CommRing1, though its
statement does not use the word “functor”.

Exercise 9.4:6. Recall that Bool1, the variety of Boolean rings, is the
subvariety of CommRing1 determined by the one additional identity
x2 − x = 0.
(i) Show that the following conditions on a commutative ring R are
equivalent: (a) R admits no homomorphism to the field Z/2Z. (b) R
admits no homomorphism to a nontrivial Boolean ring. (c) The ideal of R
generated by all elements r2 − r (r ∈ R) is all of R. (Hint: from the fact
that every commutative ring admits a homomorphism onto a field, deduce
that every Boolean ring admits a homomorphism to Z/2Z.)

Let us call a ring R satisfying the above equivalent conditions
“Boolean-trivial”.
(ii) For every positive integer n, let Tn denote the commutative ring
presented by 2n generators a0, . . . , an−1, b0, . . . , bn−1 and one relation∑
ai (b2i − bi) = 1. Show that a commutative ring R is Boolean-trivial

if and only if for some n there exists a ring homomorphism Tn → R.
Show, moreover, that there exist certain homomorphisms among the rings
Tn, which allow one to deduce that the above family of conditions forms
a chain under implication.

Ralph McKenzie (unpublished) has raised the question
(iii) Are the implications from some point on in the above chain all re-
versible?

The above question is equivalent to asking whether beyond some point
there exist homomorphisms in the “nonobvious” direction among the Tn.
This seems implausible, but to my knowledge no one has found a way to
prove that such homomorphisms do not exist, and the question is open.

For those familiar with the language of logic, what McKenzie actually
asked was whether Boolean-triviality was a first-order condition. Since, as
noted in the exercise, that condition is the disjunction of a countable chain
of first-order conditions, his question is equivalent to asking whether it is
given by one member of the chain.

His version of the question also differed from the above in that he on the
one hand restricted attention to rings R of characteristic 2, and on the other
hand did not restrict attention to commutative R. However, the general-
characteristic case is equivalent to the characteristic 2 case, since given a
ring R, one can translate a first-order sentence about R/2R into a sentence
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about R by replacing relations “x = y ” with “ (∃ z) x = y+2 z ”. Concerning
commutativity, I felt that since the expected answer is negative, and since a
negative answer in the commutative case would imply a negative answer in
the general case, and since people are more familiar with commutative rings
than with general rings, this modification of the question would be for the
better.

One can, however, raise the same question about the relation between
commutative and noncommutative rings, and it seems equally difficult to
answer:

Exercise 9.4:7. Prove results analogous to (i)(b)⇐⇒ (c) and to (ii) of the
preceding exercise with the varieties CommRing1 and Bool1 replaced
by Ring1 and CommRing1 respectively, and see whether you can make
any progress on the question analogous to (iii) for this case.

We remark that one does not have a result analogous to Exercise 9.4:6(ii)
for every pair consisting of a variety and a subvariety; e.g., Group and Ab.
What is special about the varieties of the above two exercises is that triviality
of an object is equivalent to a single relation, 0 = 1. (Another variety with
this property is Lattice0,1, the variety of lattices with greatest and least
element made into zeroary operations.)

Returning to the general theory of varieties of algebras, let us extend some
notation that we had set up for the categories Ω-Alg :

Definition 9.4.16. The free-object functor and the underlying-set functor
associated with a variety V will be denoted FV : Set→ V and UV : V →
Set. The V-algebra presented by a generating set X and relation set R will
be denoted X | R V, or X | R when there is no danger of confusion.

In presenting a V-algebra, it is often convenient to take a “relation” in
an X-tuple of variables to mean a pair of elements of FV(X) rather than of
FΩ(X). If we write q : FΩ(X)→ FV(X) for the canonical homomorphism, it
is clear that given (s, t) ∈ |FΩ(X)| × |FΩ(X)| and an X-tuple v of elements
of a V-algebra A, the elements s and t will fall together under the homo-
morphism FΩ(X)→ A determined by v if and only if q(s) and q(t) fall to-
gether under the homomorphism FV(X)→ A determined by v; so the same
condition is expressed by the original relation (s, t) ∈ |FΩ(X)| × |FΩ(X)|,
and by the induced pair (q(s), q(t)) ∈ |FV(X)| × |FV(X)|. Thus, if Y is a
subset of |FV(X)|×|FV(X)|, we will often regard X | Y V as the quotient
of FV(X) by the congruence generated by Y.

When we considered the concept of representable functors C → Set,
we noted (in the third paragraph following Definition 8.2.3) that for C =
Group, a presentation of the group representing such a functor yielded a
nice concrete description of the functor. This observation is true in arbitrary
varieties of algebras, and can be made into a characterization of representable
functors.
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Lemma 9.4.17. Let W be a variety of algebras, and U : W→ Set a func-
tor. Then the following conditions are equivalent:

(i) U is representable; i.e., there exists an object R of W such that U is
isomorphic to the functor hR = W(R, −).

(ii) There exists a set X, and a set of relations in an X-tuple of variables,
Y ⊆ |FΩ(X)|×|FΩ(X)|, such that U is isomorphic to the functor associating
to every object A of W the set {ξ ∈ |A|X | (∀ (s, t) ∈ Y ) sA(ξ) = tA(ξ)},
and to every morphism f : A → B in W the map that applies f compo-
nentwise to X-tuples of elements of |A|.

Proof. If U is represented by R, take a presentation R = X | Y W;
then U will have the form shown in (ii). Conversely, if U is as in (ii), it is
represented by the algebra with presentation X | Y W. ut

Thus, we immediately see that such functors on Group as G 7→ {x ∈
|G| | x2 = e} and G 7→ {(x, y) ∈ |G|2 | x y = y x} are representable. A
less obvious case is the “set of invertible elements” functor on monoids. If we
try to use the criterion of the above lemma, taking X to be a singleton, it
does not work, because the condition of invertibility is not an equation in x
alone. However, because inverses are unique when they exist, we see that this
construction is isomorphic to the functor S 7→ {(x, y) ∈ |S|2 | x y = e = y x},
which is of the required form.

In condition (ii) of the above lemma, X and/or Y may, of course, be
empty. If Y is empty, then U is the X-th power of the underlying-set functor
(Definition 7.8.5), and is represented by FV(X). An example with X but not
Y empty is the functor Ring1 → Set represented by Z/nZ for an integer
n. We recall that this ring is presented by the empty set of generators, and
the one relation n = 0 (where “n ” as a ring element means the n-fold sum
1+ . . . +1). This ring admits no homomorphism to a ring A unless n = 0 in
A; when A does satisfy that equation, there is a unique ring homomorphism
Z/nZ → A (namely, the additive group map taking 1Z/nZ to 1A). Thus,
hZ/nZ takes A to the empty set if the characteristic of A does not divide
n, and to a one-element set if it does. In terms of point (ii) of the above
lemma, this functor must be described as sending A to “the set of 0-tuples
of elements of A such that n = 0 ”. This sounds peculiar because the words
following “such that” do not refer to what is named in the preceding phrase;
but it is logically correct: we get the unique 0-tuple if n = 0 in A, and
nothing otherwise.

Exercise 9.4:8. Determine which of the following covariant set-valued func-
tors are representable. In each case where the answer is affirmative, give an
“X ” and “Y ” as in Lemma 9.4.17. In (i)-(v), n is a fixed integer > 1.

(i) The functor on Ring1 taking A to a singleton if n is invertible in
A, and to the empty set otherwise.

(ii) The functor on Ring1 taking A to its underlying set if n is invertible
in A, and to the empty set otherwise.
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(iii) The functor on Ab taking A to the kernel of the endomorphism
“multiplication by n ”.
(iv) The functor on Ab taking A to the image of this endomorphism.
(v) The functor on Ab taking A to the cokernel of this endomorphism.
(vi) The functor on Lattice taking A to the set of pairs (x, y) such that
x ≤ y.
(vii) For P a fixed partially ordered set, the functor on Lattice taking
A to the set of isotone maps from P to the “underlying” partially ordered
set of |A|.

We mentioned in §8.12 that it was shown in [48] that contravariant left
adjunctions among “the kind of categories of algebras we will be studying in
this course” were degenerate. We now have the language in which to state the
restriction on such functors (which will not be proved here!): If W : Vop →W
and V : Wop → V are mutually left adjoint contravariant functors between
varieties of algebras, then all objects W (A) are epimorphs of the initial object
of W (i.e., codomains of epimorphisms with the initial object as domain),
and all objects V (B) are epimorphs of the initial object of V. The next
exercise shows how to get trivial examples of such adjunctions, and then
gives an example which, though rather unnatural, is nontrivial.

Exercise 9.4:9. (i) Show that if C and D are any two categories having
initial objects, then the contravariant functors between C and D each of
which takes every object of its domain to the initial object of its codomain,
and takes all morphisms to the identity morphism of that object, are mu-
tually left adjoint.

(ii) Let n be a positive integer, and CommRing1
Z/nZ the variety of

commutative Z/nZ-algebras; equivalently, commutative rings satisfying the
identity n = 0. Show how to define a functor F : (CommRing1

Z/nZ)op →
CommRing1 such that if R has characteristic m |n, then F (R) =
Z[m−1], and verify that F has a left adjoint.
(iii) Verify that the above functor and its adjoint both take arbitrary ob-
jects to epimorphs of the initial object of their codomain categories.

9.5. Derived operations

Having identified Ω-algebra terms s with elements of free Ω-algebras
FΩ-Alg(X), our viewpoint in “evaluating” these terms has been, “a choice of
an X-tuple v of elements in an Ω-algebra A induces an evaluation homo-
morphism FΩ-Alg(X)→ A ”. But as in §2.6, we can modify which variable(s)
– the X-tuple v, the term s, or both – we foreground. We do this in the
next definition, again replacing Ω-Alg with a general variety V.
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Definition 9.5.1. Let V be a variety of algebras, X a set, and (FV(X), u)
the free V-algebra on X. For every element s ∈ |FV(X)|, every V-algebra
A, and every X-tuple v of elements of |A|, let

eval(s, A, v) ∈ |A|

denote the image of the element s under the unique homomorphism
f : FV(X) → A such that f u = v. (Intuitively, the result of substituting
into the term s the X-tuple v of elements of A.)

For fixed s and A, let us define

sA : |A|X −→ |A|

by
sA(v) = eval(s, A, v).

Then a derived X-ary operation on A will mean a map |A|X → |A| which
is equal to sA for some s ∈ |FV(X)|.

More generally, given s ∈ |FV(X)| and any full subcategory C of V
(e.g., a one-object subcategory, or all of V), if we write UC : C → Set for
the restriction to C of the underlying-set functor of V, and UXC : C→ Set
for the functor carrying an object A to the set UC(A)X (cf. Definition 7.8.5),
then sC : UXC → UC will denote the morphism between these functors C→
Set which on each object A of C acts by sA. A morphism UXC → UC

which can be written sC for some s ∈ |FV(X)| will be called a derived
X-ary operation of C.

Note that the derived operations will in particular include the primitive op-

erations sA : |A|ari(s) → |A| (respectively, sC : U
ari(s)
C → UC) induced by the

operation symbols s ∈ |Ω|, and the projection operations pX, x : |A|X → |A|
(respectively UXC → UC), induced by the free generators u(x) ∈ |FV(X)|.

Let us now follow up on some ideas that we toyed with at the end of
§3.3. Given any full subcategory C of our variety V, consider the large
set of all “generalized operations on C in an X-tuple of variables”, i.e.,
functions f associating to each object A of C a map fA : |A|X → |A| in
an arbitrary way. If we look at the set of all these generalized operations

as a direct product,
A∈Ob(C)

|A||A|X (living in the next larger universe,

since C need not be small), we see that it can be made the underlying set

of a large V-algebra, namely the product,
A∈Ob(C)

A|A|
X

; let us denote

this algebra by GenOpC(X). We are not interested in this bloated monster
for itself, but for the observation that the (still generally large) set of those
elements thereof which constitute morphisms of functors UXC → UC, i.e.,
SetC(UXC , UC), forms a subalgebra thereof. (A description of the V-algebra
structure on this hom set might have seemed unnatural without the context of
the algebra structure on GenOp(C), which is why we began with the latter.
Incidentally, when we first discussed this in §3.3, we were not sure it made
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sense to talk about large sets. Having adopted the Axiom of Universes, and
the associated interpretation of large sets, we can deal with these safely!) We
shall call this the algebra of functorial X-ary operations on C. The derived
X-ary operations of C form a subalgebra of this subalgebra:

(9.5.2) DerOpC(X) ⊆ SetC(UXC , UC) ⊆ GenOpC(X).

Note that the algebra of derived operations is quasi-small, i.e., isomorphic
to a small algebra, since it is a homomorphic image of FV(X). The image
of each generator x ∈ X will be the function carrying every X-tuple to its
x-th coordinate. Clearly, these “coordinate functions” generate DerOpC(X)
as an Ω-algebra. We can describe the resulting algebra nicely, and, under
appropriate hypotheses, the algebra of functorial operations as well:

Lemma 9.5.3. Let C be a full subcategory of a variety V, and X a (small)
set. Then the (large) algebra of derived X-ary operations on C is isomorphic
to the (small) algebra FVar(Ob(C))(X).

Moreover, if C contains the free V-algebra on X, then every functo-
rial X-ary operation on C is a derived operation; i.e., SetC(UXC , UC) =
DerOpC(X) ∼= FV(X).

In particular, if C = V, the above equality holds for all sets X.

Sketch of proof. The first assertion is straightforward, since for two terms s
and t, we have sC = tC if and only if (s, t) is an identity of every algebra
in C. To prove the second, assume C contains the free algebra FV(X),
and verify that each functorial X-ary operation on C is determined by its
value on the universal X-tuple u of elements of FV(X); equivalently, apply
Yoneda’s Lemma to the pair of functors C → Set given by UXV

∼= hFV(X)

and UV
∼= hFV(1). The final assertion clearly follows. ut

Exercise 9.5:1. Give the details of the above proof.

Exercise 9.5:2. (i) Show that if C is the full subcategory of all finite
algebras in V, then the algebra of functorial X-ary operations on C can
be described as the inverse limit of all finite factor algebras of FV(X).
(Make this statement precise.)
(ii) Show that if V = Group and C is as in (i), and X = 1, then the
group of functorial unary operations on C is uncountable. Give an explicit
example of an operation in this group that is not a derived group-theoretic
operation.
(iii) Interpret Exercise 7.9:6, especially part (ii) thereof, in terms of part (i)
above, and if you had not yet successfully done that exercise, see whether
you can make further progress on it.

In part (ii) above, the map from functorial operations on general groups to
functorial operations on finite groups failed to be surjective. There are also
situations where such maps fail to be one-to-one:
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Exercise 9.5:3. (i) Give an example of a variety V not generated by its
finite algebras. (If possible, get such an example in which the variety is
defined by finitely many operation-symbols, all of finite arities, and finitely
many identities.)
(ii) Show that the property asked for in the first sentence of (i) is equiva-
lent to saying that the restriction map from functorial operations on V to
functorial operations on the full subcategory of finite objects of V is not
one-to-one.

Since Exercise 9.5:2(ii) above shows that, though the variety of all groups
has only countably many functorial operations of any finite arity, its full
subcategory of finite groups has uncountably many such operations, one may
ask whether, for C a full subcategory of a variety V, the class of finitary
functorial operations of C need even be quasi-small!

The answer depends on one’s foundational assumptions; I will briefly sum-
marize the situation. Logicians have asked the question,

(9.5.4)
Does there exist a proper class (in our language, a non-small
set) of (small) models of some first-order theory, none of
which is embeddable in another?

The answer to (9.5.4) turns out to depend on one’s choice of universe. If
U is the smallest universe, or is a successor element in the well-ordered set
of universes, the answer is yes. The negative answer, on the other hand, is
called “Vopěnka’s principle”; the existence of a universe for which this holds is
equivalent to the existence of a cardinal with some special properties (which
force it to be enormous) but which are thought likely to be consistent with
ZFC.

Now the positive answer to (9.5.4), which, as just noted, is true in “most”
universes, is known to imply the existence of a non-small set C of small
algebras of some finitary type Ω such that there are no homomorphisms
between distinct members of C. Given such a C, let C be the full subcat-
egory of Ω-Alg with C as object-set. Then we see that the definition of a
functorial operation f on C involves no conditions relating the behavior of
f on different objects. So, for instance, for every subset B ⊆ C, there is
a functorial binary operation on C which acts as the first-coordinate func-
tion on algebras in B, and as the second-coordinate function on algebras
not in B. The set of operations so defined has cardinality 2card(C), which
is certainly not small. Thus, in “most” universes we have a class of algebras
with a non-quasi-small set of functorial binary operations. (Cf. [124], [139].)
The converse result, that in a universe where Vopěnka’s principle does hold,
the class of functorial operations on every class of algebras of a given type is
quasi-small, is obtained in [41, Theorem 10.1].

Let me end this section with some questions about operations on the real
and rational numbers which, so far as I know, are open.

Exercise 9.5:4. (Harvey Friedman)
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(i) If we make the set of real numbers an algebra under the single bi-
nary operation a(x, y) = x2 + y3, does this algebra satisfy any nontrivial
identities?
(ii) If we make the set of nonnegative real numbers an algebra under the
single binary operation c(x, y) = x1/2 +y1/3, does this algebra satisfy any
nontrivial identities?
(iii) Does there exist a derived binary operation on the ring Q of rational
numbers which is one-to-one as a map |Q| × |Q| → |Q| ?

If you cannot answer this last question, you might hand in proofs that
the answer to the corresponding question for the ring of integers is “yes”,
and for the ring of real numbers, “no”.

Another question posed by Friedman along the lines of (i) and (ii) above
was whether the group of bijective maps R→ R generated by the two maps
p(x) = x + 1 and q(x) = x3 is free on those two generators. This was
answered affirmatively in [145], with 3 replaced by any odd prime. (See [70]
for a simplified proof.) The result has subsequently been generalized to show,
essentially, that the group of maps generated by exponentiation by all positive
rational numbers and addition of all real constants is the coproduct of the two
groups generated by these two sorts of maps [69], and, in another direction
[35], to show that the group generated by exponentiation by positive rationals
with odd numerator and denominator, addition of real algebraic numbers,
and multiplication by nonzero real algebraic numbers, is the coproduct of the
group generated by the above addition and multiplication operations and the
group generated by the multiplication and exponentiation operations, with
amalgamation of the subgroup of multiplication operations. (For the meaning
and structure of a coproduct of groups with amalgamation of a common
subgroup, cf. Exercise 7.8:25(ii) and paragraph preceding that exercise.)

Another open question, somewhat similar to the above, though more a
question in number theory than general algebra, is

Exercise 9.5:5. (B. Poonen) Does there exist a polynomial f ∈ Q(x, y)
such that f(Z × Z) = N; or even such that f(Z × Z) is a subset of N
which has positive upper density (i.e., does not satisfy limn→∞ card(f(Z×
Z) ∩ n)/n = 0) ?

9.6. Characterizing varieties and equational theories

We observed at the end of §6.5 that when one obtains a Galois connection
from a relation on a pair of sets, R ⊆ S × T, the closure X∗∗ or Y ∗∗ of a
subset X ⊆ S or Y ⊆ T is constructed “from above”, namely as the set of
members of S or T that satisfy certain conditions determined by members
of the other set; and that a recurring type of mathematical question is how to
describe these closures “from below”, as all elements obtainable by starting
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with the elements of X or Y and iterating some constructions. In the case
of the Galois connection between Ω-algebras and identities, these questions
are: Given a set C of Ω-algebras, how can we construct from these algebras
all the algebras in the set C∗∗ = Ob(Var(C)) that they generate; and given
a set J of identities, how can we construct from these all members of the
equational theory J∗∗ that they generate? Answers to these questions should,
in particular, give internal criteria for when a set of algebras is a variety, and
for when a set of identities is an equational theory.

I said near the end of §6.5 that a general approach to this kind of question
is to look for operations which carry every set Y ∗ or X∗ into itself, and
having found as many as one can, to try to show that closure under these
operations (or better, under some nice subset of them) is sufficient, as well
as necessary, for a set to be closed.

Now we have shown that a variety of algebras is closed under forming
subalgebras, homomorphic images, products, and <γ1-directed direct limits.
(Closure under general limits need not be mentioned, since it is implied by
closure under products and subalgebras. On the other hand, the existence
of free objects, coproducts, etc., are not closure conditions, since these are
defined relative to the variety we are trying to construct.) The next result
shows that three of the above four closure conditions suffice to characterize
varieties.

In reading that result, recall that by Convention 9.4.5, sets C of algebras
are not assumed small.

Theorem 9.6.1 (Birkhoff’s Theorem). Let Ω be a type. Then a set of
Ω-algebras forms a variety if and only if it is closed under forming homo-
morphic images, subalgebras, and products (of small families).

In fact, if C is a set of Ω-algebras, then any object of Var(C) can be
written as a homomorphic image of a subalgebra of a product of a small set
of members of C.

Proof. Clearly, it suffices to prove the final assertion. Let V = Var(C). Then
an algebra belonging to V can be written as a homomorphic image of the
free V-algebra FV(X) for some set X, hence it suffices to show that FV(X)
can be obtained as a subalgebra of a product of objects in C. To show this,
let N ⊆ |FΩ(X)| × |FΩ(X)| denote the set of all pairs (s, t) that are not
identities of V; equivalently, which are not identities of all members of C.
For each (s, t) ∈ N, choose an X-tuple v(s, t) of elements of an algebra
A(s, t) ∈ C such that v(s, t) fails to satisfy the relation (s, t). Let P be the
product algebra

(s, t)∈NA(s, t), and let v : X → |P | be the set map with

(s, t)-component v(s, t) for each (s, t) ∈ N. It follows from its definition that
this X-tuple v satisfies none of the relations in N ; on the other hand, since
P belongs to V, it must satisfy all relations not in N. It is easily deduced
that the subalgebra F ⊆ P generated by this X-tuple is isomorphic to the
free algebra FV(X). ut
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The last sentence of Theorem 9.6.1 is often expressed in operator language:

(9.6.2) Var(C) = H S P(C).

To make this precise, let us fix a type Ω, and let LΩ denote the large lattice
of all subsets C ⊆ Ob(Ω-Alg) which are closed under going to isomorphic
algebras (i.e., satisfy T ∼= S ∈ C =⇒ T ∈ C. Thus LΩ is isomorphic to the
lattice of all subsets of the set of isomorphism classes of algebras in Ω-Alg.)
For each C ∈ |LΩ|, let us define

H(C) = { homomorphic images of algebras in C },
S(C) = { subalgebras of algebras in C },
P(C) = { products of algebras in C }.

Then (9.6.2) indeed expresses the last sentence of Theorem 9.6.1. (Except
that Var(C) should, more precisely, be Ob(Var(C)). But we will ignore
that distinction in this discussion, to give this statement the form in which
it is usually stated.)

(The restriction to classes closed under isomorphism is not assumed in
all discussions of this topic, leading to somewhat capricious behavior of the
above operators: For C a class of algebras not necessarily closed under iso-
morphism, H(C) is nevertheless closed under going to isomorphic algebras,
by the definition of “homomorphic image”, though it loses this property if
the definition of this operator is changed to “quotients of members of C by
congruences”. On the other hand, S(C) is not generally closed under go-
ing to isomorphic algebras if C is not, but it acquires that property if one
changes the criterion to “algebras embeddable in members of C ”. Whether
P(C) is closed under isomorphism depends on whether one defines “prod-
uct” to mean “any object which can be given a family of ‘projection’ maps
having the appropriate universal property”, as we have done here, or as the
“standard” set-theoretic product, whose underlying set consists of tuples of
elements of the given algebras. Since these distinctions are irrelevant to the
algebraic questions involved, it seems best to eliminate them by restricting
attention to isomorphism-closed classes. These are called “abstract classes”
by some authors, though I do not favor that term. Incidentally, while dis-
cussing this topic, we will, obviously, temporarily set aside our habit of using
P for “power set”.)

In view of (9.6.2), it is natural to examine the monoid of operators on |LΩ|
generated by H, S and P. We see from (9.6.2) that the product H S P acts
as a closure operator, and hence is idempotent: (H S P)2 = H S P. From
this we can deduce further equalities, e.g., S H S P = H S P. This deduction
is clear when we think of H, S and P as closure operators; to abstract
the argument, let Z denote the monoid of all operators A : |LΩ| → |LΩ|
satisfying

(a) (∀C ∈ |LΩ|) A(C) ⊇ C (A is increasing),
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(b) (∀C, D ∈ |LΩ|) C ⊇ D =⇒ A(C) ⊇ A(D) (A is isotone).

This monoid Z can be partially ordered by writing A ≥ B if and only if for
all C, A(C) ⊇ B(C). By (a), all elements of Z are ≥ the identity operator,
which we shall denote I; we see from (b) that B ≥ C =⇒ AB ≥ AC,
and we see from the definition of ≥ that B ≥ C =⇒ BA ≥ CA. Hence
knowing only that H,S,P ∈ Z, we can say that (HSP)2 ≥ SHSP ≥ HSP;
hence, as claimed, the equality (HSP)2 = HSP implies SHSP = HSP.

Having illustrated how to calculate with these operators, we invite
the reader to combine these methods with considerations of structures of
Ω-algebras in

Exercise 9.6:1. Describe explicitly the partially ordered monoid generated
by the operators H, S and P on classes of Ω-algebras for general Ω;
i.e., determine the distinct products of these operators, their composition,
and the order-relations among them. Are there finitely or infinitely many
distinct operators? Which such operators are idempotent?

(When I say “for general Ω ”, I mean that a relation ≤ or = should
be considered to hold if and only if it holds for all Ω. Special cases will be
looked at in the next exercise.)

The above is a large task, but an interesting one. To carry it out fully,
you need counterexamples showing that each equality or inclusion that you
do not assert actually fails to hold for some set of algebras. However, a coun-
terexample to one relation often turns out to be a counterexample to several,
so the task is not unreasonably difficult.

There are numerous modifications of this problem. For example.

Exercise 9.6:2. Suppose we restrict the operators H, S, P to classes of
algebras in a particular variety V; then some additional inclusions and
equalities may occur among the composites of these restricted operators.
Investigate the partially ordered monoids of operators obtained when V
is Set, respectively Group, respectively Ab. You may add to this list.

One could enlarge the set of operators considered above, introducing, for
instance, E = { equalizers } (i.e., E(C) = the set of equalizers of pairs of
homomorphisms among algebras of C; thus, E ≤ S), Pfin = { products of
finite families }, and L = { direct limits of directed systems }. (In considering
these last two, we should restrict attention to finitary algebras, or else replace
“finite families” and “directed systems” by “families of < γ1 objects” and
“<γ1-directed systems” for γ1 as in the preceding section.) Results on the
structure of the monoid generated by any subset of {H, S, P, E, Pfin, L},
or any other such family of natural operators, can be turned in as homework,
but I will merely pose as an exercise the questions

Exercise 9.6:3. Can one in general strengthen (9.6.2) to
(i) Var(C) = HEP(C) ?
(ii) Var(C) = HSPfin(C) ?
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Exercise 9.6:4. Since every variety of Ω-algebras is closed under <γ1-di-
rected direct limits, it is natural to ask whether such direct limits can be
obtained using the operators H, S, P in a more direct way than by
calling on Birkhoff’s theorem. They can, as sketched in
(i) Given a <γ1-directed system (Ai, (fi,j)i,j∈I) of Ω-algebras, obtain
the direct limit of the Ai by roughly the following construction, filling
in or fixing details where necessary: Within

i
Ai, call an element (ai)

“acceptable” if the relations fij(ai) = aj hold “eventually”, i.e., for all
“sufficiently large” i and j, in an appropriate sense. Define an equivalence
relation on acceptable elements, making two such elements equivalent if
their components are “eventually” equal. Verify that using these ideas,
one can express the direct limit of the Ai as a homomorphic image of a
subalgebra of a product of the Ai. (Check that your proof handles the case
where some of the Ai are empty algebras, and that it actually uses the
<γ1-directedness condition. If it fails either of these tests, it needs some
tweaking.)

Though the emphasis of this course is on varieties of algebras, general
algebra also studies classes of algebras more general than varieties (e.g., the
class of torsion-free groups). For this, it is useful to have a version of the
above result that obtains the direct limit using more restricted operators,
which such classes may be closed under even if they are not closed under
the full operators H, S and P. Hence
(ii) Show in fact that a class of Ω-algebras will be closed under <γ1-di-
rected direct limits if it is closed under products, under taking equalizers (a
subclass of the subalgebras), and under taking direct limits of <γ1-directed
systems with surjective maps, and that this last condition is strictly weaker
than closure under homomorphic images.

The next part shows that the above version of our result covers some
cases that one may want to look at, but not all:
(iii) Verify that the class of torsion-free groups is closed under the oper-
ations of (ii) above. On the other hand, show that the class of integral
domains (commutative rings without zero-divisors) is not closed under all
those operations, but is nevertheless closed under direct limits.

The proof of Birkhoff’s Theorem leads us to examine the class of Ω-algebras
that are free in some variety.

Proposition 9.6.3. Let Ω be a type, F an Ω-algebra, X a set, and u
an X-tuple of elements of |F |. Then the following conditions are equiva-
lent:

(i) (F, u) is a free algebra on the set X in some variety V of Ω-algebras.

(ii) (F, u) is a free algebra on the set X in the variety generated by F.

(iii) F is generated by the set u(X), and there exists some full subcategory
C of Ω-Alg containing F such that (F, u) is free in C on the set X.

(iv) F is generated by the set u(X), and for every set map v : X → |F |,
there exists an endomorphism e of F such that v = eu. (If we assume u is
an inclusion map, this latter condition can be stated, “Every map of X into
|F | extends to an endomorphism of F. ”)
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(v) F is isomorphic to the quotient of FΩ(X) by a congruence E which is
carried into itself by every endomorphism f of FΩ(X) (i.e., which for every
such f satisfies (s, t) ∈ |E| =⇒ (f(s), f(t)) ∈ E); and u is the composite
of universal maps X → |FΩ(X)| → |FΩ(X)/E| ∼= |F |.

Proof. We have (i) =⇒ (ii) because a free algebra in a given concrete cat-
egory is easily seen to remain free in any full subcategory which contains
it; (ii) =⇒ (iii) is immediate. The universal property of a free object gives
(iii) =⇒ (iv). To see (iv) =⇒ (v), identify F with the quotient of FΩ(X)
by the congruence E consisting of all relations satisfied by the X-tuple u.
Then if f is an endomorphism of FΩ(X), (iv) implies that f induces an
endomorphism e of F = FΩ(X)/E, which can be seen to be equivalent to
the condition that E is carried into itself by f, which is the assertion of (v).

Finally, given (v) we claim that the relations satisfied by u are satisfied by
every X-tuple v of elements of F. Indeed, since F is a homomorphic image
of FΩ(X), every X-tuple v of elements of F is the image of some X-tuple
w of elements of FΩ(X); and by the universal property of FΩ(X), w is
the image of the free generating set of FΩ(X) under some endomorphism f
of FΩ(X). By assumption, the congruence E is preserved under f ; hence
every relation satisfied in F by the X-tuple u is satisfied by every X-tuple v
of elements of F ; i.e., is an identity of Var({F}). Conversely the identities
of Var({F}) are necessarily satisfied by u. Hence F, being generated by
an X-tuple u which satisfies precisely those relations which are identities of
Var({F}) in an X-tuple of variables, is the free Var({F})-algebra on X,
proving (i). ut

Exercise 9.6:5. Suppose V = Monoid and C is the class of monoids all
of whose elements are invertible.
(i) Show that C has free algebras (i.e., that its underlying-set functor
has a left adjoint), but that these are not the free algebras of Var(C).
(ii) Show using this example that if we remove from conditions (iii)
and (iv) of Proposition 9.6.3 the requirement that F be generated by
the image of X, these conditions no longer imply condition (i).

From Proposition 9.6.3 we can deduce the corresponding result with
Ω-Alg replaced by an arbitrary variety V. In particular, we record

Proposition 9.6.4. Let V be a variety. Then

(i) If X is a set and u an X-tuple of elements of an object F of V,
then (F, u) is a free algebra in a subvariety W of V if and only if F
is isomorphic to a quotient of the free V-algebra FV(X) by a congruence
invariant under all endomorphisms of FV(X), and u is the composite of
the universal map X → FV(X) with the factor map FV(X)→ F.

(ii) If γ0 is an infinite cardinal greater than or equal to the arities of all
operations of Ω, then the subvarieties of V are in bijective correspondence
with congruences on FV(γ0) which are invariant under all endomorphisms of
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this algebra, each subvariety W corresponding to the congruence determined
by the natural map FV(γ0) → FW(γ0), and each endomorphism-invariant
congruence E corresponding to the subvariety generated by FV(γ0)/E. ut

Point (ii) above, in the case where V = Ω-Alg, solves the problem of
characterizing equational theories (Definition 9.4.6):

Theorem 9.6.5. Let Ω be a type, and γ0 an infinite cardinal greater than
or equal to the arities of all operations of V. Then a subset J ⊆ |FΩ(γ0)| ×
|FΩ(γ0)| is an equational theory if and only if it is a congruence on FΩ(γ0)
which is carried into itself by all endomorphisms of FΩ(γ0); in other words,
if and only if it satisfies the following five conditions for all s, t, v, etc. in
|FΩ(γ0)| and σ ∈ |Ω|. (In (d) and (e), σFΩ(γ0), sFΩ(γ0) and tFΩ(γ0) denote
the derived operations on FΩ(γ0) induced by σ, s and t.)

(a) (s, s) ∈ J.
(b) (s, t) ∈ J =⇒ (t, s) ∈ J.
(c) (s, t) ∈ J, (t, v) ∈ J =⇒ (s, v) ∈ J.
(d) (ti, vi)i∈ari(σ) ∈ Jari(σ) =⇒ (σFΩ(γ0)(ti), σFΩ(γ0)(vi)) ∈ J.
(e) (s, t) ∈ J, (vi)i∈γ0

∈ |FΩ(γ0)|γ0 =⇒ (sFΩ(γ0)(vi), tFΩ(γ0)(vi)) ∈ J.

Proof. (a)-(c) express the statement that J is an equivalence relation,
and (d) says that the operations of FΩ(γ0) respect this relation, i.e., that
it is a congruence. Condition (e) expresses the fact that this congruence is
preserved by all endomorphisms of FΩ(γ0), since every such endomorphism
is determined by the γ0-tuple (vi) to which it takes the universal γ0-tuple of
elements of FΩ(γ0). ut

Definition 9.6.6. A pair (F, u) satisfying the equivalent conditions of
Proposition 9.6.3 (in particular, condition (i)) is called a relatively free
Ω-algebra.

If V is any subvariety of Ω-Alg and F is any relatively free algebra
in V (equivalently, if F satisfies Proposition 9.6.4(i) with some subvariety
W ⊆ V in place of the V of that statement), then (F, u) can also be called
a relatively free V-algebra.

By Lemma 9.4.2 an algebra relatively free on γ0 generators uniquely de-
termines the corresponding variety. But a relatively free algebra (F, u) on
an α-tuple of generators for α < γ0 may be free in more than one va-
riety; for example, the free group on one generator is also a free abelian
group on one generator. The variety Var({F}) used in the proof of Propo-
sition 9.6.3 (v) =⇒ (i) will clearly be the smallest variety in which (F, u) is
free. The largest such variety is the variety defined by the identities in α vari-
ables satisfied by F ; equivalently, by the relations satisfied by the universal
α-tuple u in F, regarded as identities. The details, and some examples, are
indicated in
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Exercise 9.6:6. (i) Let V be a variety, and suppose F ∈ Ob(V) is rela-
tively free on an α-tuple u of indeterminates. Show that (F, u) is a free
algebra in precisely those subvarieties U ⊆ V which contain the variety
Var(F ) (defined by all identities satisfied in F ), and are contained in the
subvariety of V defined by the identities in ≤ α variables holding in F.
(ii) For V = Group, α = 1, and (F, u) the infinite cyclic group Z =
x , with u selecting x as free generator, characterize group-theoretically

those subvarieties of V in which (F, u) is free.
(iii) Show that if again V = Group, but we now take α = 2, and for
(F, u) either the free group on 2 generators or the free abelian group on
2 generators, then in each case, the greatest and least subvarieties of V
in which this group is free coincide.
(iv) Are there any relatively free groups (F, u) on 2 generators such
that the greatest and least varieties of groups in which (F, u) is free are
distinct?
(v) If Ω is the type of groups, and (F, u) is either the free group on
2 generators or the free abelian group on 2 generators, show that the
greatest and the least varieties of Ω-algebras in which (F, u) is free do not
coincide, but that if (F, u) is the free group or free abelian group on 3
generators, they again coincide.

Here are some exercises on subvarieties of familiar varieties.

Exercise 9.6:7. (If you do both parts, give the proof of one in detail, and
for the other only give details where the proofs differ.)
(i) Let G be a group, and G-Set the variety of all G-sets. Show that
subvarieties of G-Set other than the least subvariety (characterized in Re-
mark 9.4.7) are in one-to-one correspondence with the normal subgroups N
of G, in such a way that the subvariety corresponding to N is equivalent
to the variety (G/N)-Set, by an equivalence which respects underlying
sets.
(ii) Prove the analogous result for subvarieties of R-Mod, where R is
an arbitrary ring. (In that case, the least subvariety is not an exceptional
case.)

Exercise 9.6:8. (i) Let CommRing1 denote the category of commuta-
tive rings. Show that if V is a proper subvariety of CommRing1 gener-
ated by an infinite integral domain, then V is the variety Vp determined
by the 0-variable identity p = 0 for some prime p, where the symbol “ p ”
in this identity is an abbreviation for 1 + 1 + · · ·+ 1 with p summands.

(ii) Show that the subvariety Bool1 ⊆ CommRing1 is a proper subva-
riety of the variety V2 defined as in (i).

Exercise 9.6:9. Let F = FRing1(ω), the free associative (noncommutative)
ring on indeterminates x0, x1, . . . . For each positive integer n, let

Sn =
∑
π (−1)π xπ(0) . . . xπ(n−1) ∈ |F |,

where π ranges over the permutations on n elements, and (−1)π denotes
+1 if π is an even permutation, −1 if π is odd.
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(i) Show that any ring satisfying Sn = 0 also satisfies Sn′ = 0 for
all n′ ≥ n; i.e., that (Sn′ , 0) ∈ {(Sn, 0)}∗∗ under the Galois connection
introduced at the beginning of this section.
(ii) Show that for every d > 0 there exists n > 0 such that for every
commutative ring k, the ring Md(k) of d × d matrices over k satisfies
the identity Sn = 0.
(iii) Show that for every n > 0 there exists d > 0 such that Md(k) does
not satisfy Sn = 0 for any nontrivial commutative ring k.
(iv) Deduce that there is an infinite chain of distinct varieties of rings of
the form V({(Sn, 0)}), and an infinite chain of distinct varieties of rings of
the form Var({Md(Z)}). (In these symbols, the expressions in set-brackets
denote singletons.)

Note on the above exercise: The least n such that all d× d matrix rings
Md(k) over commutative rings k satisfy Sn = 0 is 2d. The hard part of
this result, namely that Md(k) satisfies S2d = 0, is known as the Amitsur-
Levitzki Theorem [38]. All known proofs are either messy (e.g., by graph
theory [135]) or tricky (e.g., using exterior algebras [128]). The reader is
invited to attempt to find a new proof! Part (ii) of the above exercise can be
done relatively easily, however, using a larger-than-optimal n.

The study of subvarieties of Ring1 is called the theory of rings with
polynomial identity, affectionately known as PI rings. See [129, Chapter 6]
for an introduction to this subject.

Here is a curious variety closely related to the variety of groups.

Exercise 9.6:10. Let Ω be the type defined by a single ternary (i.e.,
“3-ary”) operation-symbol, τ. Let H : Group → Ω-Alg be the functor
taking a group G to the Ω-algebra with underlying set |G| and operation

(9.6.7) τ(x, y, z) = x y−1z.

(i) Show that the objects H(G) are the nonempty algebras in a certain
subvariety of Ω-Alg, and give a set J of identities defining this variety.

The algebras (empty and nonempty) in this variety are called heaps,
so let us call the variety Heap.
(ii) Show that for groups G and G′, one has

H(G) ∼= H(G′) in Heap ⇐⇒ G ∼= G′ in Group.

(iii) Show, however, that not every isomorphism between H(G) and
H(G′) has the form H(i) for i an isomorphism between G and G′ !
(iv) Show that the following categories are equivalent: (a) Group, (b) the
variety of algebras (|A|, τ, ι) where (|A|, τ) is a heap, and ι is a zeroary
operation, subject to no further identities (intuitively, “heaps with distin-
guished elements ι ”), (c) Heappt, where the construction Cpt is defined
as in Exercise 7.8:4.
(v) Show that if X, Y are two objects of any category C, then the set
of isomorphisms X → Y forms a heap under the operation τ(x, y, z) =
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x y−1z. How is the structure of this heap related to those of the groups
Aut(X) and Aut(Y ) ?

The concept of heap is not very well known, and many mathematicians
have from time to time rediscovered it and given it other names (myself in-
cluded). Heaps were apparently first studied by Prüfer [125] and Baer [40],
under the name Schar meaning “crowd” or “flock”, a humorous way of saying
“something like a group”. The term was rendered into Russian by Suškevič
[134] as Γpy a, meaning “heap”, which gave both a loose approximation of the
meaning of Schar and a play on the sounds of the Russian words: “group” =
gruppa, “heap” = gruda. Since the concept and its generalizations have got-
ten most attention in Russian-language works, it has come back into Western
European languages via translations of this Russian term rather than of the
original German. (Incidentally, there is an unrelated notion with the name
“heap” in the theory of data structures [146, p. 72].)

Part (ii) of the above exercise shows that there is no need for a separate
theory of the structure of heaps; this is essentially contained in that of groups.
However, the variety of heaps is both a taking-off point for various general-
izations (“semiheaps” etc.), and a source of examples in general algebra and
category theory.

Part (iv) of the preceding exercise suggests

Exercise 9.6:11. (i) For what varieties V is it true that the category
Vpt can be identified with the variety gotten by adding to V one zeroary
operation, and no additional identities?
(ii) What varieties V satisfy the conditions (a)-(d) of Exercise 7.8:3?
(Note that for varieties these conditions are all equivalent, by the last part
of that exercise.)

The above two questions have fairly straightforward answers. But I
don’t know an elegant answer to the next one. We have just seen that
Group is an example to which it applies.
(iii) Which varieties V can be obtained from some variety W by adjoin-
ing one zeroary operation and no identities?

Let us remark that in stretching the concept of “variety” from its classical
definition as a class of algebras defined by identities to our present category-
theoretic use, we have pulled it over a lot of ground, so that care is needed
in using the term. For example, when should we think of two varieties as
being “essentially the same”? If they are precisely equal? If we can establish a
bijection between their types such that they are defined by the corresponding
identities? If they are equivalent as categories? If there is a category-theoretic
equivalence which also respects the underlying-set functors of the varieties?

There is no right answer, but these four conditions are all inequivalent.

Exercise 9.6:12. What implications exist among the above four conditions
on a pair of varieties? Give examples showing that no two of those condi-
tions are equivalent.
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9.7. Lie algebras

Let me digress here to introduce a variety important in algebra, geometry, and
differential equations, that of Lie algebras. I have referred to these in previous
chapters in a few comments “for the reader familiar with the concept”. The
reader who prefers to remain unfamiliar with it for the time being may skip
this section, and perhaps come back later on. In subsequent sections, Lie
algebras will be again be referred to only in occasional exercises and remarks.

To motivate the definition, consider an associative algebra A over a field
(or more generally, over a commutative ring) k, and suppose we look at the
underlying set of A together with the operations that make it a k-vector-
space (or k-module), and the commutator bracket operation,

(9.7.1) [x, y] = x y − y x.

These operations obviously satisfy the identities saying

(9.7.2)
+, −, 0 and the scalar multiplications by members of k make
|A| a k-module, and [−, −] is a k-bilinear operation with re-
spect to this k-module structure.

There is a further obvious identity satisfied by [−, −], and another that,
though not so obvious, is straightforward to verify:

(9.7.3) [x, x] = 0 (alternating identity),

(9.7.4) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Note that if in (9.7.3) we substitute x+ y for x, apply (9.7.2) to expand
the result as a sum of four terms, and then apply (9.7.3) again to drop the
summands [x, x] and [y, y], we get

(9.7.5) [x, y] + [y, x] = 0 (anticommutativity).

(If 2 is invertible in k, then, still assuming (9.7.2), we also have the converse
implication, (9.7.5) =⇒ (9.7.3), as can be seen by setting y = x in (9.7.5);
so (9.7.5) and (9.7.3) become equivalent.)

The straightforward way of verifying (9.7.4) for the operation (9.7.1) is
to expand the left-hand side of (9.7.4) using (9.7.1). One gets 12 terms, and
applying associativity one finds that they all cancel. But the following al-
ternative verification gives some useful insight. Recall that a derivation on a
k-algebra (associative or not) means a k-linear map D satisfying the identity

(9.7.6) D(y z) = D(y) z + y D(z).
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Now it is easy to check that if x is any element of an associative k-algebra
A, then the operation [x, −] is a derivation on A; that is, for all y and z,

(9.7.7) [x, y z] = [x, y] z + y [x, z].

A map that is a derivation with respect to a given multiplication is also
a derivation with respect to the opposite multiplication, y ∗ z = z y. Sub-
tracting the opposite multiplication from the original multiplication gives the
commutator map (9.7.1); so by (9.7.7) [x, −] also acts as a derivation with
respect to that map; i.e., we have

(9.7.8) [x, [y, z]] = [[x, y], z] + [y, [x, z]].

We can use anticommutativity to rearrange this identity so that the bracket
arrangement of the second term, like that of the other two, becomes
[−, [−, −]], and so that the last term has the same cyclic order of x, y
and z as the first two terms. Bringing all three terms to the same side, we
find that the above formula becomes precisely (9.7.4). Thus, the Jacobi iden-
tity (9.7.4) is equivalent to the condition (9.7.8), saying that for each element
x, the unary operation [x, −] is a derivation with respect to the commutator
bracket operation.

Definition 9.7.9. Let k be a commutative ring (often assumed a field).
Then a Lie algebra over k means a set |A| given with operations +, −,
0, and also a set of unary “scalar multiplication” operations corresponding
to the elements of k, and a binary operation [−, −], which together satisfy
(9.7.2)-(9.7.4). (In brief, a k-module given with a k-bilinear operation [−, −]
which is alternating and satisfies the Jacobi identity.) The variety of Lie
algebras over k will be denoted Liek.

For L a Lie algebra and x an element of L, the map [x, −] : |L| → |L|
is often denoted adx. (This stands for “adjoint”, but for obvious reasons we
will not call it by that name in these notes.)

In view of the way (9.7.2)-(9.7.4) arose above, we see that if we write
Ring1

k for the category of associative k-algebras, we have a functor

B : Ring1
k −→ Liek

taking each associative k-algebra A to the Lie algebra with the same under-
lying k-module, and with bracket operation given by the commutator bracket
(9.7.1).

It is not hard to verify

Exercise 9.7:1. Show that B has a left adjoint

E : Liek −→ Ring1
k.

This is called the universal enveloping algebra construction.
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When L is free as a k-module (as is automatic if k is a field), the alge-
bra E(L) has an elegant normal form, given by the Poincaré-Birkhoff-Witt
Theorem ([95, §V.2], [45, §3]) from which one easily sees that for such L,
the map giving the unit of the above adjunction, η(L) : L → B(E(L)), is
one-to-one. Thus, every Lie algebra over a field can be “embedded in” an
associative algebra. An important consequence is

Exercise 9.7:2. Suppose k is a field.
(i) Assuming, as asserted above, that for all Lie algebras L, the map
η(L) is one-to-one, show that the Lie algebras of the form B(A), as A
ranges over all associative k-algebras, generate the variety Liek.
(ii) Deduce that every identity satisfied by the k-module structure and the
derived operation [−, −] in all associative k-algebras A is a consequence
of the identities (9.7.2)-(9.7.4).
(iii) Assuming the above results, describe how one can use the normal form
for free associative k-algebras found in §4.12 to test whether two terms in
the Lie operations and an X-tuple of generator-symbols represent the same
element of the free Lie algebra FLiek(X).

(This is not quite the same as having a normal form in FLiek(X), but it
is useful in many of the same ways. Normal forms for FLiek(X) are known,
but they are messy. Incidentally, the result that η(L) : L → B(E(L)) is
one-to-one is actually known to hold for a much wider class of Lie algebras
than those that are free as k-modules; but there are also examples for which
it fails; see [71].)

If R is any k-algebra (which for the moment we do not assume associative
or Lie), and H(R) is the associative k-algebra of all k-linear maps (i.e.,
k-module homomorphisms) R → R, then it is easy to verify that if s, t ∈
H(R) are both derivations of R (i.e., satisfy (9.7.6)), then s t− t s is also a
derivation. Thus, the k-derivations on R form a Lie subalgebra Derk(R) ⊆
B(H(R)); we will write this Der(R) when there is no danger of ambiguity.

For R a Lie algebra or an associative algebra, a derivation of the form
adx = [x, −] is called an inner derivation. (Here in the Lie algebra case, [ , ]
denotes the Lie bracket of R, while in the associative algebra case, it denotes
the operation (9.7.1).)

Exercise 9.7:3. Let R be a not necessarily associative k-algebra, with mul-
tiplication denoted ∗, and for x ∈ |R| let Adx : |R| → |R| denote the
map y 7→ x ∗ y − y ∗ x. (Thus if R is associative, Adx coincides with the
operation adx of the Lie algebra B(R), while if R is a Lie algebra, so
that ∗ denotes [−, −], Adx will be 2 adx.)

Write down the identity that R must satisfy for all of the maps Adx to
be derivations. Show that if R is anticommutative (satisfies x∗y+y∗x = 0)
and 2 is invertible in k, this identity is equivalent to the Jacobi identity
x ∗ (y ∗ z) + y ∗ (z ∗ x) + z ∗ (x ∗ y) = 0, but that in general (in particular,
if R is associative) it is not.

In terms of the “ ad ” notation, we can get yet another interpretation of
the Jacobi identity. It is not hard to check that (9.7.8) is equivalent to
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(9.7.10) ad[y, z] = ady adz − adz ady.

Thus the Jacobi identity also tells us that ad : L → Der(L) is a homomor-
phism of Lie algebras.

If R is a commutative algebra, we see that the Lie algebra B(R) has triv-
ial bracket operation. However, even for such R, the associative k-algebra of
k-module endomorphisms of R is in general noncommutative, hence the Lie
algebra Der(R), a sub-Lie-algebra thereof, can have nonzero bracket oper-
ation; and indeed, such Lie algebras Der(R) are important in commutative
ring theory and differential geometry.

For example, let us take for k the field R of real numbers, and for R the
commutative R-algebra of all C∞ (i.e., infinitely differentiable) real-valued
functions on Rn, for some positive integer n. The next exercise will show
that the derivations on R are precisely the left R-linear combinations of the
n derivations ∂/∂x0, . . . , ∂/∂xn−1. Geometers identify the derivation

(9.7.11) D =
∑
ai(x) ∂/∂xi (ai(x) ∈ R)

with the C∞ vector field

(9.7.12) a(x) = (a0(x), . . . , an−1(x)),

because for f ∈ R, D(f) gives, at each point p, the rate of change of f
that would be seen by a particle at p moving with velocity a(p). In this way
they make the space of such vector fields into a Lie algebra; more generally,
they do this with the vector fields on any C∞ manifold.

Exercise 9.7:4. Let R be the ring of C∞ functions on Rn, and D : R→ R
any R-linear derivation. For i = 0, . . . , n−1, let ai = D(xi) ∈ R, where
xi ∈ R denotes the i-th projection map Rn → R. You will show below
that D is given by (9.7.11); in other words, that for all f ∈ R and p ∈ Rn,

(9.7.13) D(f)(p) =
∑
ai(p)(∂f/∂xi)(p).

The plan of the proof is to verify that for each f ∈ R, f(x) can
be written near p as f(p) +

∑
(∂f/∂xi)(p) (xi − pi) plus a second order

remainder term ((9.7.14) below). You will also show that D takes such a
remainder term to a function that is 0 at p. Hence, when one applies D
to the resulting expression for f and evaluates at p, one gets (9.7.11).

We begin with two easy general facts.
(i) Show that if R is a k-algebra with multiplicative neutral element 1,
then any k-linear derivation on R has k in its kernel (where by k, I here
mean k 1R ⊆ R).
(ii) Show that if I is an ideal of a commutative ring R, and we write
I2 for the ideal spanned by {gh | g, h ∈ I}, then for any derivation
D : R→ R, we have D(I2) ⊆ I.

Now let R, D, f and p be as in the first two paragraphs above, and
let Ip = {a ∈ R | a(p) = 0}, an ideal of R. The next step will show that



406 9 Varieties of algebras

(9.7.14) f(x) = f(p) +
∑

(∂f/∂xi)(p)(xi − pi) + term in I2
p .

(iii) For any point x ∈ Rn, evaluate f(x)−f(p) by the Fundamental The-
orem of Calculus, applied along the line-segment from p to x parametrized
by t ∈ [0, 1]. From the summand of this integral involving each operator
∂/∂xi, extract a factor xi − pi. Show that the integral remaining as the
coefficient of xi − pi is, as a function of x, a member of R whose value
at p is (∂f/∂xi)(p); i.e., that the integral equals this constant plus a
member of Ip. (In showing that these functions are C∞, you can use the
fact that if g(x0, . . . , xn−1, t) is a C∞ function of n+ 1 variables, then∫ 1

0
g(x0, . . . , xn−1, t) d t is a C∞ function of n variables.)

(iv) Complete the proof of (9.7.11).
(v) Conclude that the Lie algebra of R-derivations on R is free as an
R-module on the basis {∂/∂x0, . . . , ∂/∂xn−1}.

An analogous purely algebraic construction is to start with any commuta-
tive ring k, think of the polynomial ring R = k[x1, . . . , xn] as “functions on
affine n-space over k, ” and think of its Lie algebra of derivations as “polyno-
mial vector fields”. These are easily shown (e.g., by calculation on monomials)
to have the form

∑
ai(x) ∂/∂xi, where the derivations ∂/∂xi are this time

the operations of formal partial differentiation, and again ai(x) ∈ R.
It turns out that for each n, the Lie algebra of vector fields on

n-dimensional space, in either the geometric or algebraic sense, satisfies some
additional identities beyond those satisfied by all Lie algebras. The case n = 1
is examined in the next exercise.

Exercise 9.7:5. (i) Let C∞(R1) denote the ring of C∞ functions on
the real line R1, and consider the Lie algebra of vector fields L(R1) =
{f d/d x | f ∈ C∞(R1)}. Verify that the Lie bracket operation on L(R1)
is given by the formula

[f d/dx, g d/dx] = (f g′ − g f ′) d/dx.

For notational convenience, let us regard this as a Lie algebra structure on
|C∞(R1)| :

[f, g] = f g′ − g f ′.

We shall continue to denote this Lie algebra L(R1).

(ii) Show that L(R1) does not generate LieR. (You will want to find an
identity satisfied in L(R1), but not in all Lie algebras. To see how to prove
the latter property, cf. Exercise 9.7:2(iii).)

The above result requires some computational dirty-work. On the other
hand, even if you do not do that part, a little ingenuity will allow you to
do the remaining parts.
(iii) Show that for every positive integer n, L(R1) contains a subalgebra
which is free on n generators in Var(L(R1)).

(iv) Show that Var(Der(R[x])) = Var(L(R1)), i.e., that polynomial vec-
tor fields satisfy no identities not satisfied by C∞ vector fields. However,
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show that in contrast to (iii), Der(R[x]) does not contain a subalgebra
which is free on more than one generator in this variety.

You can carry the idea of part (ii) farther if you are interested, letting n
be a positive integer and looking at the variety generated by the Lie algebra
L(Rn) of C∞ vector fields on Rn, and possibly various subalgebras, such
as the subalgebra of vector fields with zero divergence (in the sense defined
in multivariable calculus).

One of the most important interpretations of Lie algebras lies outside the
scope of this course, and I will only sketch it: the connection with Lie groups.

A Lie group is a topological group G whose underlying topological space
is a finite-dimensional manifold. Typical examples are the rotation group of
real 3-space, which is a 3-dimensional compact Lie group, and the group
of motions of 3-space generated by rotations and translations, which is
6-dimensional and noncompact. Some degenerate but important examples
are the additive group of the real line, which is 1-dimensional; its compact
homomorphic image, the circle group R/Z, and finally, the discrete groups,
which are the zero-dimensional Lie groups. It is known that every Lie group
admits a unique C∞ structure, in fact, an analytic structure, respected by
the group operations, [118, §4.10]. (Once this is known, one can choose to
define a Lie group as an analytic space with a group structure defined by an-
alytic operations. The authors of [118] make this choice; so the result cited,
as they express it, is that “Every locally Euclidean topological group is a Lie
group”.)

If G is a Lie group, e its identity element, and Te the tangent space
to G at e, then every tangent vector t ∈ Te extends by left translation
to a left-translation-invariant vector field on G. Hence the space of left-
invariant vector fields may be identified in a natural manner with Te. The
commutator bracket of two left-invariant vector fields is left-invariant, so such
vector fields form a Lie algebra; hence the above identification gives us a Lie
algebra structure on Te.

Here is another way of arriving at the same Lie algebra. Let us think of
the additive structure of Te as the “first order approximation to the group
structure of G in the neighborhood of e. ” This approximation is abelian,
which corresponds to the fact that the commutator of two elements of G
both of which are close to e deviates from e only “to second order”. To
measure the second-order noncommutativity of G near the identity, let us
identify a neighborhood of 0 ∈ Te with a neighborhood of e ∈ G in a C∞

manner, and on this identified neighborhood use vector-space notation for
the operations of Te, and ◦ for the multiplication of G. Then for x, y ∈ Te
and real variables s and t, that second-order noncommutativity is measured
by the limit

lim
s, t→ 0

(s x) ◦ (t y)− (t y) ◦ (s x)

s t
.

This limit turns out to exist for all x, y ∈ Te; and writing its value as
[x, y] ∈ Te, one finds that this operation on Te coincides with the operation
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constructed above using left invariant vector fields. One can discover the
identities (9.7.2)-(9.7.4) (with R for k) directly by examining the properties
of the above limit; this gives another standard motivation of the concept of
Lie algebra. (In proving (9.7.4), the group identity of Exercise 3.4:2(ii) can
be useful.) Elements of this Lie algebra are thus often viewed heuristically as
“infinitesimal” elements of the Lie group G.

For a familiar case, let G be the rotation group of Euclidean 3-space, so
that elements of G represent rotations of space through various angles about
various axes. Then elements of its Lie algebra L, heuristically, rotations
differing infinitesimally from the identity, correspond to angular velocities
about various axes. As a vector space, L may be identified with R3, each
x ∈ L being described by a vector pointing along the axis of rotation, with
magnitude equal to the angular velocity. The Lie bracket on L is an operation
on R3 known to all math, physics, and engineering students: the “cross
product” of vectors.

It can be shown that the structure of a Lie group G is determined “near
e ” by its Lie algebra: two Lie groups with isomorphic Lie algebras have
neighborhoods of the identity which are isomorphic under the restrictions of
the group operations to partial operations on those sets.

Exercise 9.7:6. The ideas of Exercise 3.3:2 and the discussion preceding
it showed that in the variety generated by a finite algebra, a free object
on finitely many generators is finite. Is it similarly true that in the vari-
ety Var(A) generated by any finite-dimensional associative or Lie alge-
bra A over a field k, a free object on finitely many generators is finite-
dimensional? If not, can you prove some related condition (e.g., a condition
of small “growth-rate” in the sense of Exercises 5.2:2-5.2:9)?

Can you at least show that such a variety Var(A) must be distinct
from the whole variety Ring1

k, respectively Liek ? In the Lie case, if
k = R, can you show it distinct from the subvariety Var(L(R1)) of Exer-
cise 9.7:5(ii)?

If we combine the observation that the derivations on a k-algebra form a
Lie algebra over k with the intuition that elements of the Lie algebra associ-
ated with a Lie group represent “infinitesimal” elements of that group, we get
the heuristic principle that a derivation on an algebra A may be regarded as
representing the difference between the identity automorphism of A and an
automorphism “very close” thereto. This relation with automorphisms sug-
gests that every derivation on A should be determined by what it does on a
generating set, and, in the case of a free algebra, that it should be possible
to specify it in an arbitrary way on the free generators. The next exercise
obtains results of these sorts.

Exercise 9.7:7. Let A be a not necessarily associative algebra over a com-
mutative ring k.
(i) Show that the kernel of any derivation d : A → A is a subalgebra of
A. (This is analogous to the fixed subalgebra of an automorphism.) Deduce
that two derivations which agree on a generating set for A are equal.
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The other result we want, about derivations on free algebras, requires a
trick to turn derivations into something to which we can apply the universal
property of free algebras. For this purpose, let A′ denote the k-algebra
whose k-module structure is that of A × A, and whose multiplication is
given by

(9.7.15) (a, x)(b, y) = (a b, a y + x b).

(Thus, any two elements with first component 0 have product 0. We
think of elements with first component zero as infinitesimals.) To apply
the universal property of free algebras in (certain) varieties of k-algebras,
we need the next two observations:
(ii) Verify that if A is associative with 1, respectively associative and
commutative with 1, respectively Lie, then A′ has the same property.
(iii) Show that a map d : A → A is a derivation if and only if the map
a 7→ (a, d(a)) is a homomorphism A→ A′ as k-algebras, and that in this
case, if A, and hence A′ has 1, this map will preserve that element.
(iv) Deduce that if A is the free nonassociative k-algebra, the free asso-
ciative k-algebra, the free associative commutative k-algebra, or the free
Lie algebra over k on a set X, then every set-map X → |A| extends
uniquely to a derivation A→ A.

Returning to the last sentence of (i), there is the following related
result.
(v) Show that if A is a field or a division ring, and X a subset generating
A as a field or division ring, then any derivation A → A is determined
by its restriction to X. Can you generalize this result?

We remark that the concept of a derivation from a k-algebra A into itself
is a case of the more general concept of a derivation A → B, where A is a
k-algebra and B is an A-module (if A is commutative and associative, or
Lie) or an A-bimodule (in the general associative or nonassociative case); but
we will not go into the details of these concepts here.

Some general references for the theory of Lie algebras are [91], [95], [131].
Let us end this section by noting some other concepts related to that of

Lie algebra.
Our observation that for A a k-algebra, the set of derivations A→ A is

closed under k-module operations and commutator brackets, and thus forms
a Lie algebra, makes the concept of Lie algebra a useful tool for studying
derivations when k is a field of characteristic 0. But when k has characteris-
tic p, one finds that the set of derivations is also closed under the operation
of taking p-th powers, and this fact needs to be taken into account in study-
ing them. This leads one to study, for such k, Lie algebras L given with an
additional unary operation a 7→ a(p) related to the other operations by the
identities satisfied by the p-th power operation on derivations. Such structures
are called restricted Lie algebras or p-Lie algebras; see [95].

If an associative algebra A is given with an additional “bracket opera-
tion”, written {x, y}, not assumed to be constructed from the associative
multiplication, but making L a Lie algebra such that each unary operation
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{a, −} (a ∈ L) is a derivation of the associative multiplication, then A with
this operation is called a Poisson algebra.

Our motivation of the definition of Lie algebra starting from (9.7.1) sug-
gests the analogous question of what identities will be satisfied by the oper-
ation

(x, y) = x y + y x

on an associative algebra. This is the starting-point of the theory of Jordan
algebras, though the subject is not as neat as that of Lie algebras. Jordan
algebras are defined using the identities of degree ≤ 4 satisfied by the above
operation, but that operation also satisfies identities of higher degrees not
implied by the Jordan identities; Jordan algebras satisfying these as well are
called “semispecial”. No analog of the connection between Lie groups and Lie
algebras appears to exist for Jordan algebras. A standard reference for the
theory of Jordan algebras is [96].

For our last variant of the concept of Lie algebras, suppose A is a Z2-graded
associative algebra, and we define a modified bracket operation on A, given
on homogeneous elements by

(9.7.16) [x, y] = x y − (−1)deg(y) deg(x)y x.

On homogeneous elements, this operation turns out to satisfy identities
like (9.7.4) and (9.7.5), but with appropriate sign-changes depending of the
degrees of the elements. An arbitrary Z2-graded k-module with a bracket
operation satisfying these identities is called a super Lie algebra.

Let us now return to general algebras.

9.8. Some instructive trivialities

Definition 9.8.1. If g : SX → S is an X-ary operation on a set S, and
a : X → Y is a set map, then by the Y -ary operation on S induced by g via
the map a of arity-sets, we shall mean the map f : SY → S defined by

f((cy)y∈Y ) = g((ca(x))x∈X).

The covariance of this construction in the arity-set is actually the result of
two contravariances : a : X → Y induces a map SY → SX , then this gives

a map S(SX) → S(SY ).
If in the above definition we take for g a derived X-ary operation of an

algebra structure on S, say corresponding to an element s ∈ |FΩ(X)|, then
f will be a derived Y -ary operation, corresponding to the image of s under
the homomorphism FΩ(a) : FΩ(X) → FΩ(Y ). (In terms of this description,
the covariance is straightforward.)
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Definition 9.8.2. If f : SY → S is an operation on a set, and X is a subset
of the index set Y, we shall say that f depends only on the indices in X if
f takes on the same value at any two Y -tuples that (regarded as functions
Y → S) have the same restriction to X.

Lemma 9.8.3. If in the context of Definition 9.8.2 either S or X is non-
empty, then f depends only on the indices in X if and only if f is induced
by an X-ary operation g on S, via the inclusion of X in Y. ut

Exercise 9.8:1. Prove Lemma 9.8.3. Your proof should show why the con-
dition “S or X is nonempty” is needed.

In some works on general algebra, there is a confusion between zeroary
derived operations, and constant derived operations of nonzero arities. The
next two exercises show that these two sorts of operations carry almost, but
not exactly, the same information.

Exercise 9.8:2. (i) (Like Exercise 9.8:1, but for derived operations.) Show
that if a derived Y -ary operation s of an algebra A depends only on indices
in a subset X ⊆ Y, and X is nonempty, then s is in fact induced by an
X-ary derived operation of A.
(ii) On the other hand, suppose the derived Y -ary operation s of A
depends only on the empty set of indices in Y, i.e., is constant. If A
has zeroary operations, show that, as in (i), but for a different reason, s
is induced by a zeroary derived operation of A. Show, however, that if
A has no zeroary operations, then derived operations depending on the
empty set of indices can still exist, but will not be induced by derived
zeroary operations.

In particular, for m ≤ n, derived m-ary operations correspond to derived
n-ary operations depending only on the first m variables, except for the
m = 0 case, where this is not true unless the algebra has zeroary primitive
operations.

Zeroary operations and constant unary operations look still more alike if
one excludes empty algebras, as is shown by

Exercise 9.8:3. We have seen that the X-ary derived operations of a variety
V can be characterized as the morphisms UXV → UV where UV is the
underlying-set functor of V.

Suppose now that V is a variety without zeroary operations, hence
having an empty algebra I. Let V−{I} denote the full subcategory of V
consisting of all nonempty algebras, and let UV−{I} denote the restriction
of UV to this subcategory.

(i) Show that morphisms (UV−{I})
X → UV−{I} correspond to derived

X-ary operations of V except in the case X = ∅, in which case they can be
put in natural correspondence with the constant derived unary operations.
(ii) Show that if V has constant derived unary operations, then V−{I}
is isomorphic in a natural way to a variety of algebras (of a different type)
having zeroary operations.
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As an example, suppose that (as has been proposed from time to time)
one sets up a variant of the concept of “group”, based only on the two
operations of composition and inverse, and one axiomatizes these using the
associative law for composition, and the following identities, which hold in
ordinary groups as consequences of the inverse and neutral element laws:

x = x y y−1 = y−1y x.

(iii) Let V be the variety so defined. Show that the category V− {I} is
isomorphic to Group.

Having thrown some light, I hope, on the relationship between zeroary
operations and constant unary operations, let me end this section with an
exercise of a different sort that comes out of Definition 9.8.2.

Exercise 9.8:4. Let S and Y be sets and f : SY → S a Y -ary operation
on S.
(i) Suppose W, X ⊆ Y are sets such that f depends only on the indices
in W, and f also depends only on the indices in X. Show that f depends
only on the indices in W ∩X.
(ii) On the other hand, show that given an infinite family of subsets Xi ⊆
Y such that for each i, f depends only on the indices in Xi, it may not
be true that f depends only on the indices in

⋂
Xi. (Suggestion: Let

S = [0, 1] ⊆ R, Y = ω, and f be the operation lim sup .)
(iii) In general, given a Y -ary operation f on S, what properties must
the set

Df = {X ⊆ Y | f depends only on indices in X}

have? Can you find conditions on a family U of subsets of Y which are
necessary and sufficient for there to exist a set S and a function f : SY → S
such that U = Df ?

9.9. Clones and clonal theories

Given a family of unary operations on a set S, i.e., maps S → S, the compos-
ites of these (together with the “empty composite”, the identity map) form a
monoid of maps of S into itself. In this section we will look at the structure of
the set of derived operations of a family of not necessarily unary operations,
under the operations analogous to composition of unary operations.

We will limit ourselves to finitary operations. (There is no problem with the
infinitary case, but I thought the concepts would come across more clearly in
the familiar finitary context. The reader interested in the infinitary case can
easily make the appropriate generalizations, replacing “finite” by “ ≤ γ0 ”, for
γ0 any regular infinite cardinal.) We will also, in this presentation, make our
arities natural numbers (for the infinitary case read “cardinals ≤ γ0 ”) rather
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than arbitrary finite sets, since allowing all finite sets as arities would mean
that every algebra would have a large set of formally distinct operations.

Definition 9.9.1. Let S be a set. Then a clone of operations on S will
mean a set C of operations on S, of natural-number arities, which is closed
under formation of derived operations. Concretely, this says that

(i) For every natural number n, C contains the n projection maps
pn, i : Sn → S (i ∈ n), defined by

(9.9.2) pn, i (ξ0, . . . , ξn−1) = ξi,

and

(ii) Given natural numbers m, n ∈ ω, an m-ary operation s ∈ C, and
m n-ary operations t0, . . . , tm−1 ∈ C, the set C also contains the n-ary
operation

(9.9.3) (ξ0, . . . , ξn−1) 7−→ s(t0(ξ0, . . . , ξn−1), . . . , tm−1(ξ0, . . . , ξn−1))

i.e., the composite

Sn -(t0, . . . , tm−1)
Sm -s S.

The least clone on S containing a given set of operations will be called the
clone generated by that set. Thus, for any finitary type Ω and any Ω-algebra
A, the set of derived operations of A of natural-number arities constitutes
the clone generated by the primitive operations of A.

Let us look at an example of how this procedure of generation works.
Given a binary operation f and a ternary operation g on a set S, how
do we express in terms of the constructions (9.9.2) and (9.9.3) the 6-ary
operation

(ξ0, . . . , ξ5) 7−→ f(g(ξ0, ξ1, ξ2), g(ξ3, ξ4, ξ5)) ?

It should clearly arise as an instance of (9.9.3) with f for s, but we cannot,
as we might first think, take g for t0 and t1. That would give the ternary
operation (ξ0, ξ1, ξ2) 7→ f(g(ξ0, ξ1, ξ2), g(ξ0, ξ1, ξ2)). We need, rather, to
use as t0 and t1 the two 6-ary operations (ξ0, . . . , ξ5) 7→ g(ξ0, ξ1, ξ2) and
(ξ0, . . . , ξ5) 7→ g(ξ3, ξ4, ξ5). We get these, in turn, as instances of (9.9.3) with
g in the role of s, and projection maps (9.9.2) in the role of the ti ’s. Namely,
taking for t0, t1, t2 the projection maps p6,0, p6,1, p6,2, we get the first of
the above 6-ary operations, and using the remaining three 6-ary projection
maps, we get the other. We can then apply (9.9.3) to f and these two 6-ary
operations to get the desired 6-ary operation. (In this example, each of our
variables happened to appear exactly once in the final expression, and the
occurrences were in ascending order of subscripts, but obviously, by different
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choices of projection maps, we can get expressions in which variables appear
more than once, and in arbitrary orders.)

Above, we got a “new” operation by inserting into the ternary operation g
the 6-ary projection maps p6,0, p6,1, p6,2. It is clear that if we had, instead,
inserted the ternary projections p3,0, p3,1, p3,2 (in that order) we would
have gotten back precisely the operation g. Note also that if we substitute
any operation f into the unary projection map p1, 0, we get the operation f
back. These phenomena are analogs of the neutral element laws in a monoid.

One also has an analog of the associative law: If m, n and p are nonneg-
ative integers, then given an m-ary operation s, any m n-ary operations ti
(i ∈ m), and any n p-ary operations uj (j ∈ n), all on the set S, one can
either substitute the t ’s into s, and the u ’s into the resulting operation, or
first substitute the u ’s into the t ’s, and then the resulting operations into
s. In each case one gets the p-ary operation which is the composite of the set
maps

(9.9.4) Sp -(u0, . . . , un−1)
Sn -(t0, . . . , tn−1)

Sm -s S.

It looks as though we ought to abstract these properties, and use them as
the definition of a new sort of algebraic object, which we might call a “formal
substitution algebra” or a “clonal algebra”. We would then have a new way of
looking at varieties of algebras: Given a type Ω and a family J of identities,
we would construct a “clonal algebra” Ω | J presented by these operation-
symbols and identities. We could then define a “representation” of this clonal
algebra on a set |A| to mean a homomorphism of Ω | J into the clone of
all finitary operations on that set. Such representations of Ω | J could be
identified with Ω-algebras satisfying the identities of J ; thus, each variety
of algebras could be looked at as the category of representations of a clonal
algebra.

Unfortunately, these “clonal algebras” would not be algebras as we have
so far defined the term. Our algebras A have an underlying set |A|; but a
“clonal algebra” would have an underlying family of sets, one set for each
arity of the operations symbolized, with composition operations associated
to appropriate combinations of these.

Now there is, in fact, a concept of many-sorted algebra (algebra having
different “sorts” of elements), and our general theory of algebras can be
adapted to that context in a fairly straightforward way; I have not done so
simply for conceptual simplicity. If I had developed the theory of many-sorted
algebras, we could formalize the ideas sketched above using these.

But in fact, we don’t need a new kind of mathematical object to do what
we have been discussing. After all, we introduced the concept of a category
to formalize the properties of composition of maps, which is what we are
dealing with here. The apparent difficulty with looking at the members of a
clone of operations as morphisms in a category is that an m-ary operation in
a clone is composed on the right, not with a single n-ary operation, but with
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a family of m such operations. The solution is to define our category so that
the typical morphism therein is not a single n-ary operation |A|n → |A|, but
an m-tuple of n-ary operations, corresponding to a map |A|n → |A|m.

Now everything falls into place! The category should have objects Xn in
one-to-one correspondence with the natural numbers n, and a morphism
between Xn and Xm should correspond to an m-tuple of n-ary operations
in our clone.

In saying “a morphism between Xn and Xm ”, I have skirted the question
of which way the morphism should go. This is a notational choice: whether
we want to encode our structure as a certain category, or as its opposite. The
development we have just seen suggests that the morphisms corresponding to
m-tuples of n-ary operations should go from Xn to Xm, since an m-tuple
of n-ary operations of an algebra A gives a set map |A|n → |A|m. More
globally, an m-tuple of derived n-ary operations of a variety V is equivalent
to a morphism UnV → UmV , so the “clone of derived operations” of V should
be describable as the full subcategory of SetV having the functors UnV as
objects.

But there is also motivation for the opposite choice. Recall that the de-
rived n-ary operations of a variety V correspond to the elements of the free
algebra FV(n). An m-tuple of such elements is picked out by a homomor-
phism FV(m)→ FV(n); so the full subcategory of V consisting of the free
objects FV(n) also embodies the structure of the operations of V, in the
manner opposite to way it is embodied in morphisms UnV → UmV . This is, of
course, a case of the contravariance of the Yoneda equivalence between the
covariant functors UnV and their representing objects FV(n).

Postponing the above question for a moment, let us note that, whichever
choice we make, we will want to know which categories with object-set of
the form {Xn | n ∈ ω} correspond in this way to clones of operations.
Clearly, such a category should be given with a distinguished family of n
morphisms pn, i (i ∈ n) between X1 and Xn for each n (corresponding,
in one description to the n projection maps |A|n → |A|, and in the other to
the n obvious morphisms FV(1)→ FV(n)). It must also have the property
that the morphisms between Xn and Xm (in the appropriate direction)
correspond, via composition with the pm, i, to the m-tuples of morphisms
between Xn and X1.

These conditions together say that in the category, each object Xn is
the product (or coproduct) of n copies of X1, with the given morphisms
pn, i as (co)projection maps. As to the choice of direction of the morphisms,
F. W. Lawvere, in his doctoral thesis [16] where he introduced these ideas,
made Xn a product of n copies of X1, but in later published work he
switched to the definition under which it would be a coproduct, in other
words, under which the category would look like the category of free algebras
FV(n). An attractive feature of the latter choice for Lawvere is that the
category having only the maps pn, i for morphisms X1 → Xn (corresponding
to the variety with no primitive operations) is the full subcategory N ⊆ Set
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having the set N = ω of natural numbers for object-set; hence, the category
corresponding to a general variety can be characterized as a certain kind of
extension of N. This fits with his project of creating a category-theoretic
foundation for set theory and for mathematics, with the category N as a
basic building-block. I prefer the other choice of variance because it leads to
a covariant relationship between this category of formal operations, and the
actual operations in the variety. I will include both versions in the definition
below, calling them the “contravariant” and “covariant” versions, but from
that point on, we will generally work with the covariant formulation.

Lawvere calls the category of formal operations of a variety V the “theory
of V ”, and any category of this form an “algebraic theory”. For us this
would be awkward, for though these categories carry approximately the same
information as equational theories (Definition 9.4.6), the two concepts are
different enough that we cannot identify them. So let us introduce a different
term.

Definition 9.9.5. A covariant clonal category will mean a category X given
with a bijective indexing of its object-set by the natural numbers,

Ob(X) = {Xn | n ∈ ω},

and given with morphisms

pn, i : Xn −→ X1 (i ∈ n)

which make each Xn the product of n copies of X1, and such that p1, 0 is the
identity map of X1. (Equivalently, letting N denote the full subcategory of
Set whose objects are the natural numbers, this means a category X given
with a functor Nop → X which is bijective on object-sets, and turns finite
coproducts in N to products in X.)

A contravariant clonal category will mean a category X given with the
dual sort of structure, equivalently, given with a covariant clonal category
structure on Xop, equivalently, given with a functor N→ X which is bijec-
tive on object-sets and respects finite coproducts.

(More generally, for any infinite regular cardinal γ1, one may define con-
cepts of covariant and contravariant <γ1-clonal category, using in place of
N the full subcategory of Set having for object-set the cardinal γ1, and in
place of finite (co)products, (co)products of < γ1 factors.)

Exercise 9.9:1. Establish the equivalence of structures noted parentheti-
cally in the first paragraph of the above definition.

A clonal category is itself a mathematical object, so we make

Definition 9.9.6. By Clone we shall denote the category whose objects are
the covariant clonal categories, and where a morphism X→ Y is a functor
which carries Xn to Yn for each n, and respects the morphisms pn, i. In
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other words, Clone will denote the full subcategory of the comma category
(Nop ↓ Cat) (Exercise 7.8:30(iii)) whose objects are the clonal categories.

Incidentally, when one forms the category of contravariant clonal cat-
egories, this is isomorphic to our present category Clone, not opposite
thereto, since the direction of morphisms within clonal categories does not
affect the direction of functors among them.

We now wish to establish the relation between clonal categories and vari-
eties of algebras. First, given a variety V, how shall we define the associated
clonal category? The most convenient choice from the formal point of view
would be to use n-ary derived operations of V as the morphisms from Xn

to X1. (This construction was sketched for V = Group when we were
noting “nonprototypical” ways categories could arise, in the paragraph con-
taining (7.2.1).) Unfortunately, these derived operations are not small as sets
(though the set of them is quasi-small). So let us use in their stead the cor-
responding elements of the free V-algebra FV(n). Of course, we will define
the composition operation of the clone so as to correspond to composition of
derived operations.

Definition 9.9.7. If V is a variety of finitary algebras, the covariant clonal
theory of V will mean the clonal category Cl(V), with objects denoted
Cln(V), where a morphism from Cln(V) to Clm(V) means an m-tuple of
elements of |FV(n)|, and composition of such morphisms

Clp(V) -(ui) ∈ |FV(p)|n
Cln(V) -(ti) ∈ |FV(n)|m

Clm(V)

is defined by substitution of n-tuples of expressions in p indeterminates into
expressions in n indeterminates; and where each morphism pn, i is given by
i-th member of the universal n-tuple of generators of FV(n). We note that
this is equivalent (via a natural isomorphism) to the full subcategory of the
large category SetV having for objects the functors UnV (n ∈ ω), and also
to the opposite of the small full subcategory of V having for objects the free
V-algebras FV(n).

Given a clonal category X, an X-algebra will mean a functor X → Set
respecting the product structures defined on the objects Xn by the projection
maps pn, i. For each clonal category X, the category of all X-algebras will
be written X-Alg. The functor X-Alg → Set taking each X-algebra A
to the set A(X1) will be written UX-Alg, or U when there is no danger of
ambiguity, and called the “underlying-set functor” of X-Alg.

(The analogs of the categories and objects named in this and the preceding
definition with arities taken from an arbitrary regular infinite cardinal γ1,
rather than the natural numbers, may be written Clone(γ1), Cl(γ1)(V),

Cl(γ1)
α (V), etc..)

Note that by our general conventions, unless the contrary is stated, a clonal
category X is legitimate, hence, as it has by definition a small set of objects,
it is small. Thus, the corresponding category X-Alg is legitimate.
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We have designed these concepts so that the categories X-Alg are essen-
tially the same as classical varieties of algebras. Let us state this property
as

Lemma 9.9.8. If X is a clonal category, then X-Alg (second paragraph
of Definition 9.9.7) is equivalent to a variety V of finitary algebras, by an
equivalence respecting underlying-set functors. For V so constructed, Cl(V)
(first paragraph of Definition 9.9.7) is naturally isomorphic in Clone to X.

Inversely, if V is any variety of finitary algebras, then Cl(V)-Alg is
equivalent to V. ut

Exercise 9.9:2. Prove Lemma 9.9.8.

As discussed in our motivation (paragraph containing (9.9.4)), for X a
clonal category, an X-algebra can be thought of as a “representation” of the
clone X by sets and set maps. This suggests the following more general
definition, which we will find useful in the next chapter:

Definition 9.9.9. If X is a clonal category, and C any category with finite
products, then a representation of X in C will mean a covariant functor
A : X→ C respecting the product structures defined on the objects Xn by
the projection maps pn, i (i.e., such that for each n ∈ ω, the object A(Xn)
of C is the product of n copies of A(X1) via the projection maps A(pn,i).)

We remark that the information given by a clonal category is not quite the
same as that given by a variety, in that the clonal category does not distin-
guish between primitive and derived operations, while under our definition,
a variety does.

Lawvere defines a variety of algebras (in his language, an “algebraic cat-
egory”) to mean a category of the form X-Alg, where X is what we call
a clonal category (and he calls a theory). This is a reasonable and elegant
definition, but since we began with the classical concepts of variety and the-
ory, and it is pedagogically desirable to hold to one definition, we shall keep
to our previous definition of variety, and study the categories X-Alg as a
closely related concept.

Exercise 9.9:3. Let 2N be the full subcategory of Set having for objects
the nonnegative even integers. For each integer n, the object 2n of 2N
is a coproduct of n copies of the object 2, hence the opposite category
(2N)op can be made a covariant clonal category by an appropriate choice
of maps pn, i. Write down such a system of maps pn, i, and obtain an
explicit description of (2N)op-Alg as a variety V determined by finitely
many operations and finitely many identities. Your answer should show
what it means to put a (2N)op-algebra structure on a set.

Exercise 9.9:4. In defining an X-algebra as a certain kind of functor in
Definition 9.9.7, we required that this functor respect the given structures
of the objects Xn as n-fold products of X1.
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(i) Show that under the conditions of that definition, to respect these
distinguished products is equivalent to respecting all finite products that
exist in X.
(ii) Show on the other hand that an X-algebra may fail to respect infinite
products in X. (To do this, you must start by finding a clonal category
X having a nontrivial infinite product of objects!)

Exercise 9.9:5. Show that, up to isomorphism, there are just two clonal
categories X such that the functor Nop → X is not faithful. What are
the corresponding varieties?

The next exercise does not involve the concept of clonal category, and
could have come immediately after the definition of a clone of operations
on a set, but I didn’t want to break the flow of the discussion. It requires
familiarity with a bit of elementary electronics.

Exercise 9.9:6. (Inspired by a question of F. E. J. Linton.)
If n is a positive integer, let us understand an “n-labeled circuit graph”

to mean a finite connected graph Γ (which may have more than one edge
between two given vertices), with two distinguished vertices v0 and v1,
and given with a function from the set of edges of Γ to n = {0, . . . , n−1}.
To each such graph let us associate the n-ary operation on the nonnegative
real numbers that takes each n-tuple (r0, . . . , rn−1) of such numbers to
the resistance that would be measured between v0 and v1 if for each i,
every edge of Γ mapped to i were a resistor with resistance ri.
(i) Explain (briefly) why the set of operations on nonnegative real num-
bers arising in this way from labeled circuit graphs forms a clone.
(ii) Let s denote the binary operation in this clone corresponding to
putting two resistors in series, p the binary operation corresponding to
putting two resistors in parallel, and w the 5-ary operation corresponding

to a Wheatstone Bridge; i.e., determined by the graph q qq q , with v0 and

v1 the top and bottom vertices, and distinct labels on all five edges. Show
that none of these three operations is in the subclone generated by the
other two. (Suggestion: Look at the behavior of these three operations
with respect to the order relation on the nonnegative reals.)

A much more difficult question is
(iii) Do the three operations listed in (ii) generate the clone of (i)?

I do not know answers to the next two questions.
(iv) Can one characterize the operations belonging to the clone of part (i),
i.e., describe some test that can be applied to an n-ary operation on positive
real numbers to determine whether it belongs to the clone?
(v) Can one find a generating set for the identities satisfied by the two
binary operations s and p ? (This was the question of Fred Linton’s which
inspired this exercise. Generating sets for identities of other families of
operations in this clone would, of course, likewise be of interest.)
(vi) Suppose one is interested in more general electrical circuits; e.g., cir-
cuits containing not only resistors, but also capacitors, inductances, and
possibly other elements. Can one somehow extend the “clonal” viewpoint
to such circuits? (If we allow circuit components such as rectifiers, which do
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not behave symmetrically, we must work with directed rather than undi-
rected graphs.)
(vii) If you succeed in extending the clonal approach to circuits composed
of resistors, capacitors and inductances, is the clone you get isomorphic
to the clone of part (i) (the clone one obtains assuming all elements are
resistors)?

Recall that the morphisms between clonal categories are the functors re-
specting the indexing of the object-set and the morphisms pn, i. What do
such functors mean from the viewpoint of the corresponding varieties of al-
gebras? If V is a variety of Ω-algebras and W is a variety of Ω′-algebras,
we see that to specify a morphism f ∈ Clone(Cl(V), Cl(W)) one must
associate to every primitive operation s of V a derived operation f(s) of
W of the same arity, so that the defining identities for V in those primitive
operations are satisfied by the derived operations f(s) in W. We find that
such a morphism f determines a functor in the opposite direction, W→ V;
namely, given a W-algebra A, we get a V-algebra Af with the same under-
lying set by using for each primitive V-operation sAf the derived operation
f(s)A of the W-structure on |A|. In fact we have

Lemma 9.9.10 (Lawvere). Functors between varieties of algebras which
preserve underlying sets correspond bijectively to morphisms in the opposite
direction between the clonal theories of these varieties, via the construction
described above. ut

Exercise 9.9:7. Prove Lemma 9.9.10.

Easy examples of such functors among varieties are the forgetful func-
tors Group → Monoid, Ring1 → Monoid, Ring1 → Ab, Lattice →
∨-Semilattice, and similar constructions, including the underlying-set func-
tor of every variety, and the inclusion functor of any subvariety in a larger
variety, e.g., Ab→ Group. In the above list of cases, each primitive opera-
tion of the codomain variety happens to be mapped to a primitive operation of
the domain variety. Some examples in which primitive operations are mapped
to non-primitive operations are the functor Bool1 → ∨-Semilattice under
which the semilattice operation x ∨ y is mapped to the Boolean ring op-
eration x + y + x y; the functor H : Group → Heap of Exercise 9.6:10,
under which the ternary heap operation τ is mapped to the group operation
x y−1z, and the functor B : Ring1

k → Liek of §9.7, under which, though
the primitive k-module operations of Liek are mapped to the corresponding
primitive operations of Ring1

k, the Lie bracket is mapped to the commutator
operation x y − y x.

We have seen most of the above constructions before, as examples of func-
tors having left adjoints. In fact, one can prove that any functor between
varieties induced by a morphism of their clonal theories – in other words,
every functor between varieties that preserves underlying sets – has a left
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adjoint! We will not stop to do this here, because it is a case of a much more
general result we will prove in the next chapter, which will show us precisely
which functors between varieties have left adjoints. But you can, if you wish,
do this case now as an exercise:

Exercise 9.9:8. (Lawvere) Show that any functor between varieties of fini-
tary algebras which preserves underlying sets has a left adjoint.

(You may drop “finitary” if you wish, either using generalized versions
of the results of this section, or proving the result without relying on the
ideas of this section.)

Exercise 9.9:9. Since morphisms X→ Y in Clone are defined to be cer-
tain functors, we can also look at morphisms between two such functors,
i.e., morphisms between morphisms in Clone. Interpret this concept in
terms of varieties of algebras. That is, given two varieties of algebra V
and W, and two underlying-set-preserving functors F, G : V→W, cor-
responding to functors f, g : Cl(W)→ Cl(V), what data relating F and
G corresponds to a morphism f → g ?

In particular, name one or more underlying-set preserving functors
Bool1 → Semilat and/or Group→Monoid, describe the correspond-
ing functors between clonal categories, and then find examples of mor-
phisms between two of those functors, or nonidentity endomorphisms of
one of them, and interpret these in terms of the given varieties of algebras.

Here are some exercises on particular underlying-set-preserving functors
and their adjoints:

Exercise 9.9:10. Let U : Group→Monoid denote the forgetful functor,
and F : Monoid→ Group its left adjoint (called in §4.11 the “universal
enveloping group” construction).
(i) Show that there exist proper subvarieties V ⊆ Group such that
U(V) does not lie in a proper subvariety of Monoid.

A much harder problem is
(ii) If V is a proper subvariety of Monoid, must F (V) be contained
in a proper subvariety of Group ? Must one in fact have UF (V) ⊆ V ?

Exercise 9.9:11. Let H : Group → Heap be the functor described
by (9.6.7) (in Exercise 9.6:10), and F : Heap → Group its left adjoint.
Let A be a nonempty heap. We recall that A ∼= H(G) for some group
G.
(i) Describe the group F (A) as explicitly as possible in terms of G.
(ii) We saw in Exercise 9.6:10(iii) that in general, A = H(G) has au-
tomorphisms not arising from automorphisms of the group G. Take an
example of such an automorphism i (or better, obtain a complete charac-
terization of automorphisms of any nonempty heap A = H(G) and let i
be a general automorphism of this form), and describe the induced auto-
morphism F (i) of the group F (H(G)).

Exercise 9.9:12. Show that there exist exactly two underlying-set-preserv-
ing functors Set → Semigroup. (Hint: What derived operations does
Set have?) Find their left adjoints.
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The next exercise looks at clonal categories as mathematical objects:

Exercise 9.9:13. Show that the category Clone has small limits and co-
limits.

The approach of the paragraph preceding Lemma 9.9.10 also shows that for
any clonal category X and any type Ω, to give a morphism Cl(Ω-Alg)→ X
is simply to pick for each s ∈ |Ω| an appropriate morphism in X; and gives
a similar characterization of the morphisms from clonal categories Cl(V) to
X. We record these observations as

Lemma 9.9.11. Let Ω = (|Ω|, ari) be any type. Then the functor Clone→
Set associating to each clonal category X the set of maps

(9.9.12) {f : |Ω| →
⊔
n X(Xn, X1) | (∀ s ∈ |Ω|) f(s) ∈ X(Xari(s), X1)}

is representable, with representing object Cl(Ω-Alg). Thus, Cl(Ω-Alg) may
be regarded as a “free clonal category on an |Ω|-tuple of formal operations of
arities given by the function ariΩ ”.

Suppose further that J is a set of identities for Ω-algebras, which we will
here express, not as pairs of elements of |FΩ(ω)|, but as pairs of elements of
|FΩ(n)| for various n ∈ ω; and let us identify these sets |FΩ(n)| with the
sets Cl(Ω-Alg)(Cln(Ω-Alg), Cl1(Ω-Alg)). Let

AΩ, J : Clone→ Set

denote the functor associating to each clonal category X the subset of
(9.9.12) consisting of maps f that satisfy the additional condition:

For each (s, t) ∈ J, the induced map Cl(Ω-Alg) → X cor-
responding to f carries s and t to the same element.

Then AΩ, J is representable, with representing object Cl(V(J)). Thus,
Cl(V(J)) may be written Ω | J Clone, i.e., may be regarded as the clonal
category “presented by the family Ω of formal operations, and the family J
of relations in this family”. ut

Let me end this section by mentioning a few related concepts on which
there is considerable literature, though we will not study them further here.

One is often interested in properties of a variety V of algebras that do not
depend on which operations are considered primitive. These can be expressed
as statements about the clonal category Cl(V). The formally simplest such
statements are universally or existentially quantified equations, in families of
operations of specified arities. Universally quantified equations of this sort
are called hyperidentities [137]. An example, and its interpretation in terms
of ordinary identities, is noted in

Exercise 9.9:14. Show that the following conditions on a variety V are
equivalent:
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(a) V satisfies the hyperidentity saying that all derived unary operations
are equal.
(b) All primitive operations s of V (of all arities) satisfy the identity of
idempotence: s(x, . . . , x) = x.
(c) For every A ∈ Ob(V), every one-element subset of |A| is the under-
lying set of a subalgebra of A.

The above hyperidentity is satisfied, for instance, by the varieties of lat-
tices, semilattices, and heaps. On the other hand, there are many varieties
that satisfy no nontrivial hyperidentities; e.g., it is shown in [137] that this
is true of the variety of commutative rings. A class of varieties determined
by a family of hyperidentities is called a hypervariety. (However, the term
“hyperidentity” is used by some authors, e.g., in [119], with the similar but
different meaning of an identity holding for all families of primitive operations
of given arities in a variety.)

Exercise 9.9:15. (i) Show that for every monoid identity s = t there is a
hyperidentity s′ = t′ such that for S a monoid, the variety S-Set satisfies
s′ = t′ if and only if the monoid S satisfies s = t.
(ii) Is the inverse statement true, that for every hyperidentity there exists
a monoid identity such that S-Set satisfies the hyperidentity if and only
if S satisfies the monoid identity? If not, is there a modified version of this
statement that is correct?
(iii) Are analogs of the result of (i), and of whatever answer you got for (ii),
true for ring identities, and hyperidentities of varieties R-Mod ? If not, how
much can be said about the relation between hyperidentities satisfied by
varieties R-Mod and identities or other conditions satisfied by R ?

Because hyperidentities involve both universal quantification over derived
operations, and universal quantification over the algebra-elements to which
these operations are applied, they tend to be very strong, and hence somewhat
“crude” conditions, as illustrated by the fact that the variety of commutative
rings satisfies no nontrivial hyperidentities. Existentially quantified equations
in derived operations, on the other hand, which translate to certain “ ∃ ∀ ”
conditions on operations and elements, have proved a more versatile tool in
General Algebra. An example of this sort of condition on a variety V is the
statement that there exists a derived ternary operation M of V satisfying
the identities

(9.9.13) M(x, x, y) = M(x, y, x) = M(y, x, x) = x.

This is satisfied, for instance, by the variety of lattices, where one can take
M(x, y, z) = (x∨ y)∧ (y ∨ z)∧ (z ∨ x). Another such condition is gotten by
replacing the final “ = x ” above with “ = y ”, and is satisfied in the variety
of abelian groups of exponent 2, by M(x, y, z) = x+ y + z.

Many important technical conditions on a variety V (for instance, the
condition that for any two congruences E and E′ on an object A of V,
one has E ◦ E′ = E′ ◦ E under composition of binary relations on |A|;
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or the condition that each subalgebra B of a finite direct product algebra
A1 × · · · × An in V is determined by its images in the pairwise products
Ai × Aj) turn out to be equivalent to the statement that V belongs to
the union of a chain of classes of varieties, where each class in the chain is
determined by an existentially quantified equation in derived operations. The
condition of belonging to such a union is called a Mal’cev condition; see [6,
§II.12] and [12, §60] for examples and applications.

Finally, let me sketch the idea of another sort of structure, called an op-
erad, similar to a clonal category but designed to apply to a wider class of
situations. To motivate this, suppose that we wish to think of an algebra over
a field k, not as a set with operations +, 0, −, ·, etc., but as a k-vector-
space with a single additional k-bilinear operation “ · ”, and that we want to
look at this in the context of other systems consisting of k-vector-spaces V
given with k-multilinear operations satisfying various multilinear identities.
To study such entities, we would like to set up an abstract model, analogous
to a clonal category, but modeling, not an unstructured set and a family of
set-theoretic operations, but a vector space and a family of multilinear oper-
ations. Note that as in the situation that motivated clonal categories, one can
form derived multilinear operations from given multilinear operations. How-
ever, there are things one can do in a clone of set-theoretic operations but not
in this context: The projection maps V n → V are not multilinear, so they
will not appear in our structure, nor, for the same reason, will derived oper-
ations based on repeating variables, such as s(x, x, y). On the other hand,
there is structure in this multilinear context which one does not have for
ordinary clones, namely a k-vector-space structure on the set of multilinear
operations of each arity, under which composition of multilinear operations
is given by multilinear maps. The analog of a clonal category that one gets
on taking these features into account is called a k-linear operad.

Now let the role that was held in our development of the concept of clonal
category by the construction of pairwise direct products of sets (since n-fold
direct products can be obtained as iterated pairwise products), and, implicitly
in the above development of k-linear operads by pairwise tensor products
(since a k-multilinear map V n → V is equivalent to a vector space map
V ⊗k · · · ⊗k V → V, and, again, n-fold tensor products reduce to 2-fold
tensor products), be filled by a general bifunctor “� ” on a general category
C, satisfying appropriate associativity conditions. One can write down a
description of the sort of composition of operations that is possible without
any more specific assumptions on �. The structure one obtains in this way
is called an operad. For more details, see [81].
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9.10. Structure and Semantics

The results of this section will not be essential to what follows, and our
presentation will be sketchy. They give, however, a useful perspective on
what we have been doing, and in the next chapter we will often refer to them
in noting alternative descriptions of various concepts.

Let us look back at the way we associated a clonal theory to a variety V in
Definition 9.9.7. I claim that the various equivalent forms of that construction
all reduce to an observation that is applicable in much broader contexts,
namely

Lemma 9.10.1. Let C be a category and A an object of C such that all
finite products A × · · · × A exist in C, and suppose such a product An =

i∈nA (n ∈ ω) is chosen for each n, so that the objects An are distinct
in Ob(C). Then the full subcategory of C whose objects are the An, given
with the projection maps pn, i : An → A, is a clonal category. ut

To see that this was essentially what we were using in Definition 9.9.7,
note on the one hand that each free object FV(n) is a coproduct of n copies
of FV(1), hence in Cop, the corresponding objects are products of n copies
of one object, and the full subcategory of Cop with these as its objects is
one of our descriptions of the clonal theory of V. The description based on
looking at the products UnV of copies of the functor UV applied the same
idea in the large category SetV.

We may generalize this latter example by considering any category C
given with a functor U : C → Set. The full subcategory of SetC having
for objects the functors Un will in general be large; however, in many cases
it will be quasi-small, i.e., isomorphic to a small category X. (This is true
whenever the Un are representable, or more generally, if the solution-set
condition (b) of Proposition 8.10.4 holds, even though the other conditions
may not.) To formalize this class of examples, let us make

Definition 9.10.2. For the remainder of this section, Conc will denote the
large category having for objects all pairs (C, U), where C is a category,
and U a functor C → Set, such that for every integer n, SetC(Un, U)
is quasi-small, and where a morphism (C, U) → (D, V ) means a functor
F : C→ D such that V F = U.

(I’ve chosen the symbol Conc as an abbreviation for “concrete”, though
that term is only an approximation, since we are not assuming that the func-
tors to Set are faithful, while we are assuming a quasi-smallness hypothesis
not in the definition of “concrete category”. The point of this terminology is
to make us think of U (at least at the beginning) as “like an underlying-set
functor”, so that we can picture the morphisms of Conc as the underlying-
set-preserving functors.)
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If we associate to each object of Conc the clonal category having for
object-set the powers of U (Definition 7.8.5), this gives a contravariant con-
struction (because of the way morphisms are defined in Conc) of clonal
categories from these objects. Unfortunately, this cannot be regarded as a
functor to Clone because the values assumed, though quasi-small, are not
in general small. Hence, for each (C, U) ∈ Ob(Conc) let us choose a small
category isomorphic to the category of natural-number powers of U, and re-
gard this as an object of Clone. (We achieved this in the preceding section,
for the particular case where (C, U) had the form (V, UV), using the op-
posite of the category of free V-algebras on the natural numbers in this way.)
Thus we get a functor Concop → Clone. Since the morphisms Xn → X1

in the category constructed in this way from (C, U) correspond to the n-ary
operations that we can put on the sets U(C) (C ∈ Ob(C)) in a functorial
manner, the category can be thought of as describing the algebraic structure
that can be put on the values the functor U ; hence Lawvere has named this
functor “Structure”. (Cf. Lemma 9.5.3 and Exercise 9.5:2 for examples.)

Exercise 9.10:1. Describe precisely how to make Structure a functor. (Cf.
Lemma 8.2.9.)

On the other hand, Lawvere calls the construction taking a clonal cat-
egory X to the variety X-Alg given with its underlying set functor, i.e.,
the concrete category (X-Alg, UX-Alg) (which we have seen is also a con-
travariant construction) “Semantics”, because it takes a category of symbolic
operations, and interprets these in all possible ways as genuine operations on
sets.

Consider now an arbitrary (C, U) ∈ Ob(Conc), and let X be the clone
Structure(C, U). By construction of X, the sets U(C) (C ∈ Ob(C)) have
structures of X-algebra, and these are functorial, in the sense that for f a
morphism of C, the set-map U(f) is a homomorphism of X-algebras. This
is equivalent to saying that we have an underlying-set-preserving functor
(C, U)→ (X-Alg, UX−Alg). Of course, there are other clonal categories Y
for which one can put functorial Y-algebra structures on the values of U (e.g.,
clonal subcategories of X), but it is not hard to verify that X is universal
for this property, i.e., that every functorial Y-algebra structure arises from
a morphism of clones, Y → X. This universal property is expressed in
Lawvere’s celebrated slogan, “Structure is adjoint to Semantics”.

Since in the universal property, an arbitrary clonal category Y such that
UX-Alg has a Y-algebra structure is mapped to the universal clonal category
X with this property, the latter is right universal. So the precise statement
is:

Theorem 9.10.3 (Lawvere). The functors

Structure : Concop → Clone and Semantics : Cloneop → Conc

are mutually right adjoint contravariant functors. ut
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Exercise 9.10:2. Prove the above theorem.

As with any adjunction, we have a pair of universal morphisms connecting
the two composites of these functors with the identity functors of the given
categories. In the more familiar case of a covariant adjunction, one of these
morphisms, the unit, goes from the identity functor to the composite (e.g.,
the map from each set X to the underlying set of the free group on X), and
the other, the counit, from the composite to the identity (e.g., from the free
group on the underlying set of a group G to G itself). But in the case of
a contravariant adjunction, they both go in the same direction; in the right-
adjoint case, which we have here, from the identity functor to the composite
functor. In the present example, one of these universal maps, namely

(9.10.4) IdClone −→ Structure ◦ Semantics

is an isomorphism; this is essentially the last assertion of Lemma 9.5.3. Look-
ing at the other composite,

(9.10.5) IdConc −→ Semantics ◦ Structure,

it is not hard to see that it will give an equivalence when applied to an
object of Conc if and only if that object is (up to equivalence) of the form
(V, UV) where V is a variety and UV its underlying-set functor. When we
apply Semantics ◦ Structure to a more general object (C, U) of Conc, it
can be thought of as giving a best approximation of that category by a variety
and its underlying-set functor. Thus, for every given pair (C, U), (9.10.5)
gives a “comparison functor”

(9.10.6) (C, U) −→ Semantics ◦ Structure(C, U).

Exercise 9.10:3. Describe Structure(C, U) in each of the following cases
(e.g., by choosing a set of “primitive operations” and identities), and de-
termine whether the comparison functor is an equivalence.
(i) C = Set, U(X) = X ×X.
(ii) C = Set× Set, U(X, Y ) = X × Y.
(iii) C = Ab, U(X) = UAb(X ×X).
(iv) C = Ab×Ab, U(X, Y ) = UAb(X × Y ).
(v) C = POSet, U = the underlying-set functor.

In cases (iii) and (iv), show that the clonal category Structure(C, U)
can be naturally identified with the clonal theory of modules over a certain
ring.

Exercise 9.10:4. (i) Same task as in the above exercise, for C = Setop,
and U the power-set functor Setop → Set.
(ii) If you are comfortable generalizing the concepts of this and the preced-
ing section to algebras with operations of possibly infinite arities, getting in
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particular a functor Structure(γ) : Concop → Clone(γ) for γ an infinite

regular cardinal, investigate Structure(γ)(C, U) for the case of part (i).

Exercise 9.10:5. Let CpLattice denote the category of complete lattices,
and Cp-∨-Semilattice0 the category of complete upper semilattices with
least element (regarded as a zeroary operation). We recall that the objects
of these two categories are essentially the same, but the morphisms are not
(cf. Proposition 6.2.3).
(i) Show that the underlying-set functor on one of these categories sat-
isfies the smallness condition in the definition of Conc, but that of the
other does not.
(ii) In the case that does give an object (C, U) of Conc, describe the
variety Semantics ◦ Structure(C, U). (Note that in contrast to part (ii) of
the preceding exercise, we are here talking about finitary “Structure”.)

I will end this section with a few observations on the question, “Given a
category, how can one tell whether it is equivalent to a variety of algebras?”
(Birkhoff’s Theorem tells us which full subcategories of a category Ω-Alg are
varieties, but the present question, about abstract categories and equivalence,
is of a different sort.)

By our preceding observations, a necessary and sufficient condition is that
there exist a functor U : C→ Set such that (C, U) lies in Conc, and the
comparison functor (9.10.6) is an equivalence. Note also that the underlying-
set functor of any variety is representable (by the free object on one genera-
tor), so if the above condition holds, U can be taken to have the form hG
for some object G of C. In this situation (since by our general convention,
C is assumed legitimate), the quasi-smallness condition on the powers of U
automatically holds by Yoneda’s Lemma. In summary:

Lemma 9.10.7. A category C is equivalent to a variety of finitary algebras
if and only if there exists some G ∈ Ob(C) such that the comparison map

(9.10.8) (C, hG) −→ Semantics ◦ Structure(C, hG)

is an isomorphism in Conc.
(The analogous result holds with “finitary” replaced by “having all oper-

ations of arity ≤ γ0 ” for any fixed regular infinite cardinal γ0, if we use
corresponding modified functors Structure(γ0) and Semantics(γ0).) ut

Though this does not say very much, it gives a useful heuristic pointer:
If we want to determine whether a category C is equivalent to a variety of
algebras, we should look at possible candidates for the free object on one
generator. The next exercise gives several cases where you can show that no
such object exists. I do not advise trying to use the above lemma in this and
the next two exercises, but only the “heuristic pointer”.
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Exercise 9.10:6. Show that none of the following categories are equivalent
to varieties of algebras, even if we allow the latter to have infinitary op-
erations (though, as always, we assume the set of all operations to be
small).
(i) POSet. (Suggestion: For each of the situations (a) C a variety of
algebras, and A a free algebra in C on a nonempty set, (b) C = POSet,
and A a discrete partially ordered set, and (c) C = POSet, and A a
nondiscrete partially ordered set, investigate the relationship between the
set of coequalizer maps in C, and the set of morphisms in C that hA
takes to surjective set maps.)
(ii) CompactHaus, the category of compact Hausdorff spaces and con-
tinuous maps. (Suggestion: If V is a variety with all operations having
arities < γ1 for some infinite regular cardinal γ1, what does this imply
about the closure operator “subalgebra generated by –” on the underlying
sets of algebras in V ? (Cf. Definition 6.3.7 for the case γ1 = ω.) Translate
this into a statement involving the free object on one generator in V, and
show that no object has this property in CompactHaus.)
(iii) The full subcategory of Ab whose objects are the torsion-free abelian
groups.
(iv) The full subcategory of Ab whose objects are the divisible abelian
groups (groups such that for every group element x and nonzero integer
n, the equation n y = x has a solution y in A).

Exercise 9.10:7. In contrast to the last two cases above, show that the
full subcategory of Ab whose objects are the divisible torsion-free abelian
groups is equivalent to a variety of algebras.

Exercise 9.10:8. Show that Clone is not equivalent to any variety of fini-
tary algebras. (Suggestion: Show that (a) an object corresponding to a free
object on one generator would have to be a finitely generated clonal cat-
egory, (b) if it were generated by elements of arities ≤ n, this would be
true of all clonal categories, and (c) this is not the case.)

Can you prove that it is or is not equivalent to a variety of possibly
infinitary algebras?

In contrast to Exercise 9.10:6(ii), it is proved in [115] that CompactHaus
can be identified with a “variety” if we generalize that concept to allow a
large set of operations – as we would also have to do, for instance, to speak
of the “variety” of complete lattices or semilattices. Under this construction
of CompactHaus, the operations of each cardinality α correspond to the
points of the Stone-Čech compactification of the discrete space α. Note that
this means that, in contrast to the case of complete lattices (but as for com-
plete upper or lower semilattices, cf. Exercise 9.10:5), for each α, the set of
α-ary operations is small; i.e., the corresponding generalized clonal category,
though not small, is legitimate. A consequence is that compact Hausdorff
spaces actually behave more like ordinary algebras than do complete lattices!
In particular, there is a “free compact Hausdorff space” on every small set
X, namely, the Stone-Čech compactification of X as a discrete space.

The difference between the cases of complete semilattices and lattices noted
in the above paragraph has the curious consequence that though complete
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semilattices behave “well”, the category of sets with two complete semilattice
operations

∨
1 and

∨
2 does not, since if it behaved like a variety, then

complete lattices would behave like a subvariety. As a still more striking
example of this sort, though compact Hausdorff spaces are well behaved,
the category of sets with a compact Hausdorff topology and a single unary
operation not assumed continuous in that topology will not have a free object
on one generator. Indeed any non-limit ordinal α can be given a compact
Hausdorff topology in which each nonzero limit ordinal β < α is a topological
limit of the lower ordinals; and using this topology and the unary successor
operation, the whole set α will be generated by {0}.

Lemma 9.10.7 does not say that an object G with the indicated properties
is unique up to isomorphism if it exists. Let us examine the extent to which
we can vary G in a couple of familiar varieties.

Exercise 9.10:9. (i) When C = Ab, determine for what objects G
the functor (9.10.8) is an equivalence. Show that for every such G,
Structure(Ab, hG) can be identified with the theory of modules over some
ring R.
(ii) Similarly, for C = Set determine what objects G make (9.10.8) an
equivalence, and try to describe the theory Structure(Set, hG) in these
cases.

The answer to (i) shows that Ab is equivalent to several different
varieties R-Mod, and in (ii) we similarly discover that Set is equivalent
to several varieties of algebras.

Lawvere gives in his thesis [16, §III.2] a version of Lemma 9.10.7 which
is less trivial than ours, but also more complicated to formulate; I will not
present it here.

Despite the technical meaning given the word “structure” in this section,
we will also continue to use it as a non-specific meta-term in our mathematical
discussions.



Part III. More on adjunctions.

Chapter 10 (the only chapter of this part) represents the culmination of the
course. In it we obtain Freyd’s beautiful characterization of functors among
varieties of algebras that have left adjoints, and study several classes of ex-
amples, and related results.

(I had hoped to gradually add several further chapters to this part; but,
at least in the short run, this is not to be.)

431



Chapter 10

Algebra and coalgebra objects in
categories, and functors having
adjoints

One of our long-range goals, since we took our “Cook’s tour” of universal
constructions in Chapter 4, has been to obtain general results on when alge-
bras with given universal properties exist. We have gotten several existence
results holding in all varieties V : for free objects, limits and colimits, and
objects presented by generators and relations. The result on free objects can
be restated as the existence of a left adjoint to the forgetful functor V→ Set,
and we have also shown that the inclusion V → Ω-Alg has a left adjoint,
where Ω is the type of V. In the first four sections of this chapter, we
shall develop a result of a much more sweeping sort: a characterization of all
functors between varieties of algebras V and W which have left adjoints.

To get an idea what such a characterization should be, we should look
at some typical examples. Most of the functors with left adjoints among
varieties of algebras that we have seen so far have been cut from a fairly
uniform mold: underlying-set-preserving constructions that forget some or
all of the operations, and things close to these. We shall begin by looking
at an example of a different sort, which will give us some perspective on
the features that make the construction of the adjoint possible. We will then
formalize these features, arriving at a pair of concepts (those of algebra and
coalgebra objects in a general category) of great beauty in their own right,
in terms of which we shall establish the desired condition in §10.4.

In the later sections of this chapter we work out in detail several general
cases, and note various related results.

10.1. An example: SL(n)

Let n be a positive integer. Then for any commutative ring A, the n × n
matrices over A having determinant 1 form a group, called the special linear
group SL(n, A). (Recall from §4.12 that rings are assumed to be associative
and to have 1 unless the contrary is stated.) We see in fact that SL(n, −)

432
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is a functor CommRing1 → Group. Let us simplify our name for this
functor to SL(n), but continue to write its value at A as SL(n, A).

Does SL(n) have a left adjoint? In concrete terms this asks: Given a
group G, can we find a universal example of a commutative ring AG with
a homomorphism G→ SL(n, AG) ?

Let us approach this question in our standard way (first noted in Re-
mark 3.2.13), by considering an arbitrary commutative ring A with a homo-
morphism

h : G −→ SL(n, A),

and asking what elements of A, and what relations among these, are deter-
mined by this situation.

Clearly, we can get n2 elements of A from each element g of G, to wit,
the entries of the matrix h(g) :

(10.1.1) h(g)ij ∈ |A| (g ∈ |G|, i, j = 1, . . . , n).

By definition of SL(n, A), these satisfy the relation saying that the determi-
nant of the matrix they form is 1 :

(10.1.2) det(h(g)ij) = 1 (g ∈ |G|).

The condition that h be a group homomorphism says that for every two
elements g, g′ ∈ |G|, the matrix (h(g g′)ij) is the product of the matri-
ces (h(g)ij) and (h(g′)ij). Each such matrix equation is equivalent to n2

equations in the ring A :

(10.1.3) h(g g′)ik =
∑
j

h(g)ij h(g′)jk (g, g′ ∈ |G|, i, k = 1, . . . , n).

We see, in fact, that a system of elements (10.1.1) satisfying (10.1.2) and
(10.1.3) is equivalent to a homomorphism G → SL(n, A). Hence, if we let
AG be the object of CommRing1 presented by generators (10.1.1) and
relations (10.1.2) and (10.1.3), and denote by h : G → SL(n, AG) the re-
sulting group homomorphism, then the pair (AG, h) will be initial among
commutative rings A given with such homomorphisms, and the construction
G 7→ AG will be the desired left adjoint to SL(n).

What properties of the functor SL(n) have we used here? First, the fact
that for every commutative ring A, the elements of SL(n, A) could be de-
scribed as all families of elements of A indexed by a certain fixed set (in this
case the set {1, . . . , n}×{1, . . . , n}) which satisfied certain equations (in this
case, the single equation saying that the matrix they formed had determi-
nant 1). It was this that allowed us to write down the generators (10.1.1)
and relations (10.1.2) in the definition of AG. Secondly, we used the fact that
the multiplication of the group SL(n, A) takes a pair of matrices s, t to a
matrix s t whose entries are given by certain fixed polynomials (i.e., derived
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operations) in the 2n2 entries of the two given matrices. This allowed us to
express the condition that h be a homomorphism by the equations (10.1.3).

We also used, implicitly, a fact special to the variety of groups, namely that
for a map of underlying sets to be a homomorphism, it suffices that it respect
multiplication. If we want to put this example into a form that generalizes to
arbitrary varieties, we should note that the unary “inverse” operation and the
zeroary “neutral element” operation of SL(n, A) also have the property that
their entries are given by polynomials in the entries of their arguments: The
inverse of a matrix of determinant 1 is a matrix of determinants of minors
(with certain ± signs); the identity matrix consists of 0’s and 1’s in certain
positions, and these 0’s and 1’s can be regarded as polynomials in the empty
set of variables. Hence if we do not wish to call on the special property
of group homomorphisms mentioned, we can still guarantee the universal
property of AG, by supplementing (10.1.3) with relations saying that for all
g ∈ |G|, the entries of h(g−1) are given by the appropriate signed minors in
the entries of h(g), and that the (i, j) entry of h(e) has the value δij (i.e.,
1 if i = j, 0 otherwise).

To abstract the conditions noted above, let us now consider arbitrary va-
rieties V and W (in general, of different types), and a functor

V : W −→ V

for which we hope to find a left adjoint. The analog of the first property noted
for SL(n) above should be that for A ∈ Ob(W), the underlying set |V (A)|
is describable as the set of X-tuples of elements of |A|, for some fixed set X,
which satisfy a fixed set Y of relations. We recall from Lemma 9.4.17 that
this is equivalent to saying that the set-valued functor A 7→ |V (A)|, i.e., the
functor UVV (where UV : V → Set is the underlying-set functor of V) is
representable, with representing object the W-algebra defined using X and
Y as generators and relations:

(10.1.4) R = X | Y W.

The object (10.1.4) thus “encodes” the functor V at the set level! Is there a
way to extend these observations so as to encode also the V-algebra structures
on the sets |V (A)| ?

Let us look at this question in the case V = SL(n). We see that the
object representing the functor UGroup ◦ SL(n) is the commutative ring R
presented by n2 generators rij and one relation det(rij) = 1; in other words,
the commutative ring having a universal n × n matrix r of determinant
1 over it. Can we now find a universal instance of multiplication of such
matrices? Since multiplication is a binary operation, we should multiply a
universal pair of matrices of determinant 1. The ring with such a universal
pair is the coproduct of two copies of R. If we denote these two matrices
r0, r1 ∈ |SL(n, R R)|, then the n2 entries of the product matrix r0 r1 ∈
|SL(n, R R)| can, like any elements of R R, be expressed as polynomials in
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our generators for that ring, the entries of r0 and r1. Using the universality of
r0, r1 ∈ |SL(n, R R)|, it is not hard to show that those same polynomials,
when applied to the entries of two arbitrary elements of SL(n, A) for an
arbitrary commutative ring A, must also give the entries of their product. So
it appears that r0 r1 does in some sense encode the multiplication operation
of SL(n).

There is a more abstract way of looking at this encoding. By the univer-
sal property of R, the element r0 r1 ∈ |SL(n, R R)| corresponds to some
morphism

(10.1.5) m : R −→ R R

(the unique morphism taking the entries of r to those of r0 r1). Now given a
commutative ring A, any two elements x, y ∈ |SL(n, A)| arise as images of
the universal element r ∈ |SL(n, R)| via unique homomorphisms f, g : R→
A. Such a pair of morphisms corresponds, by the universal property of the
coproduct, to a single morphism (f, g) : R R→ A (the morphism carrying
the entries of r0 to those of x and the entries of r1 to those of y). Composing
with (10.1.5), we get a morphism

(10.1.6) R -m R R -(f, g)
A,

which corresponds to an element of SL(n, A). From the facts that m corre-
sponds to (i.e., sends r to) the product of r0 and r1, and that SL(n), applied
to the map (f, g) gives a group homomorphism SL(n, R R) → SL(n, A),
we can deduce that the matrix given by (10.1.6) (i.e., the result of applying
the ring-homomorphism (10.1.6) entrywise to r) is the product of x and y.
So the ring homomorphism m of (10.1.5) indeed “encodes” our multiplica-
tion.

We note similarly that r−1 ∈ |SL(n, R)| will be the image of the universal
element r under a certain morphism

(10.1.7) i : R −→ R

and we find that this morphism i encodes the inverse operation on SL(n).
If we are going to treat the zeroary neutral-element operation similarly, it

should correspond to a morphism from R to the coproduct of zero copies of
itself. This vacuous coproduct is the initial object of CommRing1, namely
the ring Z of integers. And indeed, if we let

(10.1.8) e : R −→ Z

be the map sending the universal element r ∈ |SL(n, R)| to the identity ma-
trix in SL(n, Z), we find that for every commutative ring A, the composite
of (10.1.8) with the unique homomorphism Z→ A is the morphism R→ A
that specifies the identity matrix in SL(n, A).
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The structure (R, m, i, e) sketched above is, as we shall soon see, what is
called a cogroup in the category CommRing1. The maps (10.1.5), (10.1.7),
(10.1.8) are called its comultiplication, its coinverse, and its co-neutral-
element, and the cogroup (R, m, i, e) is said to represent the functor SL(n) :
CommRing1 → Group, just as R alone is said to represent the functor
UGroup ◦ SL(n) : CommRing1 → Set.

In the next three sections we shall develop general definitions and results,
of which the particular case sketched above is an example. We shall see that
given a functor V : W → V, if the first of the two properties we called
on above holds, namely that the set-valued functor UV V is representable,
then the other condition, that the operations of the algebras V (A) arise
from a co-V-structure on the representing object, follows automatically. (In-
deed, our development of (10.1.5) above did not use our knowledge that the
group operations of SL(n) had this form, but deduced that fact from their
functoriality.)

The fact that representability of our functor at the set level is enough
to insure that the operations will likewise be “represented” by co-operations
does not, however, mean that we can ignore those co-operations! Rather,
since they encode the V-algebra structure of our otherwise merely set-valued
functors, they will be the key to the study of such constructions.

10.2. Algebra objects in a category

I will approach the concept of a coalgebra object in a category C by starting
with the dual concept, that of an algebra object, since this has a more familiar
appearance. Let us make:

Convention 10.2.1 Throughout this section, γ will be a regular cardinal,
C will be a category admitting products indexed by all families of cardinality
< γ (which we will abbreviate to “<γ-fold products”), and Ω will be a type
all of whose operations have arities < γ.

(If you are more comfortable with finitary algebras, you may assume γ = ω
without missing any of the ideas of this chapter.)

Definition 10.2.2. For β < γ, a β-ary operation on an object R of C will
mean a morphism s : Rβ → R.

By Yoneda’s Lemma, such operations correspond bijectively to morphisms

of the induced contravariant hom-functors, hR
β → hR; and by the universal

property of the product object Rβ , we can identify hR
β

with (hR)β , so such
a map corresponds to a morphism (hR)β → hR, i.e., a β-ary operation on hR.
In concrete terms, if sR is a β-ary operation of R, then given an object A
of C and a β-tuple of elements (ξα)α<β ∈ C(A, R)β , we first combine these
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into a single element of C(A, Rβ), then compose this with sR : Rβ → R to
get an element of C(A, R), which we may denote sC(A,R)((ξα)α∈β). This
is the category-theoretic generalization of the familiar technique of taking
the set of all functions from a space A to an algebra R, and making that
set an algebra under pointwise application of the operations of R. These
observations are summarized in the next lemma (in which the equivalence
of (ii) and (iii) holds by the definition of morphism of functors).

Lemma 10.2.3. Let β be a cardinal < γ, and R an object of C. Then the
following data are equivalent (via the construction just described):

(i) A β-ary operation sR : Rβ → R.

(ii) A morphism sC(−, R) : C(−, R)β → C(−, R) as functors Cop → Set,
i.e., as contravariant set-valued functors on C.

(iii) A way of defining on each set C(A, R) (A ∈ Ob(C)) a β-ary operation
sC(A,R) : C(A, R)β → C(A, R), so that for every morphism f ∈ C(A, B),
the induced map C(B, R)→ C(A, R) respects these operations. ut

Recalling that Ω denotes a type all of whose operation-symbols have ari-
ties < γ, we now make

Definition 10.2.4. An Ω-algebra object R in the category C (or a C-based
Ω-algebra) will mean a pair (|R|, (sR)s∈|Ω|), where |R| ∈ Ob(C), and each
sR is an operation

sR : |R|ari(s) −→ |R| (s ∈ |Ω|).

A morphism between Ω-algebra objects of C will mean a morphism between
their underlying C-objects which forms commuting squares with these oper-
ations.

If R is an Ω-algebra object of C, and A any object of C, then C(A, R)
will denote the ordinary (i.e., set-based) Ω-algebra with underlying set
C(A, |R|), and operations induced by the sR as in Lemma 10.2.3.

Below, the word “algebra” will continue to mean “set-based algebra” ex-
cept when the contrary is indicated by writing “algebra object”, “C-based
algebra”, etc.. When referring to set-based algebras, I will occasionally add
the words “set-based” for emphasis.

Observe that the | |-notation introduced above is relative. E.g., if C is
itself a category of algebras, and R a C-based algebra, then |R| denotes the
underlying C-object of R, and if S is this C-object, then |S| = ||R|| denotes
its underlying set. I shall, in fact, sometimes, as in the above definition, use
the letter R and its alphabetical neighbors for algebra-objects in categories
C, and other times, as in Lemma 10.2.3, for the underlying C-objects of such
objects. Of course, in any given statement I shall be consistent about which
meaning I am giving a symbol.

Also note the new use of the symbol C(A, R) introduced in the above
definition: Though A denotes an object of C, R does not; rather, it is a
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C-based Ω-algebra, and the whole symbol denotes, not a set, but a (set-
based) Ω-algebra. Of course, a C-based Ω-algebra is intuitively “an object
of C with additional structure”, and an Ω-algebra is likewise a set with
additional structure; and modulo this additional structure, we have the old
meaning of C(A, R). So this extended notation is “reasonable”. But we need
to remember when discussing algebra objects of categories that if we want to
know what is meant by a symbol C(A, R), we have to check whether R is
assumed to be an object of C, or a C-based Ω-algebra for some Ω.

The above definition also introduced the concept of a morphism of C-based
Ω-algebras. Combining this with Yoneda’s Lemma, we easily get

Lemma 10.2.5. Let R and S be Ω-algebra objects in C. Then the following
data are equivalent:

(i) A morphism of C-based algebras R→ S.

(ii) A morphism f ∈ C(|R|, |S|) such that for every object A of C, the
induced set map C(A, |R|) → C(A, |S|) is a homomorphism of Ω-algebras
C(A, R)→ C(A, S).

(iii) A morphism C(−, R)→ C(−, S) of functors C→ Ω-Alg. ut

We next want to define, for an Ω-algebra object R of a category C,
the derived operations of R corresponding to the various derived operations
of set-based Ω-algebras. This will allow us to say what it means for such an
object to satisfy a given identity; namely, that the derived operations specified
by the two sides of the identity are equal.

One cannot, of course, describe a derived operation of R by giving a for-
mula for its value on a tuple of “elements of |R| ” when C is a general
category. An approach that is often used is to express operations and iden-
tities by diagrams. For example, observe that if m is a binary operation
on a set |R|, the condition that m be associative can be expressed as the
condition that the diagram

(10.2.6)

|R| × |R| × |R| -m× id|R| |R| × |R|

?

id|R| ×m

?

m

|R| × |R| -m |R|

commute, since the path that goes through the upper right-hand corner
gives the ternary derived operation (x, y, z) 7→ m(m(x, y), z), and the one
through the lower left-hand corner gives (x, y, z) 7→ m(x, m(y, z)). Analo-
gously, for any object |R| of a general category C and any binary operation
m : |R| × |R| → |R|, the same diagram can be used to define two ternary
“derived operations” on |R|, and their equality (the commutativity of the
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diagram) can be made the definition of associativity of the C-based algebra
R = (|R|, m).

The above approach is nice in simple cases, but it has the disadvantage of
requiring us to figure out the diagram appropriate to every identity we want
to consider. Another approach, which is equivalent to the above but avoids
this dependence on diagrams, is based on considering the algebra C(A, R)
for an appropriate universal choice of A. If we want to consider derived op-
erations in β variables, let us look at C(|R|β , R). Since this is a set-based
algebra, we know how to construct its derived β-ary operations from its prim-
itive operations. Applying such a derived operation t to the β projections
pα : |R|β → |R| (α ∈ β), we get an element t((pα)α∈β) ∈ C(|R|β , |R|)
which we define to be the derived operation tR of the C-based algebra R.
Identities are then defined as equalities among such derived operations.

Incidentally, although in §9.4 we found it convenient to reduce all identities
for Ω-algebras to identities (pairs of terms) in a fixed γ0-tuple of variables,
we shall here revert to expressing them as identities in β-tuples of variables
for various ordinals β < γ. (So, for instance, the diagram (10.2.6) expresses
associativity using three variables, rather than countably many.) The advan-
tage will be that we only need to assume that C has these β-fold products,
rather than making the unnecessary stronger assumption that it has γ0-fold
products.

The above can also be put in the language of “algebras as representa-
tions of clonal categories”. Lemma 9.10.1, generalized to possibly infinitary
algebras, says that the operations of arity < γ on an object |R| of C (equiv-
alently, on the functor h|R| : C→ Set) yield a <γ-clonal category, and that
a C-based Ω-algebra structure on |R| as defined above is equivalent to a

representation of the <γ-clonal category Cl(γ)(Ω-Alg) in C which takes

X1 ∈ Ob(Cl(γ)(Ω-Alg)) to |R| ∈ Ob(C). The condition that this C-based
algebra R satisfy the identities of a given variety V is equivalent to saying
that this representation of Cl(γ)(Ω-Alg) arises from (i.e., factors through)

a representation of Cl(γ)(V) :

(10.2.7) Cl(γ)(Ω-Alg) −→ Cl(γ)(V) −→ C,

where the first arrow is induced by the given indexing of the operations of
V by Ω.

In the next lemma and definition, we set down the observations of the
preceding paragraphs, and prove the one nontrivial implication.

Lemma 10.2.8. Let R = (|R|, (sR)s∈|Ω|) be an Ω-algebra object of C,
and let t, t′ be two derived β-ary operations (β < γ) for ordinary (i.e.,
set-based) algebras of type Ω. Then the following conditions are equiva-
lent:

(i) For all A ∈ Ob(C), the algebra C(A, R) satisfies the identity t = t′.
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(ii) In the algebra C(|R|β , R), one has t((pα)α∈β) = t′((pα)α∈β), where
the pα (α ∈ β) are the projection maps.

(iii) The morphisms t, t′ : Clβ(V) ⇒ Cl1(V) in the <γ-clonal category

Cl(γ)(Ω-Alg) fall together under the functor from Cl(γ)(Ω-Alg) to the
<γ-clonal theory of |R| induced by the |Ω|-tuple of operations (sR). (See

Lemma 9.9.11 for the universal property of Cl(γ)(Ω-Alg) which allows one
to define this morphism.)

(iv) The algebra object R satisfies the “diagrammatic translation” of the
identity t = t′.

Proof. (ii)-(iv) are simply different ways of stating the same condition. The
implication (i) =⇒ (ii) is seen by applying (i) with |A| = |R|β to the β-tuple
(pα)α∈β . The converse implication can be gotten by Yoneda’s Lemma; to see
it directly, consider any object A of C and any β-tuple (ξα)α∈β of elements
of C(A, |R|). By the universal property of the product object |R|β , these
morphisms correspond to a single morphism ξ : A → |R|β , and applying to
this the functor C(−, R) : C→ Ω-Alg, we get an Ω-algebra homomorphism
C(|R|β , R)→ C(A, R) carrying each pα to ξα. Hence, any equation satis-
fied by the β-tuple (pα)α∈β is also satisfied by the β-tuple (ξα)α∈β . ut

Definition 10.2.9. If the equivalent conditions of Lemma 10.2.8 hold, the
Ω-algebra object R of C will be said to satisfy the identity t = t′.

If V is a variety of Ω-algebras, defined by a family J of identities, then a
V-object of C will mean an Ω-algebra object R of C satisfying the identities
in J in this sense; equivalently, such that the induced functor C(−, R)
carries C into V; equivalently, such that the corresponding representation
of Cl(γ)(Ω-Alg) in C arises as in (10.2.7) from a representation of Cl(γ)(V)
in C.

Of course, since the same subvariety V ⊆ Ω-Alg can be determined by
more than one set of identities J, we need to check that the above definition
of being a V-object of C is independent of our choice of defining identities
for V. The equivalent formulation “ C(−, R) carries C into V ” shows that
this is true.

We have been discussing how to define operations on representable functors
C(−, |R|) : Cop → Set (|R| ∈ Ob(C)) (we saw in Lemma 10.2.3 that such
operations come from operations on the representing object |R|), and when
such operations will satisfy the identities of a variety V. Note that this con-
cept of “a representable set-valued functor given with operations that make
it V-valued” can also be looked at as “a V-valued functor, whose composite
with the forgetful functor V→ Set is representable”. This yields the equiv-
alence of the two formulations of the next definition, in which we extend the
term “representable functor” to include algebra-valued constructions.

Definition 10.2.10. If V is a variety of Ω-algebras, a functor Cop → V will
be called representable if it is isomorphic to a functor of the form C(−, R),
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for R a V-object of C, equivalently, if its composite with the underlying-set
functor V→ Set is representable in the sense of Definition 8.2.3.

10.3. Coalgebra objects in a category

In the next few sections we shall study coalgebra objects, and the functors
these represent. A V-coalgebra object in a category C will be defined simply
as a V-algebra object in Cop. But psychologically, the relationship between
these two concepts is tricky. The definition of algebra object is easier to
think about (to begin with) because it generalizes the familiar concept of a
set-based algebra. But in most naturally occurring varieties of algebras, coal-
gebra objects and the covariant functors they represent turn out to be more
diverse and interesting than algebra objects and their associated contravari-
ant representable functors, and, as suggested by our example of SL(n), they
will be the main object of study in this chapter. Hence our flip-flop approach
of using the algebra concept to introduce the definitions and basic character-
ization, then moving immediately to coalgebras. However, in §§10.12-10.13
we will return briefly to algebra objects, and note some examples and results
on such objects in varieties of algebras.

In this section we continue to assume that γ is a regular infinite cardinal,
and Ω a type all of whose operations have arity < γ. However, we drop here
the assumption of the preceding section that C is a category with <γ-fold
products. What we will need is the dual hypothesis, and we will state that
explicitly whenever it is required, as in the following definition.

Definition 10.3.1. Let C be a category having coproducts of all families of
< γ objects. Then for β < γ, a β-ary co-operation on an object |R| of C
will mean a morphism of |R| into the coproduct of β copies of |R|; in other
words, a β-ary operation on |R| in Cop. A pair R = (|R|, (sR)s∈|Ω|) such
that |R| ∈ Ob(C), and for each s ∈ |Ω|, sR is an ari(s)-ary co-operation on
|R|, will be called an Ω-coalgebra object in C (or a C-based Ω-coalgebra). A
morphism of Ω-coalgebra objects of C will mean a morphism of underlying
C-objects which respects co-operations.

For any Ω-coalgebra object R and object A of C, we shall write C(R, A)
for the set-based algebra whose underlying set is C(|R|, A), and whose op-
erations are induced by the co-operations of R under the dual of the con-
struction of the preceding section. Explicitly, for s ∈ |Ω|, the operation
sC(R,A) induced by sR on C(|R|, A) is defined to take each ari(s)-tuple

(ξα) ∈ C(|R|, A)ari(s) to the composite morphism

|R| -sR
ari(s)

|R| -(ξα)α∈ari(s)
A,

where the second arrow denotes the map whose composite with the α -th
coprojection |R| →

ari(s)
|R| is ξα for each α ∈ ari(s).
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I will in general, as above, use lower-case boldface letters s etc. to denote
co-operations corresponding to operations denoted by the corresponding italic
letters, s etc..

Note that (as in the parallel definition in the preceding section), the R in
the above definition of C(R, A) is not an object of C; here it is a C-based
coalgebra with underlying C-object denoted |R|, and C(R, A) is likewise
not a set, but an algebra, with underlying set C(|R|, A).

Let us recall from Lemma 9.4.17 what the general covariant representable
set-valued functor C(|R|, −) “looks like” in the important case where its
domain category C is a variety W of algebras. Taking a presentation
|R| = X | Y W for the representing object, the functor C(|R|, −) can
be described as carrying each object A to the set of all X-tuples of elements
of A that satisfy the family of relations Y. Let us now examine the form
that a β-ary operation s on such a functor takes.

We know that s will be induced by a co-operation sR : |R| →
β
|R| of

the representing object |R| = X | Y W. The homomorphism sR will, by
the universal property of X | Y W, correspond to some X-tuple of elements
of

β
|R| which satisfies the relations Y. For each x ∈ X, the x-th entry

of this X-tuple, being an element of
β
|R|, may be expressed in terms of

the β images of X generating that coproduct algebra, using some derived
operation, which we may name

(10.3.2) sx ∈ |FW(β ×X)|.

Now using the universality of
β
|R| as a W-algebra S with a β-tuple of

elements of W(|R|, S), we can deduce that if A is an arbitrary W-algebra,
and we regard elements of W(|R|, A) as X-tuples ξ of elements of A which
satisfy the relations Y, then for each β-tuple (ξα)α∈β of such X-tuples,
the x-th coordinate of the element sW(R,A)(ξα)α∈β ∈ W(|R|, A) will be
expressed in terms of the coordinates of the β X-tuples ξα by the same
derived operation (10.3.2). In summary:

Lemma 10.3.3. Let W be a variety of algebras, |R| an object of W, and
X | Y W a presentation of |R| by generators and relations. For any

W-algebra A, any element ξ ∈ W(|R|, A), and any x ∈ X, let us call
the image in A of the generator x of |R| under ξ “the x-th coordinate of
ξ ”.

Let s : |R| →
β
|R| be a β-ary co-operation on |R|, and for any object

A of W, let us write s for the operation on the set W(|R|, A) induced by
this co-operation on |R|. Then there exists an X-tuple of β ×X-ary derived
operations (sx)x∈X of W, such that for every such A, for every β-tuple
(ξα)α∈β of elements of W(|R|, A), and for every x ∈ X, the x-th coordinate
of s(ξα) is computed from the coordinates of the given elements ξα by the
derived operation sx.
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Conversely, given an X-tuple of β × X-ary derived operations sx of W
(x ∈ X), if the identities of W imply that, when applied to any β X-tuples
all of which satisfy the relations Y, the sx give (as x ranges over X) an
X-tuple of elements which also satisfies Y, then (sx)x∈X determines a mor-
phism of functors s : W(|R|, −)β → W(|R|, −), equivalently, a β-ary co-
operation s : |R| →

β
|R|. ut

So, for instance, if W is the variety of commutative rings, and |R| the
commutative ring with a universal n × n matrix of determinant 1, we can
take for X a family of n2 symbols (xij)i,j≤n, and for Y the set consisting
of the single relation det(xij) = 1. To describe from the above point of
view the comultiplication m on |R| sketched in §10.1, take β = 2 and
for each i, j ≤ n let mij be the polynomial in 2n2 indeterminates by
which one computes the (i, j)-th entry of the product of two matrices. The
multiplicativity of the determinant function implies that these operations,
when applied to the entries of two matrices of determinant 1, give the entries
of a third matrix of determinant 1, so the hypothesis of the last paragraph
of the above lemma is satisfied. Thus, these n2 derived operations yield a
binary co-operation on |R|, which induces, in a manner described abstractly
in Definition 10.3.1 and concretely in Lemma 10.3.3, a binary operation on the
sets CommRing1(|R|, A) = |SL(n, A)|, namely, multiplication of matrices
of determinant 1 .

Back, now, to dualizing the concepts and results of the preceding section
for a general category C (not necessarily a variety of algebras). Dualizing
Definitions 10.2.9 and 10.2.10 respectively, we get

Definition 10.3.4. Let C be a category with <γ-fold coproducts, and V a
variety of Ω-algebras defined by a set J of identities. Then a co- V object of
C (or V-coalgebra in C) will mean an Ω-coalgebra R in C satisfying the
following equivalent conditions:

(i) For all objects A of C, the algebra C(R, A) (Definition 10.3.1) lies in
V.

(ii) For each identity (t, t′) ∈ J, say in β variables, if we form the β-fold
coproduct

β
|R| with its canonical coprojections qα (α ∈ β), then in the

algebra C(R,
β
|R|), one has t((qα)α∈β) = t′((qα)α∈β). (This equality of

morphisms |R| →
β
|R| may be called the “coidentity” corresponding to

the identity t = t′.)

(iii) Writing Cl(γ)(|R|op) for the clone of all co-operations of arities < γ on

|R| (i.e., operations on |R| in Cop), the morphism of clones Cl(γ)(Ω-Alg)→
Cl(γ)(|R|op) induced by the Ω-coalgebra structure of |R| factors through the

canonical map from Cl(γ)(Ω-Alg) to Cl(γ)(V),

Cl(γ)(Ω-Alg) −→ Cl(γ)(V) −→ Cl(γ)(|R|op).
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(iv) R satisfies the dual of the diagrammatic condition corresponding to
each identity in J.

(v) Regarded as an Ω-algebra object of Cop, R is a V-object.

Definition 10.3.5. Let C be a category with <γ-fold coproducts, and V
a variety of Ω-algebras. Then a covariant functor V : C → V will be called
representable if

(i) V is isomorphic to a functor of the form C(R, −), for R a co- V object
of C;

equivalently, if

(ii) the composite of V with the forgetful functor V → Set is repre-
sentable in the sense Definition 8.2.3.

We note that if C is a variety W of algebras, these conditions are also
equivalent to

(iii) there is some set Y of relations in a family X of variables such that
the above composite is the functor associating to every object A of C the
set of all X-tuples of elements of A satisfying Y.

The full subcategory of VC consisting of the representable covariant
functors C→ V will be denoted Rep(C, V).

The equivalence of (i) and (ii) above follows from the equivalence of the
corresponding conditions of Definition 10.2.10, which, we recall, followed from
Lemmas 10.2.3 and 10.2.8; the equivalence of (ii) and (iii) when C is a variety
of algebras follows, as noted, from Lemma 9.4.17.

So, for example, SL(n) is an object of Rep(CommRing1, Group).
Note that W-algebra objects of a category C represent contravariant func-

tors Cop →W, while covariant functors C →W are represented by coal-
gebra objects. This is a consequence of the behavior of the covariant and
contravariant Yoneda embeddings, discussed in Remark 8.2.8. For the same
reason, morphisms among covariant representable functors correspond con-
travariantly to morphisms among their representing coalgebras:

Corollary 10.3.6 (to Lemma 10.2.5). If C is a category with <γ-fold
coproducts, and V a variety of Ω-algebras, then the category Rep(C, V) of
covariant representable functors C→ V is equivalent to the opposite of the
category of co- V objects of C. ut

Below, we shall mainly study representable functors among varieties of
algebras. But for students with some knowledge of topology, here is a pair of
topological examples.

Exercise 10.3:1. Let HtpTop(pt) be the category whose objects are Haus-
dorff topological spaces with basepoint, and whose morphisms are homo-
topy classes of basepoint-preserving maps.

(i) Show that HtpTop(pt) has finite products and coproducts.



10.4 Freyd’s criterion for existence of adjoints 445

(ii) We noted at the end of §7.5 that the functor HtpTop(pt) → Set
taking an object (X, x0) to |π1(X, x0)| (the underlying set of its funda-
mental group) was representable, with representing object (S1, 0). By the
above results, the structure of group on these sets must be induced by a
cogroup structure on (S1, 0). Describe the co-operations, and verify the
cogroup identities.
(iii) Describe likewise the structure of group object on (S1, 0) which rep-
resents the contravariant first cohomotopy group functor, π1.

(Tangential remark: In Exercise 7.8:4 we defined, for any category C
with a terminal object T, the category Cpt = (T ↓ C). The category

called HtpTop(pt) above is obtained by taking HausToppt, so defined,
and passing to homotopy classes of maps therein. My use of parentheses in
the superscript is an ad hoc way of indicating that this is not the category
HtpToppt gotten by taking the category HtpTop of Hausdorff spaces
and homotopy class of maps, and applying the pt construction to this. In
the latter category, h(S1,0)(A) is the set of conjugacy classes in π1(A),
and these have no natural group structure. In fact, it appears that that
category has no coproduct of two copies of (S1, 0).)

We are now ready to relate representability and the existence of adjoints!

10.4. Freyd’s criterion for the existence of left adjoints

In Chapter 8 we obtained some curiously similar results about the class of
covariant representable Set-valued functors, and the class of right adjoint
functors (functors having left adjoints) between arbitrary categories: both
sorts of functors respected limits, and in both cases, all examples of functors
respecting limits that were not of the desired sort arose from the failure of
a “solution-set” condition. The former sort of functors were by definition
Set-valued, while the latter could have values in any category; Exercise 8.3:3
asked you to show that if the domain category had small coproducts and
the codomain category was Set, the two classes coincided. We shall now
prove the corresponding result for the more general class of representable
algebra-valued functors that we have defined.

One direction is still easy: Suppose a functor V : C→ V, where C is any
category and V is a variety of algebras, has a left adjoint G. Then since the
forgetful functor UV : V → Set also has a left adjoint FC, their composite
UV V has the left adjoint GFV. It follows that UV V is representable,
namely, by the image under its adjoint of a 1-element set. Indeed,

(10.4.1) UV V (−) ∼= Set(1, UV V (−)) ∼= C(GFV(1), −).

And as we saw in the last section, if C has <γ-fold coproducts, representabil-
ity of the set-valued functor UV V is equivalent to representability of the
algebra-valued functor V.
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When we were considering only Set-valued functors, the other direction
was also easy: If a functor V : C→ Set had representing object R, then its
left adjoint G could be constructed as taking each set Z to the coproduct of
a Z-tuple of copies of R (Exercises 8.2:5, 8.3:3). To adapt this construction
to the case where Set is replaced by a general variety V, we will (in the
proof of the next theorem) take a presentation of an arbitrary algebra A in
V, by generators and relations,

(10.4.2) A = Z | S V.

We will again take the coproduct of a Z-tuple of copies of R, but we will
now use a second colimit construction, essentially a coequalizer applied to
this coproduct, to “impose the set S of relations”, and produce an object
G(A) of C representing the functor V(A, V (−)). (We use symbols Z and
S here rather than X and Y so that if one considers the case where C is a
variety W of algebras, there will be no confusion between this presentation
for A in V, and the presentation in W for the representing object |R|,
which was written X | Y W in Lemma 10.3.3.)

This is in fact essentially the construction used at the beginning of §10.1
to get a left adjoint for SL(n). However, there we could give an explicit
generators-and-relations description of the universal ring, while here, with
C not assumed a variety of algebras, what we did has been abstracted as a
colimit construction.

For completeness, the statement of the theorem below shows (as condi-
tions (ii) and (iii)) both versions of the concept of representability, whose
equivalence was noted in Definition 10.3.5.

Theorem 10.4.3 (after Freyd [11]). Let C be a category with small co-
limits, V a variety of Ω-algebras, and

V : C −→ V

a (covariant) functor. Then the following conditions are equivalent:

(i) V has a left adjoint G : V→ C.

(ii) V is representable, i.e., is isomorphic to the V-valued functor repre-
sented by a co- V object R of C (Definition 10.3.4).

(iii) The composite UV V of V with the underlying set functor UV : V →
Set is representable, i.e., is isomorphic to the set-valued functor h|R| repre-
sented by an object |R| of C.

Proof. We already know that (ii)⇐⇒ (iii); and (i) =⇒ (iii) was shown above
as (10.4.1). We shall complete the proof by showing (ii) =⇒ (i), as sketched
above.

Given A ∈ Ob(V), we want a G(A) ∈ Ob(C) such that C(G(A), −) ∼=
V(A, V (−)) (Theorem 8.3.8(ii)). Let us take a presentation (10.4.2) of A in
V. Thus, V(A, V (−)) can be described as associating to each B ∈ Ob(C)
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the set of all Z-tuples of elements of the V-algebra V (B) that satisfy the
relations given by S.

Let us form a coproduct
z∈Z |R|

(z) ∈ Ob(C) of a Z-tuple of copies,

|R|(z) (z ∈ Z), of the underlying C-object |R| of our representing coalgebra.
Then for any object B of C, the set C(

Z
|R|(z), B) can be naturally

identified with C(|R|, B)Z ∼= |V (B)|Z , the set of all Z-tuples of elements
of V (B). To get the subset of Z-tuples satisfying the relations in our
presentation (10.4.2) of A, we want to formally “impose” these relations
on

Z
|R|(z). Hence, for each relation (s, t) ∈ S let us form the two

morphisms |R| ⇒
Z
|R|(z) corresponding to s and t, namely s((qz)z∈Z)

and t((qz)z∈Z), where (qz)z∈Z is the Z-tuple of coprojection morphisms
|R| →

Z
|R|(z), and s and t are evaluated on this Z-tuple using the

co- V structure on R assumed in (ii). Let G(A) be the colimit of the
diagram built out of all these pairs of arrows (one pair for each element of S) :

.

.

|R| XXXXzXXXXz
|R| --

|R| �
��

�:
���

�:
Z
|R|(z) - G(A).

.

.

It follows from the universal property of this colimit that G(A) has the
desired property C(G(A), −) ∼= V(A, V (−)). ut

(Note that the above theorem required that C have arbitrary small co-
limits, so that we could construct G(A) as above for all small V-algebras
A. This requirement subsumes the condition of having <γ-fold coproducts
assumed in Definition 10.3.5.)

Exercise 10.4:1. Verify the equivalence of the universal properties of G(A)
asserted in the last sentence of the above proof.

Exercise 10.4:2. Describe the construction used in proving (ii) =⇒ (i)
above in the particular case C = CommRing1, V = Group, V =
SL(n), A = Z2. (You are not asked to find a normal form for the ring
obtained; simply show the generators-and-relations description that the
construction gives in this case.) Show directly from your description that
the result is a ring with a universal determinant-1 n×n matrix of exponent
2.

An alternative way to complete the proof of the above theorem, by showing
(iii) =⇒ (i) rather than (ii) =⇒ (i), is indicated in

Exercise 10.4:3. Assuming condition (iii) of the above theorem, let A de-
note the full subcategory of V consisting of those objects A such that
the functor V(A, V (−)) : C→ Set is representable, and let GA : A→ C
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be the resulting “partial adjoint” to V. Show that FV(1) belongs to A,
that A is closed under small colimits, and that every object of V can be
obtained from the free object on one generator by iterated small colimits.
Deduce that A = V.

We mentioned at the beginning of Chapter 9 the unfortunate ambiguity
of the word “algebra”, which has both a specific ring-theoretic sense, and
the general sense with which this course is concerned. Note that in the ring-
theoretic concept of an algebra over a commutative ring k, the operations
other than the multiplication (and other than the multiplicative neutral el-
ement 1, if this is given), constitute a structure of k-module M, and the
multiplication is then a k-bilinear map M×M →M, which is equivalent to a
k-module map M ⊗kM →M. Ring-theorists also consider the dual concept
of a k-module M given with a k-module map M →M ⊗kM, and call this
a k-coalgebra. So the ambiguity of the preceding chapter has pursued us into
this material as well! A k-module with both a k-algebra and a k-coalgebra
structure, related by certain identities, is called a k-bialgebra, and with cer-
tain additional unary, zeroary, and co-zeroary structure, a Hopf algebra. The
study of these is an interesting field ([136], cf. [47]), but not one that we will
touch on in this course. (If we did want to refer to such coalgebras here, we
would call them “coalgebras in the sense of the theory of Hopf algebras”.)

A much more general pair of senses of “algebra” and “coalgebra” is some-
times used. Given a category C and a functor F : C → C, an “F -algebra
in C ” means, in that usage, a pair (X, a) consisting of an object X of C
and a morphism a : F (X)→ X; an F -coalgebra in C means, dually, a pair
(X, b) where X is an object of C and b a morphism X → F (X). You
should not find it hard to show that all the senses of algebra and coalgebra
that we have mentioned can be subsumed by this pair of definitions. But we
will not find this degree of generality useful.

10.5. Some corollaries and examples

Since composites of adjunctions are adjunctions (Theorem 8.3.10), the result
of the last section yields

Corollary 10.5.1. A composite of representable functors among varieties of
algebras is representable. ut

Actually, this reasoning shows that a composite of representable functors
C → V → W, where V and W are varieties, and C is any category
with small colimits, is representable, but I have given the above more limited
statement because of its simplicity.

What does the representing object for a composite of representable
functors among varieties look like? Suppose we have
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representing coalgebras: R S

right adjoints:

left adjoints:
X

V-
�
D

V
W-
�
E

W,

so that the composite functor WV has left adjoint DE. To determine the
underlying X-object of the W-coalgebra representing WV, we note that
this object of X will represent the set-valued functor UWWV. The factor
UWW is represented by |S|, so by Theorem 8.7.1, the object representing
UWWV can be obtained by applying to |S| the left adjoint of V. Thus,
the underlying X-object of our desired representing object is D(|S|).

Let us combine this observation with the description of D in the proof
of Theorem 10.4.3. D takes a V-algebra A to an X-algebra obtained by
“pasting together” a family of copies of |R| indexed by the generators in any
presentation of A, using “pasting instructions” obtained from the relations in
that presentation. Hence the representing object D(|S|) for UWWV can be
obtained by “pasting together” a family of copies of |R| in a way prescribed
by any presentation of |S|. From this one can deduce that if |R| = X | Y X

and |S| = X ′ | Y ′ V, then the representing object for UWWV can be
presented in X by a generating set indexed by X×X ′, and a set of relations
indexed by (Y ×X ′)t(X×Y ′). (Equivalently, if we look at V as taking each
X-algebra A to a V-algebra whose elements are X-tuples of elements of A
satisfying a certain Y -tuple of equations, and similarly regard W as taking
each V-algebra B to a W-algebra whose elements are X ′-tuples of elements
of B satisfying a certain Y ′-tuple of equations, then their composite can be
described as taking each X-algebra A to a W-algebra whose elements are
all X ×X ′-tuples of elements of A that satisfy a (Y ×X ′) t (X × Y ′)-tuple
of relations.)

Of course, we also want to know the co- W structure on this object. Not
unexpectedly, this arises from the co- W structure on the object |S|. We shall
see some examples of representing objects of composite functors in §10.9. I
won’t work out the details of the general description of such objects, but if
you are interested, you can do this, as

Exercise 10.5:1. Describe precisely how to construct a presentation of the
object representing WV, and a description of its co- W structure, in terms
of presentations of |R| and |S| and their co- V and co- W structures.

Theorem 10.4.3 has the following special case (which was Exercise 9.9:8 in
the last chapter); though it is unfortunate that this case is better known than
the theorem, and is thought by many to be the “last word” on the subject!

Corollary 10.5.2. Any functor V : W → V between varieties of algebras
which respects underlying sets has a left adjoint.

Proof. By Theorem 10.4.3(i) =⇒ (iii), to show V has a left adjoint it suffices
to show that UVV : W→ Set is representable. But by hypothesis, UVV =
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UW, which is clearly representable, by any of our three criteria (representing
object: FW(1); description: sends each object A to the set of 1-tuples of
elements of A satisfying the empty set of relations; left adjoint: FW). ut

This corollary applies to such constructions as (i) the underlying-set func-
tor UW : W → Set of any variety W, the left adjoint of which is, we
already know, the free algebra construction; (ii) the inclusion of any variety
W in a larger variety V of algebras of the same type (i.e., one defined by a
subset of the identities of W), the left adjoint of which is the construction
of “imposing the additional identities of W ” on algebras in V; (iii) the
functor Set → G-Set (for any group G) which takes a set A and regards
it as a G-set with trivial action; this has for left adjoint the orbit-set func-
tor G-Set→ Set (cf. Exercise 8.6:1); (iv) the functor taking an associative
ring A to its underlying additive group, whose left adjoint is the tensor ring
construction, and similarly (v) the functor taking an associative ring A to
its underlying multiplicative monoid, whose left adjoint is the monoid-ring
construction (both these left adjoint constructions were discussed in terms of
their universal properties in §4.12), and (vi) the “commutator brackets” func-
tor B : Ring1

k → Liek of §9.7, taking associative algebras to Lie algebras,
whose left adjoint is the universal enveloping algebra construction E.

On the other hand, the functor SL(n) : CommRing1 → Group with
which we began this chapter certainly does not preserve underlying sets. That
was a good example for getting away from functors represented by free alge-
bras on one generator, because the representing algebra both requires more
than one generator, and requires nontrivial relations, i.e., is nonfree. There
are also important examples where a representing algebra is free, but on more
than one generator (equivalently, where the functor has the property that the
underlying set |V (A)| of the constructed algebra is a fixed power |A|X of the
underlying set of the given algebra A), or can be generated by one element,
but subject to some relations (equivalently, where |V (A)| can be described
as the subset of |A| itself consisting of those elements which satisfy certain
equations). Among constructions of the first type are the n× n matrix ring
functor Mn : Ring1 → Ring1, the representing object for which is free on
n2 generators, and the formal power series functor taking a ring A to the
ring A[[t]] (either Ring1 → Ring1 or CommRing1 → CommRing1),
whose representing object is free on countably many generators. The left ad-
joints of these have no standard names, but can be described as taking a ring
B to the ring over which one has a “universal n×n matrix representation of
B ”, respectively a “universal representation of B by formal power series”.
A functor with representing algebra presented by one generator and a non-
empty set of relations is the construction CommRing1 → Bool1 taking a
ring A to the set of its idempotent elements, made a Boolean ring as de-
scribed in Exercise 4.14:3. The underlying ring of its representing coalgebra is
presented by a generator x and the relation x2 = x, and can be described as
Z×Z, with x = (1, 0). Another example with one generator and a nonempty
relation-set is the functor Ab → Ab taking any abelian group to its sub-
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group of elements of exponent n (for any fixed n > 0), which is represented
by the cyclic group of order n. Still another is the functor G-Set→ Set (for
G any nontrivial group) represented by the one-element G-set. This takes a
G-set A to the set of fixed points of the action of G; its left adjoint is the
functor Set → G-Set mentioned in point (iii) of the preceding paragraph,
which thus has both a left and a right adjoint!

We saw in Chapter 4 that every monoid has both a universal map into a
group, and a universal map of a group into it. This says that the forgetful
functor

U : Group −→ Monoid

also has both a left and a right adjoint. That it has a left adjoint is now clear
from that fact that it preserves underlying sets. Our present results do not
say anything about why it should have a right adjoint, but they do say that
that right adjoint must be a representable functor. Let us find its representing
cogroup.

We recall that that right adjoint is the functor

G : Monoid −→ Group

taking every monoid A to its group of invertible elements. Since the invertible
elements of a monoid A form a subset of |A|, one might at first glance expect
that UGroup G, when expressed in the form described in Lemma 9.4.17(ii),
should have X a singleton, i.e., should be represented by a monoid presented
by one generator and some relations. But at second glance, we see that this
cannot be so: the condition that an element of a monoid be invertible is not
an equation in that element alone. By the considerations in the paragraph
containing (10.4.1), we can find the representing monoid for G by applying
its left adjoint U to the free group on one generator. The result is this same
group, regarded as a monoid, and as such, it has presentation

(10.5.3) R = x, y | x y = e = y x .

Thus for any monoid A, the description of |G(A)| in the form described in
Lemma 9.4.17(ii) is

(10.5.4) {(ξ, η) ∈ |A| × |A| | ξ η = e = η ξ}.

Since two-sided inverses to monoid elements are unique when they exist, every
element (ξ, η) of |G(A)| is determined by its first component, subject to the
condition that this have an inverse. So up to functorial isomorphism, (10.5.4)
is indeed the set of invertible elements of A. (We noted this example briefly
in the paragraph following Lemma 9.4.17.)

Let us write down the cogroup structure on the representing monoid
(10.5.3). If we write the coproduct of two copies of this monoid as

R R = x0, y0, x1, y1 | x0 y0 = e = y0 x0, x1 y1 = e = y1 x1 ,
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then we find that the comultiplication is given by

m(x) = x0 x1, m(y) = y1 y0.

(If you are uncertain how we got these formulas, stop here and think it out.
If you are still not sure, ask in class! Note the reversed multiplication of the
y’s, a consequence of the fact that when one multiplies two invertible monoid
elements, their inverses multiply in the reverse order.) It is also easy to see
that the coinverse operation i : R→ R is given by

i(x) = y, i(y) = x,

and, finally, that the co-neutral-element map, from R to the initial object of
Monoid, namely {e}, is the unique element of Monoid(R, {e}), charac-
terized by

e(x) = e = e(y).

Exercise 10.5:2. Describe explicitly the co-operations of the coalgebras rep-
resenting two of the other examples discussed above, as we have done for
the group-of-units functor Monoid→ Group.

Exercise 10.5:3. We noted above that we might naively have expected the
group-of-invertible-elements functor Monoid→ Group to be represented
by a 1-generator monoid, but that it was not. Let us look more closely at
this type of situation. Suppose W : V → W is a representable functor
among varieties of algebras, with representing W-coalgebra R.
(i) Show that UWW : V → Set is isomorphic to a subfunctor of UV if
and only if there exists a map FV(1) → |R| which is an epimorphism in
V (but not necessarily surjective).
(ii) Describe the epimorphism implicit in our discussion of the group-of-
invertible-elements functor.
(iii) Generalize the result of (i) in one way or another.

We can get other examples of representable functors by composing some
of those we have described. For instance, if we start with the n × n ma-
trix ring functor Ring1 → Ring1, follow it by the underlying multiplicative
monoid functor Ring1 → Monoid, and this by the group-of-units functor
Monoid → Group, we get a functor Ring1 → Group which takes ev-
ery ring A to the group of all invertible n × n matrices over A, denoted
GL(n, A).

Let us record a couple of other general results on representability of func-
tors, equivalently, on existence of adjoints. As we noted in example (ii) fol-
lowing Corollary 10.5.2, that corollary implies

Corollary 10.5.5. The inclusion of any subvariety U in a variety V has
a left adjoint. ut

Combining this with Corollary 10.5.1 (composites of representable functors
are representable), we get
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Corollary 10.5.6. If a functor W : V → W between varieties of algebras
is representable, then so is its restriction to any subvariety of U ⊆ V. ut

For instance, having observed that GL(n) is a representable functor on
Ring1, we know automatically that it gives a representable functor on
CommRing1. (What is the relation between the representing objects for
these two functors?)

When a functor between varieties of algebras W : V → W is repre-
sentable, this representability is usually easy to see and to prove – the con-
struction of the underlying set of W (A) is easily expressed in the form de-
scribed in Lemma 9.4.17(ii). On the other hand, when we want to prove that
a functor V is not representable, that criterion is clearly not as helpful; the
more useful criterion here is Proposition 8.10.4, which says that W is rep-
resentable if and only if it respects limits and satisfies a certain solution-set
condition. As we noted in §§8.7-8.10, most cases of nonrepresentability re-
veal themselves through failure of the functor to respect limits of one sort or
another. For example:

Exercise 10.5:4. Verify that none of the following covariant functors from
abelian groups to abelian groups is representable:
(i) F (A) = A⊗A.
(ii) G(A) = the torsion subgroup of A (the subgroup of all elements of
finite order).
(iii) H(A) = A/nA (n a fixed integer).
(iv) J(A) = nA (n a fixed integer).

In Exercises 8.10:5-8.10:6 we saw examples of the rarer situation in which
some left universal construction was impossible only because the solution-set
condition was not satisfied. Those examples were of nonexistence of initial
objects and of free objects, so by Theorem 9.4.14 the categories in question
were, necessarily, not varieties (though in one of the examples the category,
that of complete lattices, failed to be a variety only in that it had a large set
of operations). The following exercise shows that in the case of the criterion
for representability, there are counterexamples where the domain is a variety.

Exercise 10.5:5. Let us call an object S of a variety V simple if the only
congruences on S are the trivial congruence and the total congruence (the
least and the greatest equivalence relations on |S|).
(i) Find a variety V having the properties that (a) for every cardinal α
there exists a simple algebra Sα in V of cardinality ≥ α, and (b) every al-
gebra in V contains a unique one-element subalgebra. (Suggestion: Either
show that there are simple groups of arbitrarily large cardinalities, or that
there are fields of arbitrarily large cardinalities. In the latter case you must
also say how to regard fields as simple objects of a variety satisfying (b).)

Now assume we have chosen such a V, and for each α some Sα,
as above. For every object A of V, define V (A) to be the hom-set
V(

α≤card(|A|)Sα, A) ∈ Ob(Set); equivalently (up to natural isomor-

phism) V (A) =
α≤card(|A|)V(Sα, A).
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(ii) Show how to make V a functor, and show that this functor respects
small limits, but is not representable. (You may either get these results
directly, or with the help of part (iii) below.)
(iii) Recall that the variety we are writing V could be more precisely writ-
ten as V(U), the category of U-small objects of a certain type that satisfy
a certain system of identities. Letting U′ be any universe properly larger
than U, show that V(U′) contains an object S such that the restriction
to V(U) of the functor hS : V(U′) → Set(U′) is isomorphic to the functor
V of (ii) above.

Thus, intuitively, this example is based on a functor which is repre-
sentable, but by an object outside our universe. What was tricky was to
find such a functor which nevertheless took U-small algebras to U-small
sets.

Curiously, in the condition from Chapter 8 for the existence of right adjoint
functors (the dual of Theorem 8.10.5), one can drop the solution-set condition
when the domain category is a variety:

Exercise 10.5:6. Show that if V is a variety of algebras and C any cat-
egory, then every functor F : V → C which respects small colimits has a
right adjoint; i.e., is the left adjoint to a representable functor.

Knowing that representable functors from a variety W to a variety V
correspond to V-coalgebra objects of W, it is natural to try, for various
choices of V and W, to find all V-coalgebra objects of W, hence all such
functors. How difficult this task is depends on the varieties in question. At the
easy extreme are certain large classes of cases for which we shall see in §10.10
that there can be no nontrivial representable functors. At the other end are
cases such as that of representable functors from the variety of commutative
rings (or commutative algebras over a fixed commutative ring k) to Group.
Such functors are called “affine algebraic groups”, and are an important area
of research in algebraic geometry.

In the next three sections, we shall tackle some cases of an intermediate
level of difficulty, for which the problem is nontrivial, but where, with a
reasonable amount of work, we can get a complete classification.

10.6. Representable endofunctors of Monoid

Let us consider representable functors from the variety Monoid into itself.
A representable functor from an arbitrary category C with finite coprod-

ucts to Monoid is represented by a comonoid, which we shall for convenience
write as a 3-tuple (R, m, e) (rather than as a pair (R, (m, e))), with R an
object of C, and the other two components a binary comultiplication

m : R −→ R R
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and a zeroary co-neutral-element

e : R −→ I.

Here I denotes the initial object of C, that is, the coproduct of the empty
family. These co-operations must satisfy the coassociative law, and the right
and left coneutral laws. The coassociative law can be shown diagrammatically
as the dual to (10.2.6); thus, it says that the diagram

(10.6.1)

R R R-m idR
R R

?

idR m

?

m

R R-m
R

commutes. The two coneutral laws likewise say that if we write iR for the
unique map from the initial object I to R, then the composite maps

(10.6.2)
R -m R R -

(iR e, idR)
R

R -m R R -(idR, iR e)
R

are each the identity morphism of R, where in each diagram of (10.6.2),
the parenthesized pair shown above the second arrow is an abbreviation for
the morphism obtained from its two entries via the universal property of the
coproduct R R.

Let us now specialize to the case C = Monoid. Then the initial ob-
ject I is the trivial monoid {e}; hence the homomorphism e can only be
the map taking every element of R to e. (Contrast this with the case of
SL(n) discussed in §10.1, where e had for codomain the initial object Z of
CommRing1, a nonzero ring, so that the description of the identity matrix
gave nontrivial information.) Nonetheless, the fact that this unique zeroary
co-operation satisfies the coneutral laws (10.6.2) will be a nontrivial condi-
tion.

To study (10.6.1) and (10.6.2), we need to recall the structure of a coprod-
uct of monoids. We noted in §4.10 that such a coproduct

(10.6.3)
α∈I R

α

could be described in essentially the same way as for groups; namely, assuming
for notational convenience that the sets |Rα|−{e} are disjoint, each element
of (10.6.3) can be written uniquely as a product
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(10.6.4)
r0 r1 . . . rh−1, with h ≥ 0, each ri in some |Rαi | − {e},

and αi 6= αi+1 for 0 ≤ i < h− 1.

(Here the neutral element e of (10.6.3) is understood to be the case h = 0
of (10.6.4).)

But in the case of the coproduct R R we are interested in now, the
two monoids being put together are not disjoint. Let us therefore distinguish
our two canonical images of R in R R as Rλ and Rρ (the superscripts
corresponding to the “left” and “right” arguments of the comultiplication we
want to study). We shall thus write R R as Rλ Rρ, i.e., as the coproduct
of these two copies of R, and write the images of an element x ∈ |R| under
the two coprojections R⇒ Rλ Rρ as xλ and xρ respectively.

The coassociative law involves three variables, hence in (10.6.1), R is
ultimately mapped into a three-fold coproduct of copies of itself; let us write
this object Rλ Rµ Rρ, the µ standing for the “middle” variable in the
associativity identity.

A natural first step in describing an element (10.6.4) is to specify the
sequence of indices (α0, . . . , αh−1); so let us define an index-string to
mean a finite (possibly empty) sequence of members of {λ, µ, ρ}, with no
two successive terms equal. We shall call h the length of the index-string
(α0, . . . , αh−1). For every index-string σ = (α0, . . . , αh−1), we shall denote
by |R|σ the set of all products (10.6.4) with that sequence of superscripts,
i.e.,

|R|σ = (|Rα0 | − {e}) . . . (|Rαh−1 | − {e}).

The underlying set of each of the monoids Rλ Rρ and Rλ Rµ Rρ is
thus the disjoint union of its subsets |R|σ. We define the height ht(s) of
s ∈ |Rλ Rρ| as the length of the unique σ such that s ∈ |R|σ. Finally, to
study our comultiplication m, let us define the degree of an element of R
itself by

deg(x) = ht(m(x)).

We note that for each h > 0, there are precisely two index-strings of
length h consisting only of ρ ’s and λ ’s: one beginning with ρ and the
other beginning with λ. Thus, if x ∈ |R| is an element of positive degree h,
then m(x) either belongs to |R|(λ,ρ,λ, ... ) (h entries in the superscript) i.e.,
has the form yλ0 z

ρ
1 y

λ
2 . . . , or it belongs to |R|(ρ,λ,ρ, ... ), and has the form

zρ0 y
λ
1 z

ρ
2 . . . .

It is easy to see that the two coneutral laws (10.6.2) say

(10.6.5)
If m(x) = . . . yλi z

ρ
i+1 y

λ
i+2 z

ρ
i+3 . . . , then

x = . . . yi yi+2 . . . = . . . zi+1 zi+3 . . . .

(Note that the way we have written m(x) here covers both the cases x ∈
|R|(λ,ρ,λ, ... ) and x ∈ |R|(ρ,λ,ρ, ... ).) In particular, (10.6.5) implies

(10.6.6) If x 6= e, then deg(x) ≥ 2.



10.6 Endofunctors of Monoid 457

On the two possible sorts of elements of degree exactly 2, we see that (10.6.5)
precisely determines the action of m :

(10.6.7)

{
If m(x) ∈ |R|(λ, ρ), then m(x) = xλ xρ.

If m(x) ∈ |R|(ρ, λ), then m(x) = xρ xλ.

Let us also record what (10.6.5) tells us about the degree 3 case:

(10.6.8)

{
If m(x) ∈ |R|(λ, ρ, λ), then m(x) = yλ0 x

ρ yλ2 where y0 y2 = x.

If m(x) ∈ |R|(ρ, λ, ρ), then m(x) = zρ0 x
λ zρ2 where z0 z2 = x.

We now turn to the coassociative law. This says that for any x ∈ |R|,

(10.6.9) (idRλ , m) m(x) = (m, idRρ) m(x) in Rλ Rµ Rρ.

Let us note the explicit descriptions of the left-hand factor on each side of the
above equation. The homomorphism (idRλ , m) : Rλ Rρ → Rλ Rµ Rρ

leaves each element of the form yλ ∈ |Rλ Rρ| unchanged, while it takes an
element zρ ∈ |Rλ Rρ| to the element m(z), but with all the superscripts
“ λ ” changed to “ µ ” (because of the way we label our 3-fold coproduct).
Likewise, (m, idRρ) leaves each zρ unchanged, and takes each yλ to the
element m(y), with all superscripts “ ρ ” changed to “ µ ”.

Now let x ∈ |R| − {e}, suppose that m(x) belongs to the set |R|σ (σ a
string of λ’s and ρ’s), and let the common value of the two sides of (10.6.9)
belong to the set |R|τ (τ a string of λ’s, µ’s and ρ’s). Note that each “λ ”
in σ yields a single λ in τ on evaluating the left-hand side of (10.6.9), but
looking at the right-hand side of (10.6.9), it gives at least one λ in τ, because
of (10.6.6). Since the two sides of (10.6.9) are equal, all of these “at least one”s
must be exactly one. For this to happen, the elements yi in the expansion
(10.6.5) must all have degree ≤ 3. By a symmetric argument (comparing
occurrences of ρ in σ and in τ) we get the same conclusion for the elements
zi. Note also that if τ begins with µ, then the right-hand side of (10.6.9)
tells us σ must begin with a λ, while the left-hand side says it must begin
with a ρ, a contradiction. Hence τ can only begin with a λ or a ρ. In the
former case, σ must begin with a λ which expands to λµ on the right-hand
side of (10.6.9) (so as not to yield more than one λ); in the latter case it
must begin with a ρ which expands to ρµ on the left-hand side. In either
case, we conclude that the first factor in the expansion of m(x) must have
degree 2. The same arguments apply to the last factor. In summary:

(10.6.10)

For all x ∈ |R|, all elements yi and zi in (10.6.5) have degree
≤ 3; hence by (10.6.5), every element of R is a product of
elements of degree ≤ 3. Moreover, the elements giving the
first and last factors of m(x) have degree 2.
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But the observation about first and last factors, applied to the final equa-
tion in each line of (10.6.8), gives

(10.6.11)
Every element of R of degree 3 is a product of two elements
of degree 2.

(10.6.10) and (10.6.11) together allow one to express every element of R
as a product of elements of degree 2, showing that R is generated by these
elements. We can prove still more:

Lemma 10.6.12. Let (R,m, e) be a co-Monoid object in Monoid. Then
every element x ∈ |R| has an expression as a product

x0 . . . xh−1 (h ≥ 0),

where all xi are of degree 2, and this expression is unique subject only to
the condition that there be no two successive factors xi, xi+1 such that one
of m(xi), m(xi+1) belongs to |R|(λ, ρ), the other belongs to |R|(ρ, λ), and
xi xi+1 = e.

Proof. Since R is generated by elements of degree 2, and since any expres-
sion involving two successive factors whose product is e can be simplified to
a shorter expression, we can clearly express every element in the indicated
form subject to the conditions noted. To show that this form is unique, it
suffices to prove that given an element and such an expression for it,

x = x0 . . . xh−1 (deg(xi) = 2, i = 0, . . . , h−1),

we can recover the factors xi from x and m. I claim in fact that if for this x
we write the common value of the two sides of (10.6.9) as a reduced product
of elements of Rλ, Rµ and Rρ, i.e., as in (10.6.4), then the sequence of
factors belonging to Rµ will be precisely xµ0 , . . . , x

µ
h−1, recovering the xi,

as required.
Indeed, let us note that for any x such that m(x) ∈ |R|(λ, ρ), the com-

mon value of the two sides of (10.6.9), computed using (10.6.7), is xλ xµ xρ,
while when m(x) ∈ |R|(ρ, λ) it is xρ xµ xλ. Hence when we evaluate the
common value of the two sides of (10.6.9) for x = x0 . . . xh−1, the factors
with superscript µ comprise, initially, the sequence claimed. They will con-
tinue to do so after we reduce this product to the form (10.6.4) by combining
any successive factors that may belong to the same monoid |R|λ, |R|µ or
|R|ρ, unless, in the course of this reduction, the factors with superscript ρ
and/or λ separating some pair of successive µ-factors cancel, allowing those
µ-factors to merge. Now if m(xi) and m(xi+1) both belong to |R|(λ, ρ) or
both belong to |R|(ρ, λ), then between xµi and xµi+1 we will have exactly
one λ-factor and one ρ-factor, and these cannot cancel. In the case where
one belongs to |R|(λ, ρ) and the other to |R|(ρ, λ), we get adjacent factors
xρi x

ρ
i+1 or xλi x

λ
i+1 in the same set Rρ or Rλ. When we merge these, they
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will cancel only if xi xi+1 = e in R; but this is the case excluded by our
hypothesis. ut

Note that in the above argument, we could have asserted that every ele-
ment can be reduced to a unique product of the indicated form in which no
two successive factors whatever have product e. However, we have proved
uniqueness subject to a weaker condition than this, so we have a stronger
uniqueness result. Indeed, this result implies (as the weaker uniqueness state-
ment would not):

Corollary 10.6.13. If (R, m, e) is a co-Monoid object in Monoid, then
the monoid R has a presentation X | Y , where X is the set of elements
of R having degree 2 with respect to the comultiplication m, and Y is the
set of all relations of the form x0 x1 = e holding in R such that one of
m(x0), m(x1) lies in |R|(λ, ρ), and the other in |R|(ρ, λ).

Proof. Lemma 10.6.12 shows that X generates R, and by definition the
relations comprising Y are satisfied by these generators. It remains to verify
that if two words w0 and w1 in the elements of X are equal in R, then
this equality follows from the relations in Y.

Now if wi (i = 0 or 1) contains a substring which is the left-hand side
of some relation in Y, then by applying that relation, we can reduce wi to
a shorter word. Hence a finite number of applications of such relations will
transform w0 and w1 to words w′0 and w′1 that contain no such substrings.
The values of these words in R are still equal; hence the uniqueness statement
of Lemma 10.6.12 tells us they are the same word. Thus, by applying relations
in Y, we have obtained the equality of w0 and w1 in R, as required. ut

Clearly the next step in studying our comonoid should be to examine the
properties of the set of pairs of elements of R of degree 2 satisfying x0 x1 = e.
So let us make

Definition 10.6.14. If (R, m, e) is a co-Monoid object in Monoid, then
P (R, m, e) will denote the 4-tuple (X+, X−, E, u), where

X+ = {x ∈ |R| |m(x) = xλ xρ} = {x ∈ |R| |m(x) ∈ |R|(λ, ρ)} ∪ {e},
X− = {x ∈ |R| |m(x) = xρ xλ} = {x ∈ |R| |m(x) ∈ |R|(ρ, λ)} ∪ {e},
E = {(x0, x1) ∈ |R|2 | deg(x0), deg(x1) ≤ 2, x0 x1 = e} ⊆

(X+ ×X−) ∪ (X− ×X+),

u = e, the neutral element of R.

Thus, X+ and X− are sets intersecting in the singleton {u}, and E is
a binary relation on the union of these sets, which relates certain elements of
X+ to certain elements of X−, and vice versa. We note a key property of
this relation: If both (x0, x1) and (x1, x2) belong to it, then since x1 has
x0 as a left inverse and x2 as a right inverse in R, x0 must equal x2.

Let us formalize the type of combinatorial object we have obtained.
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Definition 10.6.15. An E-system will mean a 4-tuple (X+, X−, E, u),
where X+ and X− are sets, and u an element such that

X+ ∩X− = {u},

and where
E ⊆ (X+ ×X−) ∪ (X− ×X+)

is a relation such that

(10.6.16) uE u,

(10.6.17) x0E x1 ∧ x1E x2 =⇒ x0 = x2.

A morphism of E-systems (X+, X−, E, u) → (X ′+, X ′−, E′, u) will
mean a map X+ ∪ X− → X ′+ ∪ X ′− carrying X+ into X ′+, X− into
X ′−, the relation E into the relation E′, and u to u′.

Thus, the objects P (R, m, e) that we constructed in Definition 10.6.14
are E-systems.

When an E-system (X+, X−, E, u) arises as in that definition from a
co- Monoid object (R, m, e) of Monoid, Corollary 10.6.13 tells us how
to recover the monoid R from (X+, X−, E, u), and (10.6.7) tells us how
to recover m. (As noted earlier, there is no choice regarding e.) If the
concept of E-system does a good enough job of capturing the structure of the
co- Monoid objects of Monoid, then every E-system should arise from such
an object, and Corollary 10.6.13 and (10.6.7) should allow us to construct
that object. Let us try to see whether this is so.

Given any E-system (X+, X−, E, u), let us form the monoid with the
presentation suggested by Corollary 10.6.13:

(10.6.18) R = X+ ∪ X− − {u} | x0 x1 = e whenever x0E x1 .

On this monoid we have a unique zeroary co-operation e, namely the trivial
map R → {e}. We would now like to define a comultiplication homomor-
phism from this monoid into the coproduct of two copies of itself by setting

(10.6.19) m(x) =

{
xλ xρ if x ∈ X+ − {u},
xρ xλ if x ∈ X− − {u}.

The next two exercises will show that this is possible, and that this con-
struction indeed inverts that of Definition 10.6.14, a result which we will then
summarize as a theorem. You should therefore read these exercises through,
and think about what is involved, even if you do not work out all the details.
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Exercise 10.6:1. (i) Show that for any E-system X = (X+, X−, E, u),
if we define R by (10.6.18), then (10.6.19) gives a well-defined homomor-
phism m : R→ Rλ Rρ.

(ii) Show that this m and the trivial morphism e make R a comonoid
object of Monoid. Let us denote this object Q(X).

The next observation will make some subsequent results easier to state:
(iii) Verify that the presentation (10.6.18) is equivalent to the modified
presentation with u included among the generators, and u = e added to
the relations; and that (10.6.19) then holds with the “−{u} ”s deleted.
(iv) Show that the construction P of Definition 10.6.14, and the construc-
tion Q of (i), (ii) above, may be made functors in obvious ways, and that
Q is then left adjoint to P.
(v) Deduce from Corollary 10.6.13 that the counit of this adjunction, i.e.,
the canonical morphism from the functor QP to the identity functor of
the category of co- Monoid objects of Monoid, is an isomorphism. In
particular, every comonoid object of Monoid arises under Q from an
E-system.

We have not yet shown that every E-system arises from a comonoid. We
shall prove this by showing that the unit of the above adjunction, i.e., the
canonical morphism from the identity functor of the category of E-systems
to PQ, is also an isomorphism.

(To banish any suspicion that our desired conclusion might follow auto-
matically from (v) above, consider the analogous situation where P is the
forgetful functor Group → Monoid, and Q its left adjoint, taking every
monoid to its universal enveloping group. Then the counit QP → IdGroup

is an isomorphism, but the unit IdMonoid → PQ is not: monoids containing
noninvertible elements do not appear as values of P, and each such monoid
falls together under Q with a monoid that is a value of P.)

We will get this result by obtaining a normal form for monoids Q(X) :

Exercise 10.6:2. (i) Show that given any E-system X =
(X+, X−, E, u), the monoid R with presentation (10.6.18) has for
normal form the set of words in the indicated generators (including
the empty word) that contain no subsequences x0 x1 with x0E x1.
(Suggestion: van der Waerden’s trick.)
(ii) Deduce that the unit of the adjunction between P and Q is an
isomorphism.

The above results are summarized in the first sentence of the next theorem.
The second sentence translates the comonoid structure (10.6.18)-(10.6.19)
into a description of the functor represented, and the final sentence follows
by Corollary 10.3.6.

Theorem 10.6.20. The isomorphism classes of representable functors V :
Monoid → Monoid are in natural bijective correspondence with the
isomorphism classes of E-systems. The functor corresponding to the
E-system (X+, X−, E, u) can be described as a subfunctor (in the sense
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of Lemma 7.9.4 and Definition 9.4.11) of a direct product of copies of the
identity functor and of the opposite-monoid functor; namely, as the construc-
tion taking each monoid A to the submonoid of A(X+−{u})× (Aop)(X−−{u})

consisting of those elements b such that for all (x, y) ∈ E − {(u, u)}, the
coordinate bx is a left inverse to the coordinate by.

Writing E-System for the category of E-systems, the above construction
yields a contravariant equivalence

E-Systemop → Rep(Monoid, Monoid). ut

We would now like to describe the morphism of representable functors in-
duced by a given morphism of E-systems. For this purpose, it is actually most
convenient to treat the functor V : Monoid →Monoid corresponding to
the E-system (X+, X−, E, u) as taking a monoid A to a submonoid of

A(X+−{u}) × {e} × (Aop)(X−−{u});

i.e., to introduce into our description of the functor an extra slot, indexed by
the element u of the E-system, such that the coordinate of V (A) in that slot
is required to be the neutral element e of A. (Cf. Exercise 10.6:1(iii).) We
can then say that if f : E → E′ is a morphism of E-systems, and f : V ′ → V
the corresponding morphism of representable functors, then for a monoid A
and an element ξ ∈ |V ′(A)|, the image f(A)(ξ) has for x-th coordinate the
f(x)-th coordinate of ξ, whether f(x) happens to be u, or to be a member
of X+ ∪ X− − {u}.

Let us look at some simple examples of E-systems and the corresponding
representable functors. We shall display an E-system by showing the elements

of X+−{u} and X−−{u} respectively as points in two boxes, ,

and indicating a condition x0E x1 by an arrow from the point x0 to the point
x1. (The element u will not be shown; it may be thought of as embedded in
the dividing line between the boxes.)

q By (10.6.18)-(10.6.19), the comonoid R corresponding to this

E-system is the free monoid on one generator x, with the comultiplication
under which m(x) = xλxρ. We see that the functor this represents is (up
to isomorphism) the identity functor Monoid→Monoid. This description
of the functor represented can also be seen from the second sentence of the
above theorem.q You should verify that this E-system similarly gives the functor

taking each monoid A to its opposite monoid Aop, i.e., the monoid with the
same underlying set, but with the order of multiplication reversed.
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q q (the relation E − {(u, u)} still being empty). This gives the

direct product of the above two functors, i.e., the functor associating to every
monoid A the monoid

{(α, β) | α, β ∈ |A|},

with multiplication

(10.6.21) (α0, β0)(α1, β1) = (α0 α1, β1 β0).

q q-� This corresponds to the subfunctor of the preceding example

determined by adding to the description of its underlying set the conditions

αβ = e = β α.

Since under these conditions α uniquely determines β, the second coordi-
nate provides no new information, and we can describe this functor, up to
isomorphism, as associating to A its group of invertible elements α, regarded
as a monoid.q q- As above, except that only the condition αβ = e, and not

β α = e is imposed. Right inverses are not generally unique, so we must de-
scribe this functor as associating to A the monoid of elements α ∈ |A| given
with a specified right inverse β. The multiplication is again as in (10.6.21).

q q� This associates to A the monoid of elements α given with

a specified left inverse β, again multiplied as in (10.6.21). Set-theoretically,
this construction is isomorphic to the preceding, via (α, β)↔ (β, α), but the
monoid structures are opposite to one another. (I have indicated this in the
paraphrases by naming, after the words “monoid of”, the elements which are
multiplied as in A, while those with the opposite multiplication are referred
to as specified inverses of these elements.)qq qXXz��: “The monoid of pairs of elements of A with a specified common

right inverse”.

And so on. We note that for a general diagram such as

q - q-q z qqqyz qqqqqqYy�
the associated functor is the direct product of the functors associated with the
graph-theoretic connected components of the diagram. Each of these compo-
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nents, except those of the form q q-� , must have, by (10.6.17), the prop-

erty that arrows, if any, all go in the same direction, i.e., from left to right or
from right to left. Subject to this restriction, the arrows are independent.

Let us pause to note the curious fact that, although for every nonzero
cardinal r, the construction that associates to a monoid A the monoid of
its right invertible elements given with a specified r-tuple of right inverses is
a representable functor, this is false for r = 0 :

Exercise 10.6:3. Let H : Monoid →Monoid be the functor associating
to a monoid A its submonoid of right invertible elements (a subfunctor of
the identity functor).
(i) Show that H is not representable, if you did not already do so as
Exercise 8.2:2(i).
(ii) Show, however, that the composite functor HH is representable, and
concisely describe this functor.
(iii) Show that H can be written as a direct limit of representable functors.
(Hint: can you write the empty set as an inverse limit of nonempty sets?)

It is natural to ask how to compose two representable functors expressed
in terms of E-systems.

Exercise 10.6:4. In this exercise, “functor” will mean “representable func-
tor Monoid→Monoid ”.
(i) Define precisely what is meant by the connected components of an
E-system, and prove the assertion made above that the functor associated
with an E-system is the direct product of the functors associated with its
connected components. Using this result, reduce the problem of describ-
ing the E-system of the composite of two functors to the case where the
E-systems of the given functors are connected.
(ii) Characterize in terms of E-systems the results of composing an arbi-
trary functor on the right and on the left with the functors having the di-

agrams q and q . (Thus, four questions are asked, though

two of them are trivial to answer.)

This leaves us with the problem of describing the composite of two
functors whose associated diagrams are both connected, and each have
more than one element. The answer is quite simple, but the argument
requires two preliminary observations:
(iii) Show that if s, t are two left invertible elements of a monoid A, or
two right invertible elements, then the condition s t = e implies that they
are both invertible.
(iv) Let V be a functor whose diagram is connected. Show that if some
ξ ∈ |V (A)| has an invertible element of A in at least one coordinate, then it
has invertible elements in all coordinates, and these are determined by that
one coordinate. Show that the set of elements ξ with these properties forms
a submonoid of V (A), isomorphic to the group of invertible elements of
A. (In writing “at least one coordinate” above, I am taking our description
of V to be that of Theorem 10.6.20, which does not include a coordinate
indexed by u.)
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(v) Deduce from (iii) and (iv) a description for the composite of any two
functors whose diagrams are both connected and each have more than one
element (not counting u as an element of our diagrams).

Exercise 10.6:5. Suppose f : V → V ′ is a morphism of representable
functors Monoid → Monoid, and W is another such functor. As-
suming the results of the preceding exercise, show how to describe the
map of E-systems corresponding to f ◦ W : VW → V ′W, respectively
W ◦ f : W V →W V ′, in terms of the map of E-systems corresponding to
f.

Exercise 10.6:6. We saw in the discussion following Corollary 10.5.1 that
the object representing a composite of representable functors among vari-
eties could be constructed from presentations X | Y U and X ′ | Y ′ V
of representing objects for those functors, using a set of generators in-
dexed by X ×X ′ and a set of relations indexed by (Y ×X ′) t (X × Y ′).
See whether you can get the results of the preceding two exercises by
applying this idea to presentations of the representing objects for func-
tors Monoid→Monoid induced by given E-systems. (If you did Exer-
cise 10.5:1, you will be able to apply the results of that exercise here; if not,
you can still work out the corresponding results for this particular case.)

10.7. Functors to and from some related categories

The above characterization of representable functors Monoid → Monoid
can be used to characterize various classes of representable functors involving
the category Group as well.

For example, if V is a representable functor Group → Monoid, then
writing G : Monoid → Group for the group-of-invertible-elements func-
tor, we see that V will be determined by the composite V G : Monoid →
Monoid. Since G is representable (cf. (10.5.3)), V G will also be, and so
can be described as in the preceding section. Which representable functors
Monoid → Monoid occur as such composites V G ? Clearly, those which
depend on their argument only via its group of invertible elements. If we
write U for the forgetful functor Group → Monoid, of which G is the
right adjoint, this means that the functors Monoid→Monoid that come
up will be those that are invariant under right composition with UG; the
precise statement turns out to be that they are isomorphic with their com-
posite with UG, the isomorphism being given by the counit UG→ IdMonoid

of the above adjunction.
A similar approach, using the left adjoint F of U (the construction of the

enveloping group of a monoid) gives a characterization of the representable
functors Monoid → Group; and a combination of the two gives a charac-
terization of representable functors Group→ Group.
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The next exercise gives the details of the approach sketched above, in
the general context of relating representable functors Group → V and
V → Group to representable functors Monoid → V and V →Monoid.
The exercise after that combines this result with our characterization of rep-
resentable functors Monoid →Monoid to get very simple descriptions of
the functors we are looking for.

First, some notational details. As above,

(10.7.1)

U : Group→Monoid will denote the “forgetful” functor.

F : Monoid→ Group will denote the left adjoint of U, the
“universal enveloping group” functor.

G : Monoid → Group will denote the right adjoint of U,
the “group of invertible elements” functor.

It is clear that the counit of the first adjunction and the unit of the second
are isomorphisms

εU, F : FU ∼= IdGroup and ηG,U : IdGroup
∼= GU.

In general, when two maps compose to the identity in one order, their com-
posite in the opposite order is a retraction of one object to a subobject
isomorphic to the other. In this case, we see that the composites of our two
adjoint pairs in the reverse order, UF and UG, are retractions of Monoid
onto U(Group), which is clearly a full subcategory of Monoid isomorphic
to Group. The other unit and counit of our adjunctions relate each monoid
to its image in this subcategory under the corresponding retraction; let us
write these

η = ηU, F : IdMonoid −→ UF and ε = εG,U : UG −→ IdMonoid

(breaking the convention that η and ε generally denote the unit and counit
of the same adjunction).

Exercise 10.7:1. (i) Show that the monoids S of the form U(A) (A a
group) are precisely those monoids for which the universal map η(S) : S →
UF (S) is an isomorphism, and also precisely those monoids for which the
universal map ε(S) : UG(S)→ S is an isomorphism.
(ii) Show that UF is left adjoint to UG.
(iii) Show that for any variety V, the representable functors Group→ V
can be identified with the representable functors V : Monoid→ V which
are invariant under composition on the right with UG (i.e., those V such
that the induced map V ε : V UG→ V is an isomorphism).
(iv) Show similarly that the representable functors V → Group can be
identified with the representable functors V→Monoid which are invari-
ant under composition on the left with UG (i.e., such that the induced
map εV : UGV → V is an isomorphism).

Though we shall not need it, you may also
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(v) Show that the functors Group → V, respectively V → Group
which have right adjoints (i.e., the left adjoints of representable functors)
can be identified with the functors Monoid → V, respectively V →
Monoid which have right adjoints and are invariant under composition
on the right, respectively on the left with UF.

Exercise 10.7:2. Using the preceding exercise,
(i) Show that every representable functor Group→Monoid is a power
(i.e., product of copies) of the forgetful functor U. (First proved by D. Kan
[97].)
(ii) Show that every representable functor Monoid→ Group is a power
of the group-of-invertible-elements functor G.
(iii) Show that every representable functor Group→ Group is a power
of the identity functor.

Thus, in each of these three cases, all representable functors arise as powers
of one “basic” functor, U, G or IdGroup respectively. Calling this functor B
in each case, so that the general representable functor between the categories
in question has the form BX , let us observe that for any set map X → Y we
get a map BY → BX . Are these the only morphisms among these functors?

Not quite. For instance, in the case of functors Group → Group, if we
take X = Y = 1, so that we are considering endomorphisms of the identity
functor of Group, there is not only the identity morphism, associating to
every group its identity map, and arising from the unique set map 1 → 1,
but also the trivial morphism, associating to every group the endomorphism
under which all elements go to e. To correctly describe the morphisms among
our functors, let Setpt denote the category of pointed sets, whose objects
are sets given with a single distinguished element, and whose morphisms
are set maps sending distinguished element to distinguished element. (This
may be identified with the variety Ω-Alg with Ω consisting of a single
zeroary operation.) The next exercise shows that this is the right category
for parametrizing these functors.

Exercise 10.7:3. (i) Let L : E-System→ Setpt denote the functor tak-
ing every E-system X = (X+, X−, E, u) to the pointed set (X+, u).
Show that when restricted to the full subcategory of E-systems whose

“box pictures” have all connected components of the form q q-� , the

functor L gives an equivalence of categories.
(ii) Deduce that in each of the cases of the preceding exercise, the indi-
cated category of representable functors is equivalent to (Setpt)op. Pre-
cisely, letting B denote the indicated “basic” functor in each case, show
that morphisms BX → BY correspond to the morphisms of pointed sets
(Y ∪{u}, u)→ (X ∪{u}, u) where u denotes an element not in X or Y.
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Let us return to a point mentioned at the beginning of the preceding
section. In the description of a comonoid object of Monoid, the co-neutral-
element was uniquely determined, and hence provided no information; nev-
ertheless, the coidentities it was required to satisfy played an important role
in our arguments. The next exercise shows that without these coidentities,
those results fail.

Exercise 10.7:4. Consider the following two representable functors from
Monoid to the variety of semigroups with a distinguished element (zeroary
operation) e subject to no additional identities.
(a) The functor V taking A ∈ Ob(Monoid) to the semigroup with un-
derlying set |A|, multiplication given by x ∗ y = x for all x and y, and
distinguished element the neutral element e of A.
(b) The functor W specifying the same underlying set and distinguished
element, but with multiplication given by x ∗ y = e.

Verify that in both cases the operation ∗ is indeed associative (so
that the functors take values in the variety claimed), and also that in both
cases the distinguished element e is an idempotent with respect to ∗ (i.e.,
satisfies e ∗ e = e). Show that in case (a), this element also satisfies the
right neutral law, but not the left neutral law, while in case (b), neither
neutral law is satisfied.

Note that in case (b) of the above exercise, the distinguished element
satisfies the identities e ∗ x = e = x ∗ e. An element with this property is
called a zero element of a semigroup, because these identities hold for 0 in
the multiplicative semigroup of a ring. An element of a semigroup satisfying
only the first of these identities is called a left zero element. We see that in
case (a) every element is a left zero. The unique multiplication with the latter
property on any set is therefore called the left zero multiplication.

Little is known about general representable functors from Monoid to
Semigroup. Dropping the zeroary co-operations e, the above exercise gives
examples that are noteworthy in that construction (a) used nothing about the
given monoid A but its underlying set, while (b) used only its structure of set
with distinguished element e. The next exercise displays some constructions
that do use the monoid operation, but in peculiar – almost random – ways.

Exercise 10.7:5. (i) Show that one can define a representable functor
Monoid → Semigroup by associating to every monoid A the set of
pairs (ξ, η) such that ξ is an invertible and η an arbitrary element of A,
with the operation (ξ, η)(ξ′, η′) = (e, ξ−1ξ′−1ξξ′).
(ii) Show that if we impose on the ordered pairs in the description of the
above functor the additional condition that ξn = e for a fixed positive
integer n, and/or the condition ξη = η, the resulting subsets are still
closed under the above operation, and hence define further representable
functors.

The above observations lead to

Exercise 10.7:6. (Open question [3, Problem 21.7, p. 94]) Find a descrip-
tion of (or other strong results about) all representable functors W →
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Semigroup, where W is any of the varieties Monoid, Group or
Semigroup.

The following questions may be easy or hard to answer; I have not thought
about them:

Exercise 10.7:7. Let V : Monoid → Monoid be a representable func-
tor whose E-system has a single connected component, and is not one ofq , q , or q q-� . What can one say about the class

of monoids of the form V (A) (A ∈ Ob(Monoid)) ? How much does this
class depend on the choice of V ? How does it compare with the class of
monoids that are embeddable in groups? With the class of monoids H(A),
where H is the functor of Exercise 10.6:3?

One may likewise ask these questions for the classes of monoids arising
as values of the left adjoints of such functors.

Some results on representable functors to and from the variety of heaps
and related varieties are given in [3, §22].

10.8. Representable functors among categories
of abelian groups and modules

Let us next consider representable functors from abelian groups to monoids.
Let

V : Ab −→ Monoid

be such a functor, with representing coalgebra (R, m, e). Since coproducts
of abelian groups are direct sums, we may write the coproduct of two copies
of R as Rλ ⊕ Rρ; thus, every element of this group has the form yλ + zρ

for unique y, z ∈ |R|. In particular, for each x ∈ |R| there exist y, z ∈ |R|
such that

m(x) = yλ + zρ.

As in the case of functors on Monoid, the co-neutral-element must be the
trivial map. Applying the coneutral laws to the above equation, we immedi-
ately get x = y = z, that is,

m(x) = xλ + xρ (x ∈ |R|).

Given any two elements a, b ∈ |V (A)| = Ab(R, A), this says that their
“product” in V (A) is the homomorphism taking each x ∈ |R| to a(x)+b(x).
In other words, the induced “multiplication” of homomorphisms is just the
familiar addition of homomorphisms of abelian groups.

It is clear that, conversely, for every abelian group R this operation on
homomorphisms with domain R does make hR a Monoid-valued functor.
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So for each R ∈ Ob(Ab), there is a unique representable functor V : Ab→
Monoid whose representing coalgebra has underlying object R.

In view of the form V takes, it is natural to call the binary co-operation
on R a “coaddition” rather than a “comultiplication”. Of course, it is well
known that on the sets Ab(R, A), addition of maps is actually an operation
of group, and, indeed, of abelian group, with the unique inverse operation
described in the obvious way. Thus, our determination of all representable
functors Ab → Monoid also determines all representable functors Ab →
Group and Ab→ Ab. That is,

Lemma 10.8.1. For every object R of Ab, there is a unique co- Monoid
object, a unique co- Group object and a unique co- Ab object of Ab, with
underlying object R. Each of these has coaddition given by the diagonal map

(10.8.2) a(x) = xλ + xρ (x ∈ |R|),

and co-neutral-element given by e(x) = 0 (x ∈ |R|). In the co- Group and
co- Ab structures, the co-inverse operation is given by

i(x) = −x. ut

Since this result was so easy to prove, let’s make some more work for
ourselves, and try to generalize it!

Recall that an abelian group is equivalent to a left Z-module, and that for
any ring K, a left K-module M can be described as an abelian group with
a family of abelian group endomorphisms, called “scalar multiplications”,
indexed by the elements of K, such that sums of these endomorphisms,
composites of these endomorphisms, and the identity endomorphism are the
endomorphisms indexed by the corresponding sums and products of elements
of K and by the multiplicative neutral element 1 ∈ |K|. (As usual, unless the
contrary is stated our rings are members of the variety Ring1 of associative
rings with multiplicative neutral element 1.)

Let us write K-Mod for the variety of left K-modules. It is easy to see
that the argument giving Lemma 10.8.1 goes over immediately to give the
same conclusions for representable functors from K-Mod to the varieties
Monoid, Group and Ab.

What about functors from K-Mod to K-Mod – or better, to L-Mod,
for another ring L ?

To study this question, let us write out explicitly the identities for the
scalar multiplication operations of K-Mod which we stated above in words.
The identities saying that each such multiplication is an abelian group endo-
morphism say that for all c ∈ |K| and x, x′ ∈ |M |,

(10.8.3) c (x+ x′) = c x+ c x′.
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(We are here taking advantage of the fact that group homomorphisms can
be characterized as set-maps respecting the binary group operation alone.)
The identities characterizing sums and composites of scalar multiplications,
and scalar multiplication by 1 ∈ |K|, say that for c, c′ ∈ |K|, x ∈ |M |,

(10.8.4) (c+ c′)x = c x+ c′x

(10.8.5) (c c′)x = c (c′x)

(10.8.6) 1x = x.

Now suppose L is another ring, and (R, a, i, e, (sd)d∈|L|) a co-L-module
object in K-Mod, where R is a K-module, the morphisms a, i and e
give the co-abelian-group structure of R, and for each d ∈ |L|, sd is the co-
operation corresponding to scalar multiplication by d. The co-abelian-group
structure will, as we have noted, have the form described in Lemma 10.8.1.
The sd will be unary co-operations, i.e., K-module homomorphisms R→ R,
which can thus be looked at as unary operations on the set |R|. We now need
some basic observations:

Exercise 10.8:1. Let R be any K-module, and a, i, e the coaddition,
coinverse and cozero morphisms defining the unique co- Ab structure on
R in K-Mod.
(i) Show that every K-module endomorphism s : R → R satisfies the
coidentity corresponding to the identity (10.8.3); i.e., show that the unary
operation induced by such an s on each hR(A) is an abelian group endo-
morphism.
(ii) Show that such an operation s induces the identity operation on each
hR(A) (cf. (10.8.6)) if and only if it is the identity endomorphism of R.
(iii) Show that if sd, sd′ and sd′′ are three endomorphisms of R, then
the operations on the abelian groups hR(A) induced by sd and sd′ sum
to the operation induced by sd′′ if and only if sd + sd′ = sd′′ .
(iv) Show likewise that the operation induced by sd′′ is the composite in
a given order of the operations induced by sd and sd′ (cf. (10.8.5)) if and
only if sd′′ is the composite of sd and sd′ in the opposite order.

From the above results we deduce that
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(10.8.7)

If K and L are rings, and R a left K-module, then a co-
left-L-module structure on R is equivalent to a system of
R-module endomorphisms (sd)d∈|L| which for all d, d′ ∈ |L|
satisfy

(10.8.8) s1 = idR

(10.8.9) sd+d′ = sd + sd′

(10.8.10) sdd′ = sd′ sd.

This is a nice result, but we can make it more elegant with a change
of notation. The reversal of the order of composition in (10.8.10) can be
cured if we write the operators sd on the right of their arguments, instead of
on the left, and compose them accordingly. Moreover, once the operation of
elements of L (by co-scalar-multiplications) is written on a different side from
the operation of elements of K (by scalar multiplication), there is no real
danger of confusion if we drop the symbols s, i.e., replace the above notation
sd(x) by x d (x ∈ |R|, d ∈ |L|). We now find that the scalar multiplications
by elements of K and the co-scalar-multiplications by elements of L satisfy
a very symmetrical set of conditions, namely, that for all c, c′ ∈ |K|, x, x′ ∈
|R|, d, d′ ∈ |L|,

(10.8.11) 1x = x x 1 = x

(10.8.12) c (x+ x′) = c x+ c x′ (x+ x′) d = x d+ x′d

(10.8.13) (c+ c′)x = c x+ c′x x (d+ d′) = x d+ x d′

(10.8.14) (c c′)x = c (c′x) x (d d′) = (x d) d′

(10.8.15) c (x d) = (c x) d.

Here (10.8.15), and the right hand equation of (10.8.12), say that the co-
scalar-multiplications are endomorphisms of the left K-module R. The con-
ditions in the left-hand column, together with the identities for the abelian
group structure of R, constitute the identities of a left K-module, while the
remaining three conditions on the right say that the co-scalar-multiplication
endomorphisms behave as required to give a co-left-L-module structure.
(Only three such conditions are needed, as against the four on the left, be-
cause of Exercise 10.8:1(i).)

We have, in fact, rediscovered a standard concept of ring theory:

Definition 10.8.16. An abelian group on which one ring K operates by
maps written on the left and another ring L operates by maps written on
the right so that (10.8.11)-(10.8.15) are satisfied is called a (K, L)-bimodule.
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For given K and L, the variety of (K, L)-bimodules will be denoted
K-Mod-L.

Note that given two arbitrary varieties of algebras V and W, the category
of V-coalgebra objects of W cannot in general be regarded as a variety of
algebras, because the co-operations s : R→

ari(s)
R do not have the form of

maps |R|β → |R|, unless ari(s) = 1. In the present case, it happened that the
two non-unary co-operations of our coalgebras, the coaddition and the cozero,
were uniquely determined, so that the structure could be defined wholly by
unary co-operations, and so, atypically, the category of these coalgebras could
be identified with a variety of algebras, to wit, K-Mod-L.

Ring-theorists often write a (K, L)-bimodule R as KRL. Here the sub-
scripts are not part of the “name” of the object, but reminders that K
operates on the left and L on the right. (Actually, ring-theorists more often
use other letters, such as B, for “bimodule”, or M, for “module”, reserving
R for rings. But in this chapter we are using R wherever possible for “repre-
senting object”.) That such a bimodule structure makes R a co-L-module in
K-Mod corresponds to the result familiar to ring-theorists, that the set of
left K-module homomorphisms from a (K, L)-bimodule to a left K-module,

(10.8.17) K-Mod(KRL, KA)

has a natural structure of left L-module. Let us describe without using the
language of coalgebras how this L-module structure arises. If we regard the
actions of the elements of L on R as K-module endomorphisms, then the
functoriality of K-Mod(−, −) in its first variable turns these into endomor-
phisms of the abelian group K-Mod(KR, KA), and since this functoriality
is contravariant, the order of composition of these endomorphisms is reversed;
so from the right L-module structure on R, we get a left L-module structure
on that hom-set. Explicitly, given any f ∈ K-Mod(R, A) and d ∈ |L|, the
action of d on f in this induced left L-module structure is given by

(10.8.18) (d f)(x) = f(x d).

This takes a more elegant form if we adopt

(10.8.19)

(Frequent convention in ring theory.) If possible, write homo-
morphisms of left modules on the right of their arguments,
and homomorphisms of right modules on the left of their ar-
guments, and use the notation for composition of such homo-
morphisms appropriate to the side on which they are written.

For a discussion of (10.8.19), and its advantages and disadvantages, see [55].
We have already applied this idea once, in the change of notation introduced
immediately after (10.8.7). In our present situation, it suggests that we should
write elements f ∈ K-Mod(R, A) on the right of elements x ∈ |A|. When
we do so, (10.8.18) takes the form
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(10.8.20) x (d f) = (x d)f.

In summary:

Lemma 10.8.21. If K and L are unital associative rings, then
a co-L-Mod object R of K-Mod is essentially the same as a
(K, L)-bimodule KRL. When R is regarded in this way, the left L-module
structure on the functor K-Mod(R, −) consists of the usual abelian group
structure on hom-sets, together with the scalar multiplications (10.8.18), or
in right-operator notation, (10.8.20). ut

It is not hard to verify that the above correspondence yields an equivalence
of categories K-Mod-L ≈ Rep(K-Mod, L-Mod)op.

10.9. More on modules: left adjoints of representable
functors

Let us now find the left adjoint to the functor induced as above by a
(K, L)-bimodule R. This must take a left L-module B to a left K-module
A with a universal left L-module homomorphism

(10.9.1) h : B −→ K-Mod(R, A).

To find this object A, we will apply our standard heuristic approach:
Consider an arbitrary left K-module A with an L-module homomorphism
(10.9.1), and see what elements of A, and what relations among these ele-
ments, this map gives us.

For each y ∈ |B|, (10.9.1) gives a homomorphism h(y) : R→ A; and such
a homomorphism gives us, for each x ∈ |R|, an element of A. With (10.8.19)
in mind, let us write this as

x ∗ y = xh(y) (x ∈ |R|, y ∈ |B|).

I claim that the conditions that these elements must satisfy are that for all
x, x′ ∈ |R|, y, y′ ∈ |B|, c ∈ |K|, d ∈ |L|,

(10.9.2) (x+ x′) ∗ y = x ∗ y + x′ ∗ y x ∗ (y + y′) = x ∗ y + x ∗ y′

(10.9.3) c (x ∗ y) = (c x) ∗ y —

(10.9.4) x ∗ (d y) = (x d) ∗ y

Indeed, the two equations on the left are the conditions for the maps h(y) to
be left K-module homomorphisms, while the equations on the right and at
the bottom are the conditions for the map (10.9.1) to be a homomorphism of
left L-modules with respect to the given L-module structure on B and the
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operations (10.8.20) on K-Mod(R, A). We note the gap on the right-hand
side of (10.9.3); since nothing acts on the right on the L-module B, there
is nothing to put there. (But do not lose heart; this gap will eventually be
filled.) So the universal A with a homomorphism (10.9.1) will be presented
by generators x ∗ y (x ∈ |R|, y ∈ |B|) and relations (10.9.2)-(10.9.4).

Again we have discovered a standard concept. The K-module presented
by this system of generators and relations is denoted

R⊗L B,

and called the tensor product over L of the (K, L)-bimodule R and the left
L-module B. The generators of this module corresponding to the elements
x ∗ y of the above discussion are written x⊗ y (x ∈ |R|, y ∈ |B|).

We reiterate that R ⊗L B is only a left K-module. Intuitively, when we
form the tensor product (KRL)⊗L (LB), the operation of tensoring over L
“eats up” the two L-module structures, leaving only a K-module structure.
This is dual to the situation of (10.8.17), where the construction of taking
the hom-set over K “ate up” the two K-module structures, leaving only an
L-module structure.

We have shown:

Lemma 10.9.5. If we regard a (K, L)-bimodule KRL as a co-L-Mod ob-
ject of K-Mod, then the functor it represents,

K-Mod(R, −) : K-Mod −→ L-Mod

has for left adjoint the functor

R⊗L − : L-Mod −→ K-Mod.

Thus, given the bimodule R, a left K-module A, and a left L-module B, we
have a functorial bijection, which is in fact an isomorphism of abelian groups,

L-Mod(B, K-Mod(R, A)) ∼= K-Mod(R⊗L B, A). ut

An interesting consequence of Lemmas 10.8.21 and 10.9.5 is that every
representable functor between module categories, and likewise the left adjoint
of every such functor, respects the Ab-structures of these categories, i.e.,
sends sums of morphisms to sums of morphisms. This is not true of general
functors between module categories, as can be seen from the functor A 7→
A⊗A of Exercise 10.5:4(i).

In defining the tensor product R ⊗L B, I said that one presents it as a
left K-module using the relations (10.9.2)-(10.9.4). Another standard defi-
nition is to first present it as an abelian group using only the relations cor-
responding to (10.9.2) and (10.9.4), and then to use (10.9.3) to define a
left K-module structure on this group. Not every abelian group with ele-
ments x ∗ y (x ∈ |R|, y ∈ |B|) satisfying (10.9.2) and (10.9.4) has a left
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K-module structure satisfying (10.9.3); but the universal abelian group with
these properties does, because the universal construction is functorial in R
as a right L-module, and the left K-module structure of R constitutes a sys-
tem of right-L-module endomorphisms; these induce endomorphisms of the
constructed abelian group which make it a K-module.

This approach shows that the underlying abelian group structure of R⊗LB
depends only on the right L-module structure of R and the left L-module
structure of B; this is again analogous to the situation for the hom-set
K-Mod(KRL, KA), which starts out as an abelian group constructed us-
ing only the left K-module structures of R and A, and then acquires a left
L-module structure from the right L-module structure of R, by functoriality.

We should now learn how to compose the representable functors we have
described. Suppose we have three rings, H, K, L, and adjoint pairs deter-
mined by an (H, K)-bimodule R, and a (K, L)-bimodule S :

(10.9.6) H-Mod
H-Mod(HRK , −)-
�

HRK ⊗K −
K-Mod

K-Mod(KSL, −)-
�

KSL ⊗L −
L-Mod.

By observations we made in §10.5, the underlying left K-module of the
coalgebra determining the composite adjoint pair can be gotten by applying
the left adjoint functor R ⊗K − to the underlying object of the coalgebra
determining the other adjoint pair; hence it is the left H-module R ⊗K S.
It remains to find the coalgebra structure, i.e., the right L-module struc-
ture, on this object; this arises from the right L-module structure on S, by
the same “functoriality” effect noted above for the left module structure of
R⊗LB. So the composite of the adjoint pairs shown above is determined by
an (H, L)-bimodule H(R⊗K S)L.

At this point, we have discussed enough kinds of structure on tensor prod-
ucts that we are ready to put them all into a definition, after which we will
state formally the above characterization of representing objects for compos-
ite functors.

Definition 10.9.7. If K is a ring, R a right K-module and S a left
K-module, then

R ⊗K S

will denote the abelian group presented by generators x⊗y (x ∈ |R|, y ∈ |S|)
and the relations (for all x, x′ ∈ |R|, d ∈ |K|, y, y′ ∈ |S|)

(10.9.8) (x+ x′)⊗ y = x⊗ y + x′ ⊗ y, x⊗ (y + y′) = x⊗ y + x⊗ y′

(10.9.9) (x d)⊗ y = x⊗ (d y).
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If R is in fact an (H, K)-bimodule, respectively if S is a (K, L)-bimodule,
respectively if both are true (by which we mean, if the right K-module struc-
ture of R is given as part of an (H, K)-bimodule structure, and/or if the left
K-module structure of S is given as part of a (K, L)-bimodule structure, for
some rings H, L), then the abelian group R⊗KS becomes a left H-module,
respectively a right L-module, respectively an (H, L)-bimodule, with scalar
multiplications characterized by (one or both of) the following formulas for
c ∈ |H|, e ∈ |L| :

(10.9.10) c (x⊗ y) = (c x)⊗ y, (x⊗ y) e = x⊗ (y e)

We see that (10.9.10) has supplied the symmetry that was missing in
(10.9.3)!

Note that the four cases of the above definition (tensoring a right module
RK or a bimodule HRK with a left module KS or a bimodule KSL) reduce
to a single case, if for every K we identify Mod-K with Z-Mod-K and
K-Mod with K-Mod-Z, and likewise Ab with Z-Mod-Z. So in further
considerations, it will suffice to talk about the case where both objects are
bimodules.

Let us now set down the result sketched before this definition.

Lemma 10.9.11. In the situation shown in (10.9.6), the composite of the
functors among left module categories represented by bimodules HRK and

KSL is represented by the (H, L)-bimodule R⊗K S. ut

Terminological note: Given bimodules HRK and KSL, we may call a map
∗ from |R| × |S| into an (H, L)-bimodule HTL satisfying the equations
corresponding to (10.9.8)-(10.9.10) (with ∗ for ⊗) a “bilinear map R ×
S → T ”, generalizing the term we have already used in the case of abelian
groups (§4.9), so that we may describe R⊗K S as an (H, L)-bimodule with a
universal bilinear map of these bimodules into it. However, most ring theorists
feel that the term “bilinear” logically only means “left H-linear and right
L-linear”, i.e., the conditions of (10.9.8) and (10.9.10), and they use the
adjective “balanced” to express the remaining condition (10.9.9). So they
would call R⊗K S an (H, L)-bimodule with a universal K-balanced bilinear
map of R× S into it.

The results on modules and bimodules developed above are sometimes re-
garded as a “model case” in terms of which to think of the general theory
of representable functors among varieties of algebras, and their representing
coalgebras. Thus, Freyd entitled the paper [11] in which he introduced the
theory of such functors and their representing coalgebras, “On algebra-valued
functors in general, and tensor products in particular”, and he called the coal-
gebra that represents a composite of representable functors between arbitrary
varieties of algebras the “tensor product” of the coalgebras representing the
given functors. I recommend that paper to the interested student, though
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with one word of advice: Ignore the roundabout way the author treats ze-
roary operations. Instead, consider them, as we have done, to be morphisms
from the empty product (the terminal object of the category) into the object
in question.

Further remarks: In the paragraph following (10.8.10), we chose a notation
which “separated” the actions of elements of K and elements of L, writing
them on opposite sides of elements of R. It is also worth seeing what happens
if we do not separate them, but continue to write them both to the left of
their arguments. The actions of elements of L will then compose in the
opposite way to the multiplication of those elements in the ring L. This can
be thought of as making R a left module over Lop, the opposite of the ring
L (the ring with the same underlying set and additive group structure as
L, but with the order of multiplication reversed). Thus we have on R both
a left K-module structure and a left Lop-module structure, related by the
conditions that the additive group operations of the two module structures
are the same, and that the scalar multiplications of the Lop-module structure
are endomorphisms of the K-module structure. The latter condition says that
the images of the elements of K and of elements of Lop in the endomorphism
ring of the common abelian group R commute with one another. Now we
saw in §4.13 that given two rings P and Q, if we form the tensor product
of their underlying abelian groups, this can be given a ring structure such
that the maps p 7→ p ⊗ 1 and q 7→ 1 ⊗ q are homomorphisms of P and Q
into P ⊗Q, whose images commute with one another, and which is universal
among rings given with such a pair of homomorphisms from P and Q.
Thus, in our present situation, the mutually commuting left K-module and
left Lop-module structures on R are equivalent to a single structure of left
K ⊗ Lop-module. That is

(10.9.12) K-Mod-L ∼= (K ⊗ Lop)-Mod.

Hence one can study bimodules with the help of the theory of tensor product
rings, and vice versa.

This also shows us that if we want to study representable functors to or
from categories of bimodules, we do not need to launch a new investigation,
but can reduce this situation to that of modules by using rings K0 ⊗Kop

1 ,
etc., in place of K, etc..

Exercise 10.9:1. (i) If you did Exercise 4.13:4(ii), translate the results
you got in that exercise into a partial or complete description of all
(Q(21/3), Q(21/3))-bimodules.
(ii) If you did Exercise 4.13:4(i), translate the results you got there to
a partial or complete description of all R-centralizing (C, C)-bimodules
B, where “R-centralizing” means satisfying the identity r x = x r for all
r ∈ R, x ∈ B.

The student familiar with the theory of modules over commutative rings
may have been surprised at my saying earlier that when we form a hom-set
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K-Mod(KR, KA) or a tensor product RL ⊗L LB, the K-module structure,
respectively the L-module structure, was “eaten up” in the process, since
in the commutative case, these objects inherit natural K- and L-module
structures. You can discover the general statement of which these apparently
contradictory observations are cases by doing the next exercise. (The answer
comes out in parts (iii) and (iv).)

Exercise 10.9:2. Let K be a ring (not assumed commutative) and M a
left K-module.
(i) Determine the structure, in the sense of §9.10, of the functor
K-Mod(KM,−) : K-Mod→ Set.
(ii) Determine similarly the structure of K-Mod(−, KM) : K-Modop →
Set.
(iii) Determine the structure of K-Mod(−,−) : K-Modop ×K-Mod →
Set.
(iv) Answer the corresponding three questions with tensor products in
place of hom-sets (with or without the help of Corollary 8.11.8).

Let us note another basic ring-theoretic tool that we can understand with
the help of the results of this section. Suppose f : L → K is a ring homo-
morphism. Then we can make any left K-module A into a left L-module by
keeping the same abelian group structure, and defining the new scalar multi-
plication by d · x = f(d)x (d ∈ |L|). This functor preserves underlying sets,
hence it is representable. It is called “restriction of scalars along f ”, and its
left adjoint is called “extension of scalars along f ”. (When f is the inclusion
of a subring L in a ring K these are natural terms to use. The usage in the
case of arbitrary homomorphisms f is a generalization from that case.) You
should find the first part of the next exercise straightforward, and the second
not too hard.

Exercise 10.9:3. Let f : L→ K be a ring homomorphism.
(i) Describe the bimodule representing the restriction-of-scalars func-
tor, and deduce a description of the extension-of-scalars construction
L-Mod→ K-Mod as a tensor product operation.
(ii) If K and L are commutative, we may also consider the “restric-
tion of base-ring” functor from K-algebras to L-algebras, defined to pre-
serve underlying ring-structures, and act as restriction of scalars on module
structures. (You may here take “algebras” over K and L either to mean
commutative algebras, or not-necessarily commutative algebras, depending
on what you are comfortable with; but as always when the contrary is not
stated, assume them associative.) We know this functor is representable.
(Why?) Describe its representing coalgebra. Show that the left adjoint of
this functor acts on the underlying modules of algebras by extension of
scalars. How is the ring structure on the resulting modules defined?

I will close our discussion of abelian groups and modules with an obser-
vation that goes back to the beginning of the preceding section: When we
determined the form of the general comonoid object of Ab, our argument
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used only the fact that we had a binary co-operation satisfying the coneu-
tral laws with respect to the unique zeroary co-operation – the coassociative
law was never called on! Thus, if we let Binare denote the variety of sets
with a binary operation and a neutral element e for that operation, then
co- Binare objects of Ab are automatically co- Monoid objects, and even
co- AbMonoid objects, and, as we noted, these have unique coinverse oper-
ations making them co- Group and co- Ab objects.

On the other hand, if we drop the co-neutral-element, then associativity
and commutativity conditions do make a difference:

Exercise 10.9:4. Characterize all representable functors from Ab to each
of the following varieties:
(i) Binar, the variety of sets given with a binary operation.
(ii) Semigroup (a subvariety of Binar).
(iii) AbSemigroup (a subvariety of Semigroup).

In the last two cases, you should discover that every such functor de-
composes as a direct sum of a small number of functors whose structures
are easily described.

10.10. Some general results on representable functors,
mostly negative

As we mentioned in Exercise 10.7:6, the form of the general representable
functor Monoid → Semigroup is not known. What about representable
functors going the other way, from Semigroup to Monoid ?

It is easy to show that in this case there are no nontrivial examples. The
idea is that in working in Semigroup, one has no distinguished elements
available, so there is no way to pin down a zeroary “neutral element” opera-
tion.

Before having you prove this, let me indicate the exception implied in the
word “nontrivial”. If C is any category with an initial object I, then the
functor hI takes every object of C to a one-element set, which of course
has a unique structure of V-algebra for every variety V; hence for every
variety V, the object I admits co-operations making it a V-coalgebra. Let
us call a functor represented by such a coalgebra, which takes every object
of C to a one-element algebra (terminal object) of V, a trivial functor
C → V. (Loosely, we could say the trivial functor, since it is unique up to
isomorphism.)

Exercise 10.10:1. Show that if W is a variety without zeroary operations,
and V a variety with at least one zeroary operation, then there is no
nontrivial representable functor W→ V.
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More generally, can you give a condition on a general category C with
finite coproducts that insures that there are no nontrivial representable
functors from C to a variety V with at least one zeroary operation?

Here is another observation about specific varieties from which we can
extract a general principle. We began this chapter with an example of a
representable functor from rings to groups; but if one looks for a nontrivial
representable functor from groups to rings, it is hard to imagine how one
might be constructed, because a nontrivial ring must have distinct 0 and 1,
and we have only one distinguished group element, e, to use in the coordi-
nates of a distinguished element of a ring we are constructing. This argument
can be made precise. To get the result from general considerations, we make

Definition 10.10.1. If C is a category with a terminal object T, let us (as
in Exercise 7.8:4) define a pointed object of C to mean a pair (A, p) where A
is an object of C and p a morphism T → A. (Thus, since T is the product
of the empty family of copies of A, such a pair is an object of C given with
a single zeroary operation.) A morphism (A, p) → (A′, p′) of such objects
will mean a morphism A→ A′ making a commuting triangle with p and p′.
The category of pointed objects of C, with these morphisms, will be denoted
Cpt.

Dually, if C is a category with an initial object I, then an augmented
object of C will mean a pair (A, a) where A is an object of C and a is
a morphism A → I (an “augmentation map”), equivalently, a zeroary co-
operation on A. Again using the obvious commuting triangles as morphisms,
we denote the category of augmented objects of C by Caug.

Thus, in comma category notation, Cpt = (T ↓ C), and Caug = (C ↓ I).
A category C will be called “pointed” if it has a zero object (an object

that is both initial and terminal; Definition 7.8.1).

Exercise 7.8:4 shows that if C is a category with a terminal object, then
Cpt is a pointed category. By duality, if C is a category with an initial
object, then Caug is likewise pointed. The next exercise begins with a few
more observations of the same sort, then gets down to business.

Exercise 10.10:2. (i) Let C be a category with a terminal (respectively
initial) object, so that, as noted above, Cpt (respectively Caug) is a
pointed category. Show that the forgetful functor Cpt → C (respectively
Caug → C) is an equivalence if and only if C is a pointed category.

(ii) Show that if V is a variety of algebras, then Vpt is equivalent to a
variety of algebras.
(iii) Show that a variety of algebras V is a pointed category if and only
if V has a zeroary operation, and all derived zeroary operations of V are
equal.

Now suppose V is a variety, and C a category having small coprod-
ucts.
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(iv) Show that Caug also has small coproducts, and that

Rep(C, Vpt) ≈ Rep(Caug, Vpt) ≈ Rep(Caug, V).

(If you don’t see how to begin, you might think first about the case V =
Set.)

(v) Show that Group is pointed, and that (Ring1)pt consists only of
the trivial ring with its unique pointed structure. Deduce that there are no
nontrivial representable functors from Group or any of its subvarieties to
Ring1 or any of its subvarieties (e.g., CommRing1).
(vi) Also deduce from (iv) the result of Exercise 10.10:1.

The term “augmented” comes from ring theory, where an “augmenta-
tion” on a k-algebra R means a k-algebra homomorphism ε : R → k. This
ring-theoretic concept probably originated in algebraic topology, where the
cohomology of a pointed space acquires, by contravariance of the cohomology
ring functor, such an augmentation.

Here is another sort of nonexistence result.

Exercise 10.10:3. Let R be an object of a variety V, and let
τ : Rλ Rρ → Rλ Rρ denote the automorphism that interchanges xλ

and xρ for all x ∈ |R|. Denote by Sym(Rλ Rρ) the fixed-point algebra
of τ ; i.e., the algebra of “(λ, ρ)-symmetric” elements of Rλ Rρ.

(i) Show that a binary co-operation m : R → Rλ Rρ is cocommuta-
tive (i.e., satisfies the coidentity making the induced operations on all sets
V(R, A) commutative) if and only if it carries R into Sym(Rλ Rρ).

(ii) Show that in the variety Group, one has Sym(Rλ Rρ) = {e} for
all objects R.
(iii) Deduce that there are no nontrivial representable functors Group→
Ab, hence also no nontrivial representable functors Group → Ring1;
and that there are no nontrivial representable functors Group →
Semilattice, hence also no nontrivial representable functors Group →
Lattice.

Having exhausted the subject of representable functors from groups to lat-
tices, we may ask, what about functors in the reverse direction? The category
Lattice has no zeroary operations, so there can be no nontrivial functors
from it or any of its subvarieties to Group by Exercise 10.10:1; but suppose
we get out of this hole by considering lattices with one or more distinguished
elements. I do not know the answer to the first part of the next exercise,
though I do know the answer to the second.

Exercise 10.10:4. (i) Is there a variety L of lattices for which there exists
a nontrivial representable functor Lpt → Group ?
(ii) For C a category with a terminal object T, let C2-pt denote the
category of 3-tuples (A, p0, p1) where A is an object of C, and p0, p1
are morphisms T ⇒ A. Is there any variety L of lattices for which there
exists a nontrivial representable functor L2-pt → Group ?
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Of course, not every plausible heuristic argument restricting the properties
of representable functors is valid. For instance, every primitive operation of
lattices, and hence also every derived operation of lattices, is isotone with
respect to the natural ordering of the underlying set, while Boolean rings
have the operation of complementation, which is not isotone. Nevertheless,
we have the construction of the following exercise.

Exercise 10.10:5. Let DistLat0,1 denote the variety of distributive lat-
tices (Exercise 6.1:15) with least element 0 and greatest element 1. An
element x of such a lattice L is called complemented if there exists y ∈ |L|
such that x ∧ y = 0 and x ∨ y = 1.

Show that for L ∈ Ob(DistLat0,1), the set of complemented elements
of L can be made a Boolean ring, whose natural partial ordering is the
restriction of the natural partial ordering of L, and that this construction
yields a representable functor C : DistLat0,1 → Bool1. Give a description
of this functor in terms of “tuples of elements satisfying certain relations”,
and describe the Boolean operations on such tuples.

Here is a triviality question of a different sort.

Exercise 10.10:6. If U, V, W are varieties such that there exist non-
trivial representable functors W → V and V → U, must there exist a
nontrivial representable functor W→ U ?

Let us turn to positive results. We recall from Exercise 8.3:5 that every
equivalence of categories is also an adjunction. Note also that a category C
equivalent to a variety with small colimits will have small colimits, hence in
particular, will have small coproducts. Thus we can make sense of the concept
of a representable functor from C to varieties of algebras. We deduce

Lemma 10.10.2. Suppose C
i-

�
j

V is an equivalence between an arbi-

trary category C and a variety of algebras V. Then i : C → V is repre-
sentable, and has a representing coalgebra with underlying object j(FV(1)).

ut

The above fact is used in [59] to study the self-equivalences of the variety
of rings, and more generally, of the variety of algebras over a commutative
ring k. (The self-equivalences of any category C, modulo isomorphism of
functors, form a group, called the automorphism class group of C. When C =
Ring1, this group is shown in [59] to be isomorphic to Z2, the nonidentity
element arising from the self-equivalence K 7→ Kop. For k a commutative
ring, the variety of k-algebras has a more complicated automorphism class
group if k has nontrivial idempotent elements or nontrivial automorphisms.)

Exercise 10.10:7. We saw in Exercise 7.9:17 that for K a ring, the varieties
K-Mod and Mn(K)-Mod were equivalent. By the above lemma, both
functors occurring in the equivalence must be representable. Determine the
bimodules that yield these functors.
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(This suggests the question: Given rings K and L and an object R of
K-Mod-L, under what conditions is the functor K-Mod → L-Mod rep-
resented by R an equivalence? That is the subject of Morita theory [107,
§§18–19].)

A challenging related problem is

Exercise 10.10:8. Characterize those functors between module categories,
F : K-Mod→ L-Mod, which have both a left and a right adjoint.

Another useful result is given in

Exercise 10.10:9. Let C be a category with small colimits, and V a vari-
ety of algebras. Show that the category Rep(C, V) is closed under taking
small limits within the functor category VC.

As an example, let n be a positive integer, and consider the functors
GL(n), GL(1) ∈ Rep(CommRing1, Group). (Note that GL(1) is just
the “group of units” functor.) We can define morphisms

e, det : GL(n) −→−→ GL(1),

where the first takes every invertible matrix to 1, and the second takes every
invertible matrix to its determinant. By the preceding exercise, the limit
(equalizer) of this diagram of functors and morphisms is representable. This
equalizer is the functor SL(n), with which we began this chapter.

Exercise 10.10:10. In §10.6 we described the general object of
Rep(Monoid, Monoid). Find a finite family S of such objects
with the property that every object of this category is the limit of a
system of objects in S and morphisms among these.

Note that on taking the ring K of Exercise 10.10:7 to be finite, one gets
examples showing that an equivalence of varieties need not preserve cardinal-
ities of algebras. The next two exercises explore this topic further.

Exercise 10.10:11. Give an example of a variety V with a self-equivalence
i : V→ V and an algebra A such that card(|i(A)|) 6= card(|A|).

Exercise 10.10:12. Show that if i : V → W is an equivalence between
varieties of algebras, and A an object of V such that card(|A|) is infinite,
then card(|i(A)|) = card(|A|).

10.11. A few ideas and techniques

In §§10.7-10.9, we considered some cases of the problem, “Given varieties V
and W, find all representable functors W→ V ”. We can turn this question
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around and ask, “Given an object R of a variety W, what kinds of algebras
can we make out of the values of the functor hR ?” This question asks for
the structure on the set-valued functor hR, in the sense of §9.10, i.e., for the
operations admitted by that functor and the identities that they satisfy.

I gave some examples of this question in Exercise 9.10:3; we can now see
what you probably discovered if you did that exercise (though you did not
then have the terminology to state it nicely): that to find the operations on
such a functor and the identities they satisfy, one needs to look for the co-
operations admitted by its representing object, and the coidentities satisfied
by those co-operations.

Let us work out an example. Suppose we are interested in the algebraic
structure one can put, in a functorial way, on the set of elements of exponent 2
in a general group G. This means we want to study the structure on the
functor taking G to the set of such elements, i.e., the set-valued functor
represented by the group Z2; so our task is equivalent to describing the
clone of co-operations admitted by Z2 in Group.

An n-ary co-operation on Z2 means a group homomorphism Z2 →
Z2 . . . Z2, and hence corresponds to an element of exponent 2 in the
latter group. Though in Z2 one often uses additive notation, these coprod-
uct groups are noncommutative, so let us write Z2 multiplicatively, calling
the identity element e and the nonidentity element t. Then the coproduct
of n copies of Z2 will be generated by elements t0, . . . , tn−1 of exponent 2,
and (by the description of coproduct groups in Proposition 4.6.5), the general
element of this coproduct can be written uniquely

(10.11.1)
tα0 tα1 . . . tαh−1

, where h ≥ 0, all αi ∈ n, and αi 6= αi+1

for 0 ≤ i < h− 1.

Let us begin by seeing what structure on hZ2 is apparent to the naked
eye, and translating it into the above terms. Since the identity element of
every group is of exponent 2, hZ2

admits

(10.11.2)
the zeroary operation e, determined by the unique homo-
morphism Z2 → {e}.

Also, any conjugate of an element of exponent 2 has exponent 2, hence hZ2

admits

(10.11.3)
the binary operation (x, y) 7→ xy = y−1x y = y x y, de-
termined by the homomorphism Z2 → Z2 Z2 taking t to
t1 t0 t1.

To see whether these generate all functorial operations on hZ2
, consider

the general element (10.11.1) of the n-fold coproduct of copies of Z2. If
(10.11.1) has exponent 2, all factors must cancel when we square it, which
we see means that we must have α0 = αh−1, α1 = αh−2, etc.. If h is even
and positive, this gives, in particular, α(h/2)−1 = αh/2, which contradicts the
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final condition of (10.11.1). Hence the only element (10.11.1) of even length
having exponent 2 is e. This element induces the constant n-ary operation
e, and we see that for each n, this is a derived n-ary operation arising from
the zeroary operation (10.11.2).

On the other hand, for h = 2k + 1, we see that (10.11.1) will have expo-
nent 2 if and only if it has the form

(10.11.4)
tα0

. . . tαk−1
tαk tαk−1

. . . tα0
with k ≥ 0, and αi 6= αi+1 for

0 ≤ i < k.

The n-ary operation that such an element induces on elements of exponent
2 can clearly be expressed in terms of the operation (10.11.3); it is

(10.11.5) (x0, . . . , xn) 7−→ (. . . (((xαk)xαk−1 )xαk−2 ) . . . )xα0 .

So the operations (10.11.2) and (10.11.3) do indeed generate the clone of
operations on hZ2 .

How can we find a generating set for the identities these operations satisfy?
This is shown in

Exercise 10.11:1. Note that the set of all terms in the two opera-
tions (10.11.2) and (10.11.3) includes terms not of the form e or (10.11.5);

e.g., ex0 , x
(x
x2
1 )

0 , (xx1
0 )x1 . (The last is not of the form (10.11.5) because

it fails to satisfy the condition αi 6= αi+1 of (10.11.4).)
(i) For each of the above three terms, show how the resulting derived
operation of hZ2

can be expressed either as e or in the form (10.11.5),
and extract from each such observation an identity satisfied by (10.11.2)
and (10.11.3). Do the same with other such terms, until you can show that
you have enough identities to reduce every term in the operations (10.11.2)
and (10.11.3) either to e or to the form (10.11.5).
(ii) Deduce that all identities of the operations (10.11.2) and (10.11.3) of
hZ2 are consequences of the identities in your list.

Exercise 10.11:2. Let V denote the variety defined by a zeroary opera-
tion e and a binary operation (−)−, subject to the identities of our two
operations on hZ2 , and let V : Group → V be the functor represented
by Z2 with the co-operations defined above.
(i) Is every object of V embeddable in an object of the form V (G) for
G a group?
(ii) Translate your answer to (i) into a property of the functor V and its
left adjoint. (Or if you haven’t fully answered (i), translate the question
into a question about these functors.)

Let me present, next, an interesting problem which, though not at first
obviously related to the concepts of this chapter, turns out, like the question
examined above, to be approachable by studying the structure on a functor.

If y is an element of a group G, recall that the map x 7→ y−1x y is an
automorphism of G, and that an automorphism that has this form for some
y ∈ |G| is called an inner automorphism of G. Now suppose one is handed a
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group G and an automorphism α ∈ Group(G, G). Is it possible to decide
whether α is inner, by looking only at its properties within the category
Group, i.e., conditions statable in terms of objects and morphisms, without
reference to the “internal” nature of the objects?

Well, observe that if α is an inner automorphism of G, induced as above
by an element y ∈ |G|, then given any homomorphism h from G to another
group H, there exists an automorphism of H which yields a commuting
square with α :

G -h H

?
α

?
G -h H,

namely, the inner automorphism of H induced by h(y). In fact, this con-
struction associates to every such pair (H, h) an automorphism α(H,h) in
a “coherent manner”, in the sense that given two such pairs (H0, h0) and
(H1, h1), and a morphism f : H0 → H1 such that h1 = f h0, the auto-
morphisms α(H0, h0) of H0 and α(H1, h1) of H1 form a commuting square
with f.

I claim, conversely, that any automorphism α of a group G which can be
“extended coherently”, in the above sense, to all groups H with maps of G
into them, is inner. The next exercise formalizes this “coherence” property
in a general category-theoretic setting, then asks you to prove this character-
ization of inner automorphisms.

Exercise 10.11:3. Given an object C of a category C, recall that (C ↓ C)
denotes the category whose objects are pairs (D, d), (D ∈ Ob(C), d ∈
C(C, D)) and where a morphism (D0, d0) → (D1, d1) is a morphism
D0 → D1 making a commuting triangle with d0 and d1. (Cf. Defini-
tion 7.8.12.) Let UC denote the forgetful functor (C ↓ C) → C sending
(D, d) to D.

Call an endomorphism α of an object C “functorializable” if there
exists an endomorphism a of the above forgetful functor UC which, when
applied to the initial object of (C ↓ C), namely (C, idC), yields α.

Show that for C = Group, an automorphism of an object G is func-
torializable if and only if it is an inner automorphism. In fact, determine
the monoid of endomorphisms of UG : (G ↓ Group) → Group and its
image in the monoid of endomorphisms of G. (Suggestion: consider a uni-
versal example of a pair (X, x) where X is an object of (G ↓ Group)
and x an element of the underlying group of X, and examine how a(X)
acts on x.)

Some related questions you can also look at: How does the above
monoid compare with the monoid of endomorphisms of the identity functor
of (G ↓ Group) ? Can you characterize functorializable endomorphisms
of objects of other interesting varieties?

On to another topic. The next exercise is unexpectedly hard (unless there
is a trick I haven’t found), but is interesting.
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Exercise 10.11:4. Let V and W be varieties of algebras (finitary if you
wish). Show that the category Rep(V, W) has an initial object.

(I obtain the result of Exercise 10.11:3 and more in [53], and similarly
for Exercise 10.11:4 in [52]. If you read these, then, of course, any solutions
you submit to those exercises has to bring in some improvement or some
alternative approach to what is done in those papers.)

The next exercise develops some results and examples regarding these
initial representable functors (also found in [52]).

Exercise 10.11:5. Suppose we classify varieties into three sorts: (a) those
with no zeroary operations, (b) those with a unique derived zeroary opera-
tion, and (c) those with more than one derived zeroary operation. Applying
this classification to both of the varieties V and W in the preceding ex-
ercise, we get nine cases.
(i) Show that in most of these cases, the initial object of Rep(V, W)
must be trivial, in the weak sense that it takes every object A either to
the one-element algebra or to the empty algebra.
(ii) Determine the initial object of Rep(Set,Semigroup).
(iii) Determine the initial object of Rep(Set, Binar), where Binar is
the variety of sets with a single (unrestricted) binary operation.
(iv) Interpret the result of Exercise 9.3:11 as describing the initial object
of Rep(Binar, Binar).
(v) The three preceding examples all belong to the same one of the nine
cases referred to at the start of this exercise. Give an example belonging to
a different case, in which Rep(V, W) also has nontrivial initial object.

When I first learned about the concept of “coidentities” in coalgebra ob-
jects of a category C, I was a little disappointed that the possible coidentities
merely corresponded to the identities of set-based algebras of the same type
– I thought it would have been more interesting if this “exotic” version of the
concept of algebra led to “exotic” sorts of identities as well. But perhaps there
is hope for something exotic if the question is posed differently. Recall that
in §9.6 we characterized varieties of algebras as those classes of algebras that
were closed under three operators H, S and P. I don’t know the answer to
the question asked in

Exercise 10.11:6. Define analogs of the operators H, S and P for
classes of objects of Rep(C, Ω-Alg). Presumably, for every variety V
of Ω-algebras, Rep(C, V) will be closed in Rep(C, Ω-Alg) under your
operators; but will these be the only closed classes?

If not, try to characterize the classes closed under your operators (pos-
sibly assuming some restrictions on C and Ω).
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10.12. Contravariant representable functors

In §10.2 we defined the concept of an algebra-object of a category, but we
immediately passed to that of a coalgebra object in §10.3, and showed in
§10.4 that a covariant functor has a left adjoint if and only if it is represented
by such an object. Let us now look at the version of this result for algebra
objects, and the contravariant functors these represent. We recall from §8.12
that a contravariant adjunction involves a pair of mutually right adjoint or
mutually left adjoint functors. Algebra objects in a category give the former,
as we see by putting “ Cop ” in place of “ C ” in the definition of an adjunction

C
i-

�
j

V. Theorem 10.4.3 thus translates to give

Theorem 10.12.1. Let C be a category with small limits, V a variety of
algebras, and V : Cop → V a functor. Then the following conditions are
equivalent:

(i) V has a right adjoint W : Vop → C (so that V and W form a pair
of mutually right adjoint contravariant functors).

(ii) V : Cop → V is representable, i.e., is isomorphic to C(−, R) for some
V-algebra object R of C (Definition 10.2.9).

(iii) The composite of V with the underlying-set functor UV : V → Set is
representable, i.e., is isomorphic to h|R| = C(−, |R|) for some object |R| of
C. ut

Now suppose that in the above situation we take for C another variety
of algebras, W. What will a V-object R of W look like? Its V-operations
will be W-algebra homomorphisms tR : |R|ari(t) → |R|; that is, set maps
||R||ari(t) → ||R|| which respect the W-operations of |R|. The condition for
an n-ary operation t on a set to “respect” an m-ary operation s is

s(t(x0,0, . . . , x0,n−1), . . . , t(xm−1,0, . . . , xm−1,n−1))

= t(s(x0,0, . . . , xm−1,0), . . . , s(x0,n−1, . . . , xm−1,n−1)).

The above equation assumes the arities m and n are natural numbers. For
operations of arbitrary arities, the condition may be written

(10.12.2) s((t(xij)j∈ari(t))i∈ari(s)) = t((s(xij)i∈ari(s))j∈ari(t)).

Note that this condition is symmetric in s and t, and that when s and t are
both unary, it says that s(t(x)) = t(s(x)), i.e., that as elements of the monoid
of set maps ||R|| → ||R||, s and t commute. Generalizing this usage, one
calls operations s and t of arbitrary arities which satisfy (10.12.2) commut-
ing operations. This condition is equivalent to commutativity of the diagram
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||R||ari(s)×ari(t) -tari(s)

||R||ari(s)

?
sari(t)

?
s

||R||ari(t) -t ||R||

where tari(s) and sari(t) act in the “obvious” ways on ari(s) × ari(t)-tuples
of elements of ||R||. In picturing these “obvious” actions, it can be helpful
to visualize an ari(s) × ari(t)-tuple of elements of ||T || as arranged in an
ari(s)-by-ari(t) rectangle, with s sending a column to a value written below
it, and r sending a row to a value written to its right; it is then not hard
to understand why s respecting t is equivalent to commutativity of the
above diagram. Of course, if ari(s) and/or ari(t) is 0, the rectangle has
no entries, but the commutativity still has a nontrivial content, as noted
in part (i) of the next exercise. That and the remaining parts can give one
further feel for the concept of commuting operations.

Exercise 10.12:1. (i) Show that two zeroary operations commute if and
only if they are equal. More generally, when will an n-ary operation s
commute with a zeroary operation t ?
(ii) Verify that every unary operation on a set commutes with itself.
(iii) Show that not every binary operation s on a set X commutes with
itself. In fact, consider the following four conditions on a binary operation
s : (a) s commutes with itself, (b) s satisfies the commutativity identity
s(x, y) = s(y, x), (c) s satisfies the associativity identity s(s(x, y), z) =
s(x, s(y, z)), and (d) there exists a neutral element e ∈ X for s, i.e., an
element satisfying the identities s(x, e) = x = s(e, x). Determine which
of the 16 possible combinations of truth values for these conditions can be
realized.

Summarize your results as one or more implications which hold among
these conditions, and such that any combination of truth-values consistent
with those implications can be realized.

We see that if V is a variety of Ω-algebras and W a variety of Ω′-algebras,
then a V-algebra object of W is equivalent to a set-based algebra R =
(|R|, (sR)s∈|Ω′|t|Ω|), where the operations indexed by |Ω′|, respectively, |Ω|,
are of the arities specified in Ω′, respectively, Ω, and satisfy the identities
of W, respectively V, and where, moreover, for every s ∈ |Ω′| and t ∈ |Ω|,
the commutativity identity (10.12.2) is satisfied. Since all these conditions
are identities, the category of such objects forms a variety!

Given such an object R, and an ordinary object A of W, we see that the
resulting V-algebra operations on the set W(A, R) are given by “pointwise”
application of the V-operations of R to W-homomorphisms A→ R. Now in
general, if A and B are objects of a variety W and one combines a family
of algebra homomorphisms fα : A→ B (α ∈ β) by pointwise application of
a β-ary operation t on the set |B|, the result need not be a homomorphism
of W-algebras. What makes this true here is the fact that t is an operation
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on R as an object of the category W, i.e., that it commutes with all the
W-operations.

Since the functor W(−, R) : Wop → V belongs to a mutually right ad-
joint pair, its adjoint will also satisfy condition (i) of Theorem 10.12.1, and
hence the other two equivalent conditions; that is, this adjoint will also be a
representable contravariant functor, but going the other way, Vop →W. As
the next exercise shows, the representing object for this functor is gotten by
trivially modifying the representing object R for the original functor.

Exercise 10.12:2. Let V : Wop → V be a representable contravariant
functor, whose representing V-algebra object R is, in the above formula-
tion (|R|, (sR)s∈|Ω′|t|Ω|). Show that the right adjoint to V is the functor
V(−, R′), where R′ has the same underlying set as R, and the same op-
erations, but with the roles of the W-operations and the V-operations as
“primary” and “secondary” interchanged, so that it becomes a W-algebra
object of V.

A basic contrast between covariant and contravariant representable func-
tors on a variety W is that the former, as we saw in §10.3, define their op-
erations using derived operations of W, while the objects representing the
latter have operations that must commute with those of W. A consequence
is that, generally speaking, the “richer” the structure of W, the richer is
the class of covariant representable functors on W, but the scarcer are the
contravariant representable functors. Thus, the case in which it is easiest to
get contravariant representable functors is when V is the variety with the
smallest family of operations, namely Set.

A V-algebra object of Set is just an ordinary V-algebra. Let us take the
smallest nontrivial object in Set, and find the richest algebra structure we
can put on it, and the functor this represents.

Exercise 10.12:3. (i) Show that the clone of all finitary operations on
the object 2 = {0, 1} of Set can be described as the clone of derived
operations of the ring Z/2Z, and that this is isomorphic to the clone of
operations of the variety Bool1.

(ii) Describe the contravariant adjunction between Set and Bool1 de-
termined by this Bool1-structure on 2.

As an interesting sideline,

(iii) Regarding Bool1 as the variety generated by the 2-element Boolean
ring, obtain a cardinality bound for the free Boolean ring on n generators
by considerations analogous to those applied to the free group on 3 gener-
ators in Var(S3) in the discussion leading up to Exercise 3.3:2. If you did
that exercise and Exercise 4.14:1, compare these two cases with respect to
how close the resulting bounds are to the actual cardinalities of these free
algebras.

More generally,

Exercise 10.12:4. For n any integer > 1, let X[n] denote the clone of all
finitary operations on the set n = {0, . . . , n−1}.
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(i) Show that for p a prime, X[p] can be described as the clone of derived
operations of the ring Z/pZ. Show moreover that the variety X[p] - Alg,
regarded as a subvariety of CommRing1, is equivalent to Bool1 by the
“Boolean ring of idempotent elements” functor (Exercise 4.14:3). Describe
the functor going the other way.

(ii) Show that if n is not a prime, then X[n]-Alg does not coincide with
the clone of derived operations of the ring Z/nZ.
(iii) For n not a prime, is it still true that X[n]-Alg is equivalent to
Bool1 ?

The next exercise looks at a contravariant representable algebra-valued
functor on a category C other than a variety of algebras, which nonetheless
has properties similar to those of functors Vop →W as discussed above. It
leads you to an important result of lattice theory.

Exercise 10.12:5. In the category POSet of partially ordered sets and
isotone maps, let 2 denote the object with underlying set {0, 1}, ordered
so that 0 < 1. (It is natural to speak of this as a “structure of partially
ordered set” on 2; but beware confusion with Lawvere’s technical sense
of “structure”, i.e., the operations which an object admits, which are the
subject of (i) below.)
(i) Show that the finitary structure on this object of POSet, i.e., the
clone of all operations 2n → 2 that are morphisms of POSet, is a struc-
ture of distributive lattice (Exercise 6.1:15) with least element 0 and great-
est element 1, regarded as zeroary operations. Describe the resulting func-
tor POSetop → DistLat0,1. (You will need to know the form that prod-
ucts take in POSet; for this see Definition 5.1.4.)
(ii) Verify that POSet has small limits, so that Theorem 10.12.1 is ap-
plicable to this functor.

(iii) Show that the adjoint to this functor, a functor (DistLat0,1)op →
POSet, can be characterized as taking every object of DistLat0,1 to
the set of its morphisms into 2, now regarded as a distributive lattice with
greatest and least element, and where the partial ordering on 2 is now used
to get a partial ordering on the set of morphisms. (Cf. Exercise 7.6:5.)
(iv) Suppose instead that we consider 2 = {0, 1} as an object of
POSet0,1, the category whose objects are partially ordered sets with least
and greatest elements, and whose morphisms are the isotone maps that re-
spect those elements. Show that the structure on 2 in this category leads
to a contravariant right adjunction with the variety DistLat.

(v) What if you start with POSet0 or POSet1 ?

It is clear from Lemma 10.10.2 that any contravariant equivalence
i : Cop → V, where C is a category and V a variety of algebras, will
be representable. In such a situation, can C also be a variety of algebras?
This is addressed in the next exercise.

Exercise 10.12:6. Let us call a variety “nontrivial” if it does not satisfy the
identity x = y.
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(i) Show that there can exist no contravariant equivalences between non-
trivial varieties.

(Suggestion: find a condition on categories which is invariant under
equivalence of categories, and is satisfied by all nontrivial varieties, but
is not satisfied by the opposite of any nontrivial variety. Essentially, any
condition on categories that does not refer to how many isomorphic copies
an object has will be invariant under equivalence. What is hard is finding
one that distinguishes between varieties and their opposites. I know some
ways to do this, but they are not obvious. Perhaps you can find a more
natural one. If you wish, take “variety” to mean “finitary variety”.)

(ii) Does your criterion also show that (POSet)op and (POSet0,1)op

are not equivalent to varieties? If not, can you nonetheless prove this?

Nonetheless, some of the contravariant representable functors considered
above come surprisingly close to being equivalences; namely, when restricted
to the finitely generated objects of one category they yield finitely generated
objects of the other, and they do give equivalences between these subcate-
gories of finitely generated objects. In the case of duality of vector spaces,
this is a category-theoretic translation of some well-known facts of linear al-
gebra. In the cases of Boolean rings (Exercise 10.12:3) and of distributive
lattices (Exercise 10.12:5), the results in question are translations of classi-
cal structure theorems about these two kinds of object ([4, §III.3]; cf. also
Exercise 7.9:16 above). For the variety Ab the functor Ab(−, Q/Z) is a
self-duality on the category of finite (though not on the category of finitely
generated) abelian groups (see [26, §4.6], noting the comment after [ibid.
Theorem 6.2]).

It turns out, moreover, that the dualities we have described for finite ob-
jects can be extended to equivalences between all objects of one category
and certain topologized objects of the other. The reader interested in learning
about a large class of such results might look at [39], and at [98], which gen-
eralizes the results of the former paper and puts them in category-theoretic
language. The result on Ab(−, Q/Z) does not fall within the scope of those
papers, but it, too, has a generalization to topological abelian groups, the the-
ory of Pontryagin duality of locally compact abelian groups, via morphisms
into the topological group R/Z [130]. The topological approach to duality of
not necessarily finite-dimensional vector spaces is implicit in Exercises 6.5:6
and 8.5:18. An interesting book on dualities is [67].

Exercise 10.12:7. (i) Show from Exercise 4.14:5 that our functors con-
necting Bool1 and Set do indeed induce a contravariant equivalence be-
tween the subcategories of finite objects.
(ii) Deduce that if V is any variety of finitary algebras, and A a finite
object of V, then there exists a V-coalgebra object R of Bool1 such that
Bool1(R, 2) ∼= A.

If you or the class succeeded in characterizing derived operations of the
“majority vote function” M3 on {0, 1} in Exercise 2.7:1, you can now try:
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Exercise 10.12:8. (i) Can you find some structure (in the nontechnical
sense, i.e., not necessarily given by operations!) on {0, 1}, such that the
clone of operations generated by the majority vote function M3 is precisely
the clone of finitary operations respecting that structure?
(ii) Does one in fact have a duality result, to the effect that the set {0, 1},
with this structure on the one hand, and with the operation M3 on the
other, induces an adjunction, which, when restricted to finite objects, gives
a contravariant equivalence between finite algebras in the variety generated
by ({0, 1}, M3), and finite objects of an appropriate category?

I have not thought hard about the following question:

Exercise 10.12:9. Suppose V and W are varieties, and we have a con-
travariant equivalence between their subcategories of finite (finitely gener-
ated? finitely presented?) objects. Will this necessarily be the restriction
of a pair of mutually right adjoint representable functors between all of V
and all of W ?

What can we say about composites involving contravariant representable
functors? We know that for adjoint pairs of covariant functors

C
U-
�
F

D
V-
�
G

E ,

the composites C
V U-
�
F G

E are also adjoint; so let us look at the results

we get on replacing some subset of the three categories C, D, E in this
result by their opposites. This will give 8 statements, saying that composites
of certain combinations of covariant adjoint pairs, contravariant right adjoint
pairs, and contravariant left adjoint pairs, are again adjoint pairs of one sort
or another.

These statements will break into pairs of statements which have the same
translations after some relabeling, because Theorem 8.3.10 itself is invariant
under replacing all three categories by their opposites and interchanging the
roles of C and E. Of the resulting four statements, one is, of course, the
original Theorem 8.3.10. Two of the others involve contravariant left adjunc-
tions, of which, as I have mentioned, there are no interesting cases among
varieties of algebras [48]. I state the one remaining case as the next corollary.
In that corollary, for a functor between arbitrary categories, A : C→ D, the
“same” functor regarded as going from Cop to Dop is written Aop (though
for most purposes, it is safe to write this A).

Corollary 10.12.3 (to Theorem 8.3.10). Let C, D, E be arbitrary
categories (not necessarily varieties of algebras). Suppose

Cop -V D

C �
V ′

Dop

is a pair of mutually right adjoint contravariant functors, and
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D
U-
�
F

E

is a pair of covariant adjoint functors, with U the right adjoint and F
the left adjoint. Then the composite functors UV and V ′F op (in less
discriminating notation, V ′F ) :

Cop -V D -U E

C �
V ′

Dop�
F op Eop

are also mutually right adjoint contravariant functors.
In particular, the class of contravariant functors admitting right adjoints

is closed under postcomposition with right adjoint covariant functors, and
under precomposition with left adjoint covariant functors. ut

Exercise 10.12:10. (i) Derive the above result from Theorem 8.3.10, and
also derive the two other statements referred to in the paragraph before
the corollary which involve contravariant left adjunctions.
(ii) Give a (nontrivial) example of Corollary 10.12.3, verifying directly the
adjointness.

Exercise 10.12:11. Suppose in the context of the above corollary that C
and E are both varieties of algebras. Thus the pair of mutually right
adjoint functors U V and V ′F op are induced by some object with com-
muting C- and E-algebra structures. Describe this object and its C- and
E-algebra structures in terms of the representing objects R and S for the
given functors V : Cop → D and U : D→ E.

Corollary 10.12.3 does not say anything about a composite of two con-
travariant representable functors. This will be a covariant functor, but as the
first part of the next exercise shows, it need not have an adjoint on either
side.

Exercise 10.12:12. (i) Let K be a field, and V : (K-Mod)op → K-Mod
the contravariant representable functor taking each K-vector space to its
dual. Show that the composite of V with itself, V V, or more accurately,
V V op, a covariant functor K-Mod → K-Mod, has no left or right ad-
joint.
(ii) Show by examples that the class of representable contravariant func-
tors between varieties is closed neither under precomposition with right
adjoint covariant functors nor under postcomposition with left adjoint co-
variant functors.

The “double dual” functor of part (i) above does belong to a class of
functors which have interesting properties, namely, composites of functors
(covariant or contravariant) with their own adjoints [2, §§4-7].

I have mentioned the principle that the richer the structure of a vari-
ety of algebras, the more covariant representable functors it admits, and the
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fewer contravariant representable functors, and we then looked at contravari-
ant representable functors on the variety with the least algebraic structure,
namely Set. In the opposite direction, rings have a particularly rich struc-
ture; thus, as the next exercise shows, they are quite poor when it comes to
contravariant representable functors.

Exercise 10.12:13. Let R be a nonzero ring (commutative if you
wish).
(i) Show that if R has no zero divisors, then any finitary operation on R
as an object of the category of rings, i.e., any ring homomorphism Rn →
R, can be expressed as a composite a pi,n, where i ∈ n, pi,n : Rn →
R is the i-th projection map, and a is an endomorphism of R, Deduce
that any clone of finitary operations on R as an object of Ring1 or of
CommRing1 is generated by unary operations.
(ii) Can you generalize these observations to a wider class of rings than
those without zero divisors?
(iii) Choose a simple example of a ring R with zero divisors for which
the conclusion of (i) fails, and see whether you can describe the clone of
operations on that ring.

10.13. More on commuting operations

We have seen that for varieties V and W, the V-algebra objects of W
correspond to sets given with two families of operations which commute with
one another in the sense of (10.12.2). Let us look further at this concept of
commuting operations.

Lemma 10.13.1. If s is an operation on a set A, then the set of operations
on A which commute with s forms a clone.

Idea of proof. If the map s : Aari(s) → A is a homomorphism for all members
of some set T of operations on A, it will clearly be a homomorphism for all
derived operations of that family. ut

Exercise 10.13:1. Give a detailed proof of the above lemma. (Remember
that proving a set of operations to be a clone includes proving that it
contains the projection maps.)

Definition 10.13.2. If s is an operation on a set A, then the clone of
operations on A which commute with s will be called the centralizer of s.
If S is a set of operations on A, the intersection of the centralizers of these
operations will be called the centralizer of S.

If C is a clone of operations on A and S a set of operations on A (which
may or may not be contained in C), then the intersection of C with the
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centralizer of S will be called the centralizer of S in C. The centralizer of
C in C will be called the center of C. A clone which is its own center will
be called commutative.

Let us fix a notation for a construction we defined in the preceding section.

Definition 10.13.3. If Ω and Ω′ are types, then ΩtΩ′ will denote the type
whose set of operation-symbols is |Ω| t |Ω′|, and where the arity function on
this set is induced in the obvious way by the arity functions of Ω and Ω′.

If V and W are varieties of algebras, of types Ω and Ω′ respectively,
then the variety of algebras of type Ω′ t Ω such that the operations from
Ω satisfy the identities of V, the operations from Ω′ satisfy identities of
W, and all V-operations commute with all W-operations, will be denoted
V©W.

Note that in the above definition, V and W are specified as varieties, i.e.,
in terms of given primitive operations. If we are not interested in distinguish-
ing “primitive” from “derived” operations, e.g., if we are interested in varieties
as categories of representations of given clonal categories, the above construc-
tion “ © ” also induces a construction on these, since by Lemma 10.13.1, the
property that two sets of primitive operations centralize one another is equiv-
alent to the property that their clones of derived operations centralize one
another. Finally, if we are interested in varieties only up to equivalence as
categories, without reference to concretization (e.g., if we are not interested
in distinguishing the varieties K-Mod and Mn(K)-Mod), then V©W
is also determined up to equivalence on these, namely, as the category of
contravariant right adjunctions between V and W. (To describe the mor-
phisms of this category, consider how Corollary 8.11.8 should be adapted to
contravariant right adjunctions.)

Freyd introduces essentially the construction we have called V©W in
[11, pp. 93-95], but rather than naming the resulting variety, he names its
clonal theory T1⊗ T2, where T1 and T2 are the clonal theories of the given
varieties. But I have chosen to minimize the dependence of this chapter on
the view of a variety as the category of representations of a clonal theory.

Exercise 10.13:2. Given varieties V and W, an object A of V, and an
object B of W, it is easy to construct by generators and relations an
object C of V©W having a map m : |A| × |B| → |C| such that for each
y ∈ |B|, the map m(−, y) : |A| → |C| is a homomorphism with respect
to V-structures, and for each x ∈ |A|, the map m(x, −) : |B| → |C| is a
homomorphism with respect to W-structures.

Characterize the contravariant representable functors between V and
W determined by this object C, in terms of one or more universal prop-
erties.

In the case of covariant representable functors, we saw in §10.10 that
certain differences between two varieties V and W regarding the number
of derived zeroary operations led to restrictions on representable functors
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between these varieties. For contravariant functors, on the other hand, it is
when both varieties have such operations that one gets a restriction:

Lemma 10.13.4 ([11, p. 94]). Suppose V and W are varieties of alge-
bras, each having at least one zeroary operation. Then V©W satisfies iden-
tities saying that every derived zeroary operation of V and every derived
zeroary operation of W fall together. The resulting derived zeroary operation
of V©W defines a one-element subalgebra of every V©W-object.

Proof. The fact that each derived zeroary operation coming from V com-
mutes with each derived zeroary operation coming from W means that each
of the former is equal to each of the latter (Exercise 10.12:1(i)). Hence, as
both families are nonempty, all of these derived zeroary operations are equal.
Since zeroary operations from V commute with arbitrary operations from
W and vice versa, the resulting zeroary operation of V©W is central. It is
easy to verify that this means that it defines a one-element subalgebra of ev-
ery algebra, equivalently, is the unique derived zeroary operation of V©W.

ut

Exercise 10.13:3. Deduce from the above lemma that if V is a variety
having at least one zeroary operation, then the variety V©Ring1 is trivial;
equivalently, that there is no nontrivial contravariant representable functor
Vop → Ring1 or (Ring1)op → V. (So, for instance, there is no nontrivial
contravariant representable functor (Ring1)op → Ring1.)

Exercise 10.13:4. Show that if V is any variety of algebras, then Vpt ∼=
V©Setpt. (Cf. Definition 10.10.1.)

The next result shows a similar phenomenon for binary operations with
neutral element.

Lemma 10.13.5 ([11, p. 94]). Suppose V and W are varieties of algebras,
each having at least one (not necessarily associative) derived binary operation
with a neutral zeroary operation. Then in V©W, the operations induced
by all such binary operations of V and all such binary operations of W
fall together, and give the unique binary operation with neutral element in
this clone. The resulting binary operation and neutral element constitute a
structure of abelian monoid, which is central in the clone of operations of
V©W.

Proof. We shall show that if in any variety a binary operation ∗ with a
neutral element and a binary operation ◦ with a neutral element commute,
and their neutral elements likewise commute, then ∗ = ◦, and their common
value satisfies the commutative and associative identities. The remaining as-
sertions follow as in the proof of the preceding lemma.

The neutral elements of ∗ and ◦, being commuting zeroary operations,
are equal; let us write e for their common value. We now write down several
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cases of the commutativity of ∗ with ◦. One such identity, (x ∗ e) ◦ (e ∗ y) =
(x ◦ e) ∗ (e ◦ y), immediately reduces to x ◦ y = x ∗ y, proving equality of
the two operations. On the other hand, (e ∗ x) ◦ (y ∗ e) = (e ◦ y) ∗ (x ◦ e)
reduces to x◦y = y ∗x, so the common value of ∗ and ◦ is abelian. Finally,
(x ∗ y) ◦ (e ∗ z) = (x ◦ e) ∗ (y ◦ z) yields associativity. ut

The above result fails without the assumption that both binary operations
have a neutral element. E.g., the variety Set has the binary “derived op-
eration” p2,0 (projection of an ordered pair on its first component); but it
is easy to see that for every variety V, one has V©Set ∼= V; so a binary
operation of V with neutral element is not forced in V© Set to become
associative, or become commutative, or to fall together with p2,0.

Recall that we denote the variety of algebras with a single binary operation
with neutral element by Binare. Below, when the prefix “ Ab ” is added to
the name of a variety whose type involves one binary operation, the result will
denote the subvariety determined by the additional identity of commutativity
for that operation.

Corollary 10.13.6. If each of V and W is one of Binare, Monoid,
AbBinare or AbMonoid, then V©W ∼= AbMonoid.

Proof. Applying the preceding lemma, we see that the given zeroary and
binary operations of V and W fall together in V©W to give a single
zeroary and a single binary operation that generate the clone of operations
of V©W and satisfy the identities of AbMonoid. To show that V©W
satisfies no other identities, it suffices to note that the multiplication and
neutral element of AbMonoid satisfy all the identities of V and of W
(clear in each case), and commute with themselves and one another (a quick
calculation). ut

The above corollary shows that the representing object for any contravari-
ant representable functor between any two of the varieties listed is essentially
an abelian monoid.

The next result concerns the case where our abelian monoid structures
turn out to give abelian group structures. If a binary derived operation ∗ of
a variety has a neutral element e, then a left inverse operation (respectively
a right inverse operation) for ∗ will mean a unary operation ι satisfying the
identity ι(x) ∗ x = e (respectively x ∗ ι(x) = e).

Theorem 10.13.7 (cf. [11, p. 95]). Suppose V and W are varieties of
algebras, each having at least one binary operation with a neutral element,
and such that at least one such operation of V or of W has a right or left
inverse operation ι. Then in V©W, ι becomes a 2-sided inverse operation
for the unique AbMonoid operation of this variety, making this an Ab
structure, again central in the clone of operations.

Moreover, any clone of finitary operations admitting a homomorphism of
the clone of operations of Ab into its center is, up to isomorphism, the clone
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of operations of a variety K-Mod, where K is the set of unary operations
of the clone, made a ring in a natural way. ut

Exercise 10.13:5. With the help of previous results,
(i) prove the first paragraph of the above theorem,
(ii) prove the second paragraph of the above theorem.

Where the above result characterizes clones with a central image of Ab,
Freyd [11, p. 95] gives the analogous characterization of clones with a central
image of AbMonoid, with “half-ring” in place of ring. (The term “half-
ring” is not standard. He presumably means an abelian monoid given with a
bilinear multiplication having a neutral element 1. The more common term
would be “semiring with 0 and 1”. A module over such a semiring K means
an abelian monoid R with a 0- and 1-respecting homomorphism of K into
its semiring of endomorphisms.)

Exercise 10.13:6. (i) Deduce from Theorem 10.13.7 that
Group©Group ∼= Ab. Translate this result into a description of
all representable functors Groupop → Group.
(ii) Your proof of (i) should also show that Ab©Ab ∼= Ab. Thus, every
abelian group yields a contravariant right adjunction between Ab and
Ab. Describe the functors involved, and express the universal property of
the adjunction as a certain bijection of hom-sets.

Exercise 10.13:7. (i) If K, L are rings, describe (K-Mod)© (L-Mod),
and determine the general form of a representable functor (K-Mod)op →
L-Mod.
(ii) Bring the above result into conformity with (10.8.19) by turning it into
a characterization of representable functors (K-Mod)op →Mod-L. Write
the associated contravariant right adjunctions as functorial isomorphisms
of hom-sets.
(iii) If K is any ring, the natural (K, K)-bimodule structure of |K| in-
duces, via the result of (ii), a functor (K-Mod)op → Mod-K. Describe
this functor, and show that in the case where K is a field, it is ordinary
“duality of vector spaces”.
(iv) Given any pair of contravariant mutually right adjoint functors among
categories, U : Cop → D, V : Dop → C, one has universal maps IdC →
V U, IdD → UV. Determine these in case (iii) above.

Here is an important way of getting sets with two mutually commuting
algebra structures.

Lemma 10.13.8. Let V and W be varieties of algebras in which all op-
erations have arities less than some regular cardinal γ, let C be any cat-
egory having <γ-fold products and <γ-fold coproducts, and let R and S
be a V-coalgebra object and a W-algebra object of C respectively. Then
C(|R|, |S|) has a natural structure of V©W-algebra (which we may denote
C(R, S)). ut



10.13 More on commuting operations 501

Exercise 10.13:8. (i) Prove the above lemma.
(ii) If you are familiar with basic algebraic topology, deduce from that
lemma and Theorem 10.13.7 and Exercise 10.3:1(ii) that the fundamental
group of any topological group is abelian.

(You will need to verify that a topological group induces a group object

of HtpTop(pt). A key step is to verify that the forgetful functor Toppt →
HtpTop(pt) respects products.)

In fact, the method of part (ii) above shows that all Binare-objects of

HtpTop(pt) (called “H-spaces” by topologists) have abelian fundamental
group. For a brute force proof see [90, Proposition II.11.4, p. 81].

Exercise 10.13:9. Describe Heap©Heap. (Hint: If A is a nonempty ob-
ject of Heap©Heap, show that any choice of a zeroary operation allows
one to regard A as an object of Group©Group.)

If possible, generalize your result; i.e., show that conditions weaker
than the heap identities are enough to force two commuting ternary oper-
ations on a set to coincide, and to satisfy the identities you established for
Heap©Heap.

Exercise 10.13:10. Recall that Semilattice denotes the variety of sets
with a single idempotent commutative associative binary operation.
(i) Show that in Semilattice©Semilattice, the two binary operations
fall together (even though Semilattice has no 0-ary operations).
(ii) Deduce that Semilattice©Lattice and Lattice©Lattice are triv-
ial.
(iii) Show that Semilattice©AbMonoid ∼= Semilattice0, the variety
of semilattices with neutral element. (In writing that neutral element as as
“ 0 ”, I am arbitrarily interpreting the semilattice operation as “join”).
(iv) Again, can you get similar results using a smaller set of identities than
the full identities of Semilattice and/or AbMonoid ?

In this section we have seen several parallel results; let us put in abstract
form what they involve.

Exercise 10.13:11. Let CommClone denote the full subcategory
of Clone consisting of all commutative clonal categories (Defini-
tion 10.13.2).
(i) Show that for any variety V, the following conditions are equivalent:
(a) The two underlying-set-preserving functors V©V → V, which act
by forgetting the one or the other of these families of V-operations, are
equivalences.
(b) The clone of operations of V is commutative, and is an epimorph of
the initial object in CommClone (i.e., the morphism from the initial
object to that object is an epimorphism).
(ii) Show that if the two functors of (a) above are equal, then the equiv-
alent conditions (a) and (b) hold.

In connection with condition (b) above, we note
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Exercise 10.13:12. Show that the initial objects of CommClone and
Clone are the same, but that this initial object has no proper epimorphs in
Clone other than the theory of the trivial variety, but does have nontrivial
proper epimorphs in CommClone.

(This contrasts with the result proved for rings in Exercise 7.7:9(ii).)

Let us call a variety “© -idempotent” if it satisfies the equivalent condi-
tions of Exercise 10.13:11(i). It would be interesting to see whether one can
determine all such varieties. The epimorphs of the clone of operations of Ab
in CommClone are the clones of operations of the varieties K-Mod for
all epimorphs K of Z in CommRing1 (cf. Exercise 7.7:8(i)). For a nice
classification of these rings K, of which there are uncountably many, see [66].
More generally, if K is a semiring with 0 and 1 (cf. paragraph following Ex-
ercise 10.13:5) which is an epimorph of the semiring N of natural numbers
in the category of such semirings, then the clonal theory of the variety of
K-modules is an epimorph of the clonal theory of AbMonoid. (This class
of clonal theories includes those arising from epimorphs of Z, since Z is an
epimorph of N in the semiring category.)

In most of the results in this section that yielded © -idempotent varieties
V, we also found larger classes of varieties, necessarily noncommutative,
whose © -products with themselves and each other gave V. I don’t know
what is going on here; the phenomenon is described in

Exercise 10.13:13. If V is a variety of algebras, let Vab denote the sub-
variety obtained by imposing on V the identities making all operations of
V commute, and A(V) : Vab → V the inclusion functor. For each positive
integer n, let V©n denote the variety V© . . . ©V with n “ V ”s, and
Q(V, n, i) (i = 0, . . . , n− 1) be the natural n-tuple of forgetful functors
V©n → V.

Show that for any variety V and integer n > 1 the following condi-
tions are equivalent: (a) Q(V, n, 0) = Q(V, n, 1). (b) Vab and V©n are
isomorphic, by a functor making a commuting triangle with the functors
A(V) and Q(V, n, 0).

Show that when these conditions hold, Vab is © -idempotent.

A question I also don’t know the answer to is

Exercise 10.13:14. Let V be a variety of algebras.
(i) If V©3 has commutative clone of operations, must the clone of oper-
ations of V©2 also be commutative?
(ii) If V satisfies the equivalent conditions of Exercise 10.13:13 for n = 3,
must it also satisfy those conditions for n = 2 ?

On an easier note, recall from Exercise 7.9:5 that the monoid of endomor-
phisms of the identity functor of any category is commutative. This general-
izes to

Lemma 10.13.9. If C is a category with finite products, then the clone of
operations of the identity functor of C is commutative. ut
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Exercise 10.13:15. Prove the above lemma, and characterize the clone in
question in the case where C is a variety.

We have noted that examples of contravariant representable functors be-
tween varieties are limited because of the difficulty of getting interesting
operations to commute with one another. But it is much easier to get opera-
tions that respect interesting relational structure. (A well-known example of
this was sketched in Exercise 10.12:5.) Thus, the natural direction in which
to pursue the study of contravariant adjunctions is that of categories defined
in terms of a combination of operations and relations. But that is outside the
scope of this course.

10.14. Some further reading on representable functors,
and on General Algebra

Covariant representable functors among particular varieties of algebras are
studied extensively in [3]. Indeed, §§10.1-10.5 above were adapted from the
introductory sections of [3], and §§10.6-10.7 from a couple of later sections.
Most of [3] deals with representable functors on varieties of associative and
commutative rings; for the former case, the representable functors to many
varieties are precisely determined. Thus, [3] may be considered a natural se-
quel to this chapter. Many open questions are also noted there. (The notation,
language, and viewpoint of [3] are close to those of these notes. One difference
is that where I here use the word “monoid”, in that work my coauthor and
I wrote “semigroup with neutral element”, and called the variety of those
objects Semigpe. Also, the references in that work to these notes refer to an
earlier version.)

Several other texts in General Algebra, most of which include some major
topics not covered in these notes, were listed in the first paragraph of §1.6. A
classical topic I have not touched on which is particularly striking and useful
is that of ultraproducts and ultrapowers, and can be found in most General
Algebra texts.

An active area of research since the late 1980’s has been the study of lat-
tices of congruences of algebras, and their relationship to the general proper-
ties of varieties of algebras [9], [15]. More recently, there has been considerable
work on a class of algorithmic questions called constraint satisfaction prob-
lems, in connection with the structures of finite algebras [42], [92].

We have made use in these notes of partially ordered sets, and of equiva-
lence relations (and discussed briefly their common generalization, preordered
sets); but as noted at the end of the last section, we have not developed a
general theory of structures consisting of a set and one or more relations of
specified arities, alongside operations of various arities. Many results parallel
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to those considered here are applicable to such structures; but, like many-
sorted algebras, we have left them out for the sake of simplicity.



Word and Phrase Index

I have tried to include in this index not only the locations where terms are
defined, but also all significant occurrences of the concepts in question; but it
has not been easy to decide which occurrences are significant. I would welcome
readers’ observations on the types of cases they would find it useful to have
in the index, and on entries that are erroneous, unnecessary, or missing.

Pages where terms are defined or where conventions are made relating to
them are shown with boldface page numbers. (Sometimes a formal definition
occurs after the first page of discussion of a topic, and sometimes more than
one version of a concept is defined, leading to occasional entries such as 172-
173-187-234.)

Terms used by other authors for which different words are used here
are, if referenced, put in single quotes; e.g., ‘free product’, for what we call a
coproduct.

In cross-references, I often truncate multiword entries; e.g., I may say
“see rings” though the actual heading is “rings and k-algebras”. But where
this would be confusing, I add “. . . ”. E.g., under “associative algebra” I write
“see rings . . . ”.

In referring to secondary headings, I use a colon, writing “see main-
heading: subheading”. Within subheadings, the main current heading is
abbreviated “–”. In particular, “see –: subheading” points to another
subheading under the current main heading.

In the few cases where an entry ends with a numeral (e.g., “matrices:
with determinant 1”), I have put the numeral in double quotes, so that it
cannot be mistaken for a page number.

abelian group, 52-56, 158, 167, 328, see

also group: abelianization of,

module, tensor product, and
bilinear

additive groups of rings, 78, 83, 85,
88, 93, 225, 294, 298, 450

– as Z-module, 71, 470, 477

category of all –s, 207

coproduct of –s, 65-66, 295, 469

divisible –, 240, 311

duality of –s via Q/Z , 236, 493

endomorphism ring of –, 194

free –, 52-54, 56, 72, 85-86, 262, 271,
297, 298

normal forms in free –, 53-54

Pontryagin duality of topological –s,
236, 493

representable functors on –s, 388,
450, 453, 469-470, 479-480, 493

–s of Z-valued functions, 54, 232

structure of the product and squaring

functors on –s, 427

structure on hom-sets of –s, 66, 296,

469, 470, see also module: . . .

subgroup lattice of a –, 168, 184

torsion –, 252, 453

abelianization, see group: . . .

above and below, see constructions:
from –

‘abstract class’ of algebras, 394
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abuse of language or notation, see loose

usage

ACC, DCC, see chain: conditions

action, see representation and G-set

adjoint, see mainly adjunction

– operators on Hilbert space, 292

adjunction, 287-292-298, 318, 348

– and empty algebras, 373

– between varieties of algebras, 384,
445-503

composition of –s, 297-298, 448-449,
452, 464-465, 476-477, 494-495

contravariant left –, 355-356, 388,

494-495

contravariant right –, 354-355-356,

427, 489-496

Freyd’s adjoint functor theorems,

345, 347, 372, 374, 384, 453

functors with adjoints on both sides,

293, 295, 451, 484

morphisms among adjoint functors,

348-354

relations with other universal

constructions, 293, 318, 322-327

SL(n) and its adjoint, 433-434

“Structure is adjoint to Semantics”,
426

underlying-set-preserving functors

have adjoints, 421-422, 449-451,
479

unit and counit of –, 291-292, 297,
323, 348-351, 461, 466, 500

universal constructions which are not
adjoints, 296

affine geometry, affine subspace of a
vector space, 165, 166, 168

algebra, see also free, and for

k-algebras, see rings . . .

ambiguity of the word “–”, 359, 448

C-based –, see –: (co)– object . . .

(co)– object in a category,

436-437-441-503

co–, other senses of the word, 448

– defined by one binary operation,

480, 488, 499

empty –, 361-362, 373, 378, 400,
411-412

finite and profinite –s, 313, 390,
493-494

finitely generated –, 493

font-convention (not used here) on

underlying sets, 11

generating subset of –, 22-25, 361,
366-369

generators and relations for –, see

presentations

homomorphic image of –, 361, 381,
393-395, see also congruences

many-sorted –, 414

Ω- –, 19, 358-359-391, 413, see also –:
(co)– object

origin of the word, 360

quotient or factor –, see under

congruence, group, and rings

residually finite –, 58, 257, 374

set-based if contrary not stated, 437

simple –, 453

sub–, 361-362, 366-369, 373, 381-395,
see also lattice: of . . . , and

“sub-” under group, rings, etc.

topological –, 493

trivial –, 380, 480

type of an –, 358-359, 436, see also

–: Ω-

underlying set of –, see functor:
forgetful, and |A| in Symbol

Index

varieties of –s, see varieties . . .

‘algebraic’ closure operator, see
finitary . . .

algebraic geometry, 194, 454

algorithm, see normal forms

origin of the word –, 360

almost periodic function, 107

Amitsur-Levitzki theorem, 400

anthropology of mathematics, 189-190

antichain, 116, 156-157

antireflexive relation, 113

antisymmetric relation, 112

“Are mathematical objects real?”,

158-160

arity, 13-14, 19, 358-359, see also

algebra: type of

finite vs. infinite –, 17, 21, 170, 177,
184, 359, 364, 366-369, 373, 395,
429

G-set as structure with all operations
unary, 46

– of a relation on a set, 111

Artinian ring, 125, see also rings: chain

conditions

ascending chain condition, see chain:

conditions

associative algebra, see rings . . .

associativity, see also coassociativity

– allows parenthesis-free notation, 34,

38

analog for clone of operations, 414
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– and “self-commuting” binary

operations, 490

– assumed for rings if contrary not

stated, 83

– expressed by diagram, 438

– in varieties V©W , 498

– of composition in a category, 202

– of group operation, 16, 19

– of lattice operations, 161, 163

– of product and coproduct

constructions, 63, 98

parentheses needed to express –, 16

variant description of –, 189

automorphism

– class group of a category, 483

– group, 191, 193, 199, 226-228, 239,
see also representations: of

groups . . .

–s of complex numbers with “ exp ”,

20

axiomatic model classes, theories, 194,

198

Axiom of Abstraction (rejected), 135

Axiom of Choice, 134-137, 145-146,

151-154, 160, 227, 269, see also

Zorn’s Lemma

– is independent of ZF, 158

Axiom of Projective Determinacy (not

in ZFC), 160

Axiom of Regularity, 128-129, 134-135,

140-142

Axiom of Replacement, 134, 143

Axiom of Universes, 218-219-223, 228,

262, 390, 454, see also –: set vs.

class

axioms of ZFC, see Zermelo-Fraenkel

set theory

base-p expansions of real numbers, of

p-adics, etc., 301, 302

bicommutants in groups, semigroups,

rings, 194, 196

bifunctor, 237-238, 270, 274, 284-297,

348-352

bilinear map, 70-74, 296, 477, see also
tensor product, and category:
Ab-based

– as part of ring structure, 71, 83

‘balanced –’, 477

category of –s, 297

image of –, 73

– is not a homomorphism on product,
70, 74

bimodule, 296, 409, 472-480, 483, 500

category with –s as morphisms, 213,

275

bimonoid (temporary name), 201-206,

207-208

binary, see arity and algebra: defined

. . .

Birkhoff’s HSP Theorem, 393-396

Bohr compactification of topological

groups, 106

Boolean algebra, Boolean ring, 95-97,

234, 267, 385, 399

analogs using other primes than “2”,

492

duality with finite sets, 269, 493

free –, 96, 491

identities of –s, 95-96

lattice-structure of –, 163, 168, 420

nonexistence of free complete –, 347

normal forms for –, 96

– of idempotents in a ring, 96, 294,

450, 492

power set as a –, 97, 232

representation by subsets of sets, 96,

97

subring lattice of –, 168

Brouwerian lattice, 160

Burnside problem, Burnside group,
56-58

Cantor set, 375-377

cardinal, cardinality, see ordinals and

cardinals

category, 203-219-276, see also

varieties . . .

attitudes regarding –ies, 216, 242

automorphism class group of a –, 483

auxiliary –ies where universal objects
become initial or terminal,

277-278, 343-345

Ab-based, Cat-based, k-linear –,
274, 353

category of categories, 228, 234,

270-273, 274-276, see also
functor

‘(co)complete –’, see limit, colimit:
categories having . . .

comma –, 258, 280, 296, 344, 417,
487, see also –: pointed and
augmented objects

commutative square in –, 209, 262

concrete –, 230-231, 239-244, 249,
425-428, see also free: objects in

. . .
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– constructed from monoid or

ordered set, see monoid: group
or . . . , and ordered set: made . . .

contravariant equivalences of –ies,

492-494

diagram –, 209-210, 226, 260-261, 276

directed (inversely directed) system

in –, 306

diversity of conventions, 214-216

empty –, 224, 330, 337

equivalence of –ies, 268-269, 273,

353, 356, 418, 428-430, 467, 481,

483-484

full sub–, 229, 245, 265, 269, 321

functor –, 262, 265, 270-273, 276,

349, see also functor: morphisms
of –s

heuristics of thinking about –ies, 217

isomorphism of –ies, 267, 269

large, small, legitimate –ies,
218-220-223, 228, 230, 262, 316,

325-326, 417, 428

literature on – theory, 6

morphisms (‘arrows’) in –, 203

motivation for concept of –, 199-206

no element-chasing in –, 217, 335, 438

objects of –, 203

opposite –, dualization of results
on –ies, 233-234, 240, 278, 348,

354-357, 444, 489-495, see also

functor: contravariant

pointed –, 481-482

pointed and augmented objects of –,

248, 259, 400-401, 467, 481-482,
498

products and coproducts of –ies, 237,

238

representations by sets and set maps,

206, 230, 418, 439, 443, 497

“Should hom-sets be disjoint?”,

215-216

skeleton of a –, 269, 270

sources of confusion regarding –ies,
204-206, 208, 217

sub–, 223-224, 226, see also –: full
sub–

subobject, 245-247, 266-267, 341, see

also monomorphism:

distinguished . . .

U-small etc., see –: large, small . . .

– with finitely generated hom-set,

336, 339, 429

“– without objects”, 215, 275

zero object of –, see under initial: . . .

Cayley’s theorem, see under

representations

chain, see also ordered sets: chains in

and ordered sets: totally

– conditions (ACC, DCC),
124-125-132, 135, 137, 142,

155-157, 172, 178, see also

well-ordered set

non-order-theoretic sense of –, 116

product of –s, as lattice, 164

class, see Axiom of Universes

clone, clonal theory,

412-413-416-417-429, 439, 440,
443, 491-492, 496-503, see also

operation: derived, and functor:

underlying-set-preserving

– as generalization of monoid, 412,
502

center of a –, 496-503

closure operator, 26, 180-181-189, 197,
221

– determined by subset of P(S)× S ,

181-186

dual concept to – (“interior

operator”), 187

equivalence with closure system,
closure family, 186

finitary (‘algebraic’) –, 184-185, 429

–s and Galois connections (q.v.), 192,
193

–s on classes of algebras, see

Birkhoff’s HSP Theorem

– with exchange property (matroid),

191

co–, see under base word if term not
listed; e.g., for cogroup see group:

co–

coassociativity, 455-458, 480

codomain

– of a morphism in a category, 204

“Should a function determine its –?”,

214-216

coequalizer, 210, 253-254, 364, 381-383,

429

– as functor, 261

constructing all colimits from –s and
coproducts, 319-321, 331

– of monoid maps, 80

relation with surjectivity and
epimorphicity, 254, 317, 382-383

– respects other colimits, 322

cofinal, cofinality, see under ordered
sets, and ordinals. . . : regular. . .

cofinite subset, 97, 213
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cokernel of a group or monoid map, 68,

79

comma category, see under category

commutant of a set of (semi)group or

ring elements, 194, 196

commutative ring, see under rings

commutativity, see also abelian group

and under rings, lattice, and
category

– and morphisms of composite

functors, 272

– between operations of arbitrary

arities, 489-491, 495-503

co–, 482

– of (co)product construction, 63

– of End(IdC) , 264, 503

partial –, 65

commutator

– of group elements, 19, 39, 55, 310

– of ring elements, 294, 402-405, 407,
409, 420

– subgroup and – -factor group of a

group, 55, see also group:
abelianization

compact

– element in a lattice, 177-178, 179,
185, 369

–ification, see under Stone-Čech and
Bohr

– topological space, 132, 177, 429-430

comparability of cardinals, 152

comparison map, see under limit . . . ,

and functor

compatibility identities for lattices,
163-164, 177

complex numbers, 20, 190, 194

“composite” vs. “composition”, 217

composition, see also under adjunction

and functor

– in an enriched category, 274-275

– of morphisms, 203-206, 214, 216,
217, 233

– of morphisms of functors (in several
senses), 262, 271-273

– of operations of arbitrary arity, 413

– of relations, 211

– of representable functors, 448-449,

452, 464-465, 476-477, 494-495

order of writing –, 10, 214, 245, 417,
472, 473, 478

compositum of field extensions, 92

concrete category, concretization
functor, see under category

cones and (co)limits, 319, 325-332

congruence, 77-80, 362-363-364, see

also equivalence relation

algebras without nontrivial proper –s,

453

– as subalgebra of product, 80, 363,
383

factor-algebra (quotient) by a –, 77,

362-363

– generated by set of pairs, 77, 80,
99, 363, 369, 374, 384, 386

– invariant under all endomorphisms,

397-398

lattice of –s, 363, see also under

lattice

left – on monoid, 338, 365

– on factor-algebra, 77

– on group corresponds to normal
subgroup, 78

– on monoid, 77-80

– on ring, corresponds to ideal, 78

conjugate morphisms between adjoint

functors, 353-354

conjugation (in groups), 19, 39

conjunction of propositions, 10

– as intersection, 26, 196-197

universal quantification as –, 197

consistency results in set theory, 223

constant operation, see zeroary
operation and functor: diagonal

(constant)

constructions, see also recursion, Zorn’s

Lemma, and functor

completing partial –, 151-152

– from above and below, 26, 28, 43,
161, 182, 197, 366, 392

– made into functors, 285-295

– of the natural numbers, ordinals,

and cardinals, 132-133, 139-142

continued fraction, 21

contravariant, see under functor,
adjunction, and category

convex set, 194

co-operation, see operation: co– and

coproduct: as codomain . . .

coproduct, 62, 250-252, 320, 331, see

also limits and colimits

– as (adjoint) functor, 237, 294-295,
328

– as codomain of co-operation,

434-436, 441, see also algebra:
(co)– objects

– as initial object of auxiliary

category, 278

– as representing object, 282
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associativity and commutativity of –

construction, 63, 98

codiagonal maps from a –, 65

constructing all colimits from –s and

coequalizers, 319-321, 331

coprojection map to –, 250, 443, 456

– depends on category in which

taken, 65, 321, 323

– of abelian groups, 65-66, 295, 469

– of categories, 238, 271

– of empty family, 90, 250, 435

– of groups, 58-65, 322, 485-486

– of monoids, 79, 455-456

– of partially ordered sets, 114

– of rings, 91-94

– of sets (disjoint union), 59-60, 98,
322-323, 327, 338-340

presentation of –, 59

coprojection map

– to colimit object, 307, 316, 329

– to coproduct object, 250, 443, 456

– to pushout object, 255

counit, see adjunction: unit and –

countability, uncountability, 30-32, 54,
136, 146, 147, 149, 156, 167, 173,

231, 309, 340, 347, 366-368, 379,
390, 391, see also ordinals and

cardinals

course taught from these notes, 1-5

covariant functor, 233, 237

covering, see under ordered sets, and

universal covering space

derivation (on a ring), 402, 408-409

– viewed heuristically as infinitesimal

automorphism, 408-409

derived

– operation, 19-20, 181, 211,
389-420, 438-440, 442, 496-499

– subgroup, see commutator:

subgroup

descending chain condition, see chain:

conditions

diagonal, see under functor

diagram category, 209-210

functor on –, 226, 260-261, 276, 316,

321, 335

differential equation, 128, 303

differentiation of polynomials, 89, 196

dihedral group, 19, 49, 356

directed, see under ordered sets and
category: – system

direct limit, see under limit . . .

direct product, 62, see also product

‘direct sum’, 66, see also coproduct and

retraction

disjoint union, see coproduct: of sets

disjunction of propositions, 10

– as union, 196-197

existential quantification as –, 197

distinguished element, see operation:

zeroary, and set: pointed

divisibility ordering on integers etc.,

112, 121, 164

divisible group, 240, 311

division ring, division algebra, 33, 190

domain of a morphism in a category,

204

duality, see ordered set: opposite,
category: opposite, Pontryagin –,

and under abelian group, vector

space, lattice, Boolean algebra

electrical circuit, 419-420

“element chasing”, see category: no –

embedding, embeddability, see also

monomorphism: distinguished, and
Yoneda

– of algebras, 81, 96, 122, 391, 404,

486, see also representations:

Cayley’s theorem, and next
subheading:

– of ordinals, partially ordered sets,

(semi)lattices, 142, 174, 178-180,

182-183

– of topological spaces, 103, 105, 106

empty set, see also free: algebra on –,
and under product, coproduct,

operation, category, limit, and

algebra

– and zeroary operations, 14, 455, see
also algebra: empty

– and Zorn’s Lemma, 154

– as starting point for set theory, 133,
134

closure of – under a closure operator,

181

inverse limits of non—s, 308, 464

meets and joins over –, 170-173, 175

products and coproducts over –, 250

universal constructions in other cases

involving –, 50, 90, 98, 321, 327,

331, 343, 373, 387, 434, 435, 450,
481

empty string, convention on, 60, 94

endomorphism, see also ring: of –s, and

under abelian group, lattice

monoid of –s, 49, 200, 212, 373

–s of IdC , 264, 502
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enveloping

universal – algebra of a Lie algebra,

see under Lie algebra

universal – group of a monoid, 81,

see also group: constructions
relating –s and monoids

epimorphism, 240-245, 254, 350, 452,

see also under coequalizer

conflicting meanings of –, 242

epimorphs of initial objects, 388,

501-502

–s and pushouts, 258

–s of various familiar structures,

241-242

– vs. surjective map, 240-244

equalizer, 210, 253-254, 255, 327, 328,

362, 381, 395

– as a functor, 261

– as a limit, 315

constructing all limits from –s and

products, 319-321, 331, 341-343

– of monoid maps, 80

– of representable functors, 484

– respects other limits, 323, 331

–s, one-one-ness, and

monomorphicity, 254, 317, 343,

383

equational theory, see varieties and –

equivalence of categories, see under
category

equivalence relation, 99, 120, 132,
187-189, 212, 239, 268, see also

congruence, term: construction . . . ,

and category: equivalence . . .

– as closed set of a closure operator,
182

lattice (semilattice, set) of –s,
178-180, 232, 235, 281, 349-350

union of directed system of –s, 308
E-system, see monoid: functors . . .

evaluation of terms, 18-19, 23, 27, 38,
389-391

exchange property, see matroid

exercises in these notes, 6

exponents of group elements, 51, 226,

231, 266, 311, 451, see also group:
Burnside

expression, see term

extension of scalars, 479

factor algebra, see under congruence,
group, rings

family, see tuple

Fibonacci numbers, 126, 127, 130

field, see also rational, complex, p-adic

algebraic closure of a –, 228

compositum of – extensions, 92

Galois theory, 93, 191, 193, 198

infinite Galois theory, 310

“Is there a concept of free – or

division ring?”, 33

matrix group over a –, 56

– of fractions, 33, 82, 241, 243, 310

skew –, see division ring

‘filtered’, see ordered sets: directed

finitary, see also arity

– closure operator, 184-185, 429

– operations and algebras, 17, 184,

308, 310, 333, 359, 363-369, 373,

374, 378-379, 391, 395, 417-418,
428-429, 436, 488, 491-494, 496,

499

finite, see natural numbers, and under
arity, group, presentation, algebra,

set, Boolean algebra, category

finitely presented object, 50, 56, 90,
256, 339

direct limits of –s, 309, 333

fixed-point set of a G-set, 317, 318, 336,

338-339, 451

forgetful functor, see under functor

Fredman’s conjecture on ordered sets,

118-119

free

– abelian group, 52-54, 56, 72, 85-86,

262, 271, 297, 298

– algebra in a variety, 384-390, 393,

394, 396, 415-417, 425-429, 448,

450, see also –: Ω-algebra

– algebra on the empty set, 90, 434

– algebra with unspecified generating

set, 25, 372

– Boolean ring, 96, 491

– commutative ring (i.e., polynomial
ring), 33, 84, 194, 237, 281, 296,
303

– complete Boolean ring
(nonexistence), 347

– group, 22-24-41, 44, 49, 50, 63,

262-263, 265, 271, 277-279, 281,
287, 288, 291, 293, 297, 310, 322,
341, 343, 349-350, 352-353, 372,

392

“Is there a concept of – field or

division ring?”, 33

– lattice, semilattice, 40, 166, 347,

372

– Lie algebra, 40, 406
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– monoid, 75-76, 85-86, 122, 298,

372-373, 462

nonexistence of some – objects, 25,

33, 346-347

– object constructions as functors,

225

– objects in a concrete category, 249,

252, 281, 287, 293, 327

– Ω-algebra, 370-379, 384-393,

397-398

‘– product’, see coproduct

relatively – algebra, 396-398-399

– ring, 84-86, 298, 372, 399

– set-representations of a category,
283

subalgebras of – algebras, 373

universal property of – objects,

24-25, 30, 32, 37

Freyd’s adjoint functor theorems, 345,

347, 372, 374, 384, 453

Friedman, Harvey, question of, 391

full, see under category and functor

function

algebras of –s and algebra-valued

representable functors, 437

almost periodic –, 107

– as a binary relation, 243

conventions on notation, 10, 214, 473

germ of a –, 211-212, 305

indexed set (family) as a –, 13

polynomial –, 138, 164

relation, as generalization of –, 211

restriction of a –, 126

rings of bounded –s, 105-107

“Should a – determine its

codomain?”, 214-216

support of a –, 54

functor, 224-238, see also subheading
“. . . as functors” under various

constructions etc., and category:

equivalence of

adjoint –, see adjunctions

bi–, 237-238, 270, 274, 284-297,

348-352

– categories, see under category

comparison –, 427-428

composition of –s, 228, 233, 237, 272,
273, 297-298

concretization –, see category:

concrete

constructions that are not –s, 226-228

contravariant –, 115, 232-237, 244,
264, 269, 473, see also

subheading contravariant under

adjunctions and under category

covariant –, 233, 237

diagonal (constant) –, 294, 297,

318-321, 326, 330

faithful –, 229-231, 236, 240, 265, 268

forgetful –, 225-226, 229, 231, 252,

281, 288, 291, 293-294, 298, 323,
324, 327, 349, 352, 372, 386, 411,

415, 417, 420, 427, 444, 446, 452,

466, 467, 487

full –, 229-230, 265, 268

G-set as –, 315-316

hom –, 231, 235-236, 238, 240, 244,
263, 279-280, 282-287, 290, see

also –, representable, and

Yoneda’s Lemma

–ial operation, 33-34, 105, 264, 352,

389-391, 487

identity –, 226, 228, 264, 267, 268,

272-273, 321, 343, 503

morphisms of –s, 260-261-273, see
also –: sub–, and morphism: of

(co)algebra objects . . .

non-representable –, 281, 330, 346,

464

– of several variables, 237, see also –:
bi–

– on a diagram category, 226,

260-261, 276, 316, 321, 335

– on the category of finite sets, 228,
236, 238

power (product of copies) of a –, see

under power

power set –, 97, 115, 166, 234, 235,

263, 266, 281, 427

representable algebra-valued –,
440-444-503, see also algebra:

(co)– objects

representable set-valued –,

278-280-291, 318, 323-333,
343-346, 386-388, 425, 428, 434,

see also Yoneda’s Lemma

– respecting various constructions,
see under product, limit . . . ,

initial . . .

sub–, see subfunctor

underlying-set –, see –: forgetful

underlying-set-preserving –, 420-421,
425, 449-450, see also –: forgetful
and under adjunction: . . .

fundamental group of a topological

space, 199, 202, 211, 232, 270, 445,
501
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Galois connection, 191-192-198, 356,

see also field: Galois theory

– and pushout, pullback, 257

– between algebras and identities,

379-380, 392

heuristics for characterizing closed

sets under –, 197, 392-393

– measuring “what respects what”,

331-332, 340

Gaussian integers, 94

Gel’fand-Kirillov dimension of a monoid

or algebra, 122-124

“General Algebra” or “Universal

Algebra”?, 5, 360

generating set, see also presentation

a homomorphism is determined by its
action on a –, 22, 31, 48, 341

– for a congruence, 77, 80, 99, 363,
369, 374, 384, 386

generators and relations, see

presentation

germ of a function, 211-212, 305

Golod-Shafarevich construction, 56

graph, 419, see also monoid: functors

. . .

reconstruction problem for –s, 120

greatest element, see ordered sets:

minimal . . .

greatest lower bound, see ordered sets,

semilattice, and lattice

Grothendieck group of an abelian

monoid, 81

group, see also under automorphism,

variety, and fundamental –

abelian –, see abelian group (and

cross-listings shown there)

abelianization of a –, 55-56, 65, 66,

70, 73, 225, 229, 277-278, 287,
293, 297, 310, 340

– acting on an object of a category,
260, 262, 315

– acting on an ordered set, 315

– acting on a set, see G-set and

permutation

affine algebraic –, 454

Bohr compactification, 106

Burnside problem, Burnside group,

56-58

category of –s, 207, 270, 275

center of a –, 226

centralizer of a subset of a –, 196

co–, 436, 445, 451

cokernel of a homomorphism of –s, 68

commutator of – elements, 19, 39, 55,

310

congruence on a –, 78

constructions relating –s and

monoids, 80-82, 208, 224, 266,
267, 287-288, 293, 397, 421,

451-452, 461, 463, 465-467,

469-470, 480

coproduct of –s, 58-65, 322, 485-486

cyclic –, 51, 63, 73, 199, 209, 231,

303, 451

– definition examined, 10-12, 187-189,

381

derived operations of –, 19-20, 400

‘derived sub- –’, see commutator:

subgroup . . .

dihedral –, 19, 49, 356

divisible –, 240

– elements of exponent “2”, 485-486

exponents of – elements, 51, 226,

231, 266, 311, 451, see also –:

Burnside

finite –, 34, 40, 56-58, 63

finitely and non-finitely generated –s,

30, 51, 164, 167, 177, 335, 338

free –, see free: group

fully invariant sub–, 267

functors between category of groups
and category of group maps, 295

growth rates of –s, 122

inner automorphisms of –s, 19, 39,
486

Lie –, 240, 282, 313, 407-408

– made into a category, see monoid:
group or . . .

motivation for concept of –, 37, 199

normal forms in –s, 39-40, 60-62, 63,
455

normal sub–, 45, 47, 68

– of automorphisms, 191, 193

– of invertible matrices, 56, 249, 353,

354, 432-436, 443, 447, 484

order of a – element, 51, 56, 63, 226

presentation of a –, 46-48-59, 81

product of –s, 58-59, 482

quotient or factor –, 44-46, 47, 78

– redefined, without zeroary

operation, 412

second universal property of product
of –s, 63-64

simple –, 453

solvable –, 56

subgroup and normal subgroup

generated by a set, 43-44
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subgroup lattice of a –, 164, 168, 181,

235

sub– of finite index, 212

symmetric –, 19, 32, 131

symmetry –, 49, 50

ternary operation xy−1z on –, see
heap

three sub- –s theorem, 39

topological –, 106, 236, 501, see also

group: Lie

torsion (‘periodic’) –, 252, 311

trivial homomorphism of –s, 63, 482

various universal constructions for –s,

43-74

– with distinguished cyclic subgroup,
345

growth rates of sequences, semigroups,

groups, k-algebras, etc., 121-124
G-set (G a group or monoid), 45-46,

69, 188, see also permutation and
under varieties

analog of – in a general category, see

group: acting on an object . . .

– as functor, 260, 315-316

category of –s, 207

fixed-point set of –, 315, 317, 318,

336, 338-339, 451

– made into category, 213

orbit set of –, 315, 317, 340, 356, 450

Hall-Witt identity for groups, 39

handwaving in proofs, 3

Hasse diagrams (pictures) of partially
ordered sets, 116

heap, 400-401, 420-421, 423, 469, 501

– of isomorphisms, 400

height of an ordered set or of an

element thereof, 117, 142, 157

Hensel’s Lemma, 302

hom functor, see under functor

homomorphism, 11, 360, see also under

algebra

homotopy of maps between topological
spaces, 107-109, 211, 226, 229, 231,

236, 444

hom-sets, see under abelian group,

category, module

Hopf algebra, 448

hyperidentity, 422

ideal of a lattice, 183

ideal of a ring, 88

Nullstellensatz, 194

prime –, 92, 106, 232

idempotent

Boolean ring of –s in a ring, 96, 294,

450, 492

– element, with respect to an

operation, 96, 161, 468

– endomorphism, 245, see also

retraction

– operation, 161, 164, 189, 423

– operator (closure etc.), 180, 192,

394

variety – under © , 501-502-503

identities, 12, 377-381, 384, 392, 393,

397-400, see also associativity, etc.,

and group: Burnside

– and normal forms, 40

(co)– in (co)algebra objects of a
category, 438-440-441, 443, 488

– for G-sets, 46

– holding in all groups, 36, 48

hyper–, 422

imposing – on an algebra, 384, 450,

see also group: abelianization

– in finite groups, 40

Mal’cev conditions, 424

motivation for group –, 37, 199

– of Boolean rings and algebras, 95-96

– of lattices, 161, 163, 168-169

polynomial –, see rings: with –

xn = 1 , see group: Burnside

identity (other senses)

‘– element’, see neutral element

– functor, see under functor, and

limit . . .

– morphism, see under morphism

imposing relations on an algebra, 44-46,

76-80, 88-90, 115, 363, 447

inaccessible cardinals, 222, see also

Axiom of Universes

incomparable elements in a partially

ordered set, see antichain

independence results in set theory, 158

indexed family, see tuple

induction, 124-131, 171, see also

recursion, and Zorn’s Lemma

inductive

‘– limit’, 306

– partially ordered set, 152-156

initial and terminal objects, 247-248,

254, see also under epimorphism

– as (co)domains of zeroary
(co-)operations, 14, 435, 452, 455

category with small limits but no

initial object, 346

classes of functors respecting –, 330

existence results for –, 342-343
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– expressed in terms of other

constructions, 250, 282, 321

– of categories Rep(V, W) , 488

other constructions expressed as –,
277-279, 283, 433, 435, see also

category: auxiliary

– represent trivial functors, 282, 480

zero objects, 247-248, 251, 254,
481-482

initial segment of ordered set, 138,
145-146

injection, see monomorphism and
one-one-ness

integers, 12, see also natural numbers,

growth rates, Fibonacci numbers

integral domain, 89, 120, 121, 126, 132,

301, 380, 496

interpolation properties on ordered sets,

175, 306

intersection

conjunction as –, 196-197

family closed under –s, see closure

operator

intervals in partially ordered sets, 116

intuitionism, 158, 160

inverse limit, see limit . . . : direct and

. . .

inversely directed, see ordered sets:

. . . and category: directed . . .

invertible, see also one-sided

– elements in monoids, 82, 224, 229,
266, 281, 288, 380, 387, 451-452

– elements in rings, 302, 353

– morphisms in categories, see

isomorphism

isomorphism

classes of algebras closed under –
(‘abstract classes’), 394

– in a category, 239, 245, 247, 268

– of bifunctors, 286-297, 348-352, 355

– of categories, 267, 269, see also
category: equivalence of

– of functors, 263-264, 266, 268, 269,
273, 279-281, 285-293, 427, 461,

463, 466, 483, see also functor:

representable, and category:
equivalence of

– of ordered sets, 112

the –s between two objects form a
heap, 400

isotone maps of ordered sets, 112-113,

165-166, 395

strict –, 113

Jordan algebra, 410

K-theory, 82

large and small sets, 218-220-223, 379,

390, 391, see also under sets,
solution-set, category, Axiom of

Universes

lattice, 6, 162-163-180, 190, 294, 423,

see also semilattice

(< α-)(semi)complete –, 170-171-180,
182-183, 185, 252, 346-347, 361,

380, 428, 429

antiisomorphism of –s, 192

Boolean algebra as –, 163, 168

Brouwerian –, 160

closure operators and –s, 182-187

cofinal sub–, 167

compact elements in a –, 177-178,
179, 185, 369

concrete –, see closure operator

distributive –, 169, 483

duality between distributive –s and

partially ordered sets, 236, 492

fixed point theorem for complete –,

173

free –, 166, 347, 372

greatest and least elements in –, 165,
492

homomorphisms of various sorts,

165-167, 174-176, 178-180

ideals and principal ideals in –, 183

– made into a category, 335

modular –, 40, 168

– of equivalence relations,
congruences, 178-180, 232, 235,

281, 349-350, 363

– of subalgebras of an algebra, 164,

170, 177, 361

– of subgroups of abelian group, 168,
184

– of sub(semi)lattices of a

(semi)lattice, 168

– of varieties of algebras, 379

power set as –, 163, 168-169

representable functors to and from
–s, 482

ring-theoretic notation for –s (not

used here), 164

sub–, 165

underlying semilattices and partially
ordered set of a –, 163, 166, 294

universal constructions for –s,
166-167

upward and downward generating

numbers of a –, 176

– -valued metric space, 179
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– with group action, 315

Lawvere’s approach to varieties of

algebras, 415-416, 418

least element, see ordered sets: minimal

. . .

legitimate, see under category: large . . .

lexicographic order, 130-131

Lie algebra, 190, 402-403-410

– of vector fields, 405-407

p- – or ‘restricted –’, 409

relation to Lie groups, 407-408

super –, 410

universal enveloping algebra of –,

294, 403, 450

limit, colimit, 314-316-348, 422

– as adjoints to diagonal functors, 318

– as objects with universal cones,

319, 325-332

– as representing objects, 318

categories having small –s, 316,

333-338, 342-348

– commute with same, 329, 333-340

comparison morphisms for –,

332-333, 334-344

direct and inverse limits,

303-306-317, 319-322, 328, 331,
336-340, 364-369, 381, 390, 395,

464

functors respecting –s, 322-325-340,

453-454, see also –: comparison

morphisms

‘inductive’ and ‘projective’ ( = direct
and inverse) limits, 306, 313

– in functor category, 265, 484

– in varieties of algebras, 362, 375,
381-382, 384

– of identity functors and empty
functors, 321, 327, 331, 343

– of partially ordered sets, 492

– of system of representable functors,
464

other universal constructions

obtained from –s, 342-345,
446-447, 448, see also Freyd’s . . .

limit ordinals and cardinals, 142-145,
149-152

linearization, see ordered sets:
extensions

linearly compact, see under vector space

‘linear’ ordering, see ordered set: totally

localization of commutative rings, 82,

302

loose usage, 11, 12, 24, 33, 43, 48, 49,

98, 112, 162, 215, 274, 306, 363,
372, 377

majority vote operation, 20, 494

majorize an element or subset under an
ordering, to, 116

Mal’cev condition, 424

many-sorted algebra, 414

map, 11, 214, see also category:
morphism, and function

map coloring, 309

matrices

category with – for morphisms, 202,
210, 268

determinants of –, 353, 354, 359, 484

free groups of –, 41

groups of invertible –, 56, 249, 353,
354, 432-436, 443, 447, 484

identities satisfied by rings of –, 400

rings of –, 269, 400, 450, 452, 483

– with determinant “1”, 41, 432-434,
443, 447

matroid, 191

maximal elements, see ordered sets:
minimal . . .

metric space, 103, 187-188

completion of –, 301

lattice-valued –, 179

minimal elements, see under ordered
sets

module, 70, 74, 194, 296, 470, see also
abelian group, vector space,

bimodule, tensor product, varieties

. . .

abelian group structure on hom-sets
of –s, 274, 475, see also abelian

group: . . .

– case, as model for thinking of

representable functors, 477

categories of –s, 207, 275, see also

other headings here, and rings:
Morita . . .

clones with Ab in center are

theories of – varieties, 500

– over matrix ring, 483, see also

rings: Morita . . .

– over semiring with “0” and “1”,
500, 502

projective –, 242

representable functors among
varieties of –s, 470-479, 483-484,

500

restriction and extension of scalars,

479



Word and Phrase Index 517

submodule lattice of a –, 168

writing – homomorphisms on
opposite side to ring action, 473

monoid, 74-82, 121-123, see also under

endomorphism, and variety

abelian –, 81, 498

categories of –s, 207

clone as generalization of –, 412, 502

coequalizer of – maps, 80

congruences on –, 77-80

constructions relating –s and groups,

80-82, 208, 224, 266, 267,

287-288, 293, 397, 421, 451-452,
461, 463, 465-467, 469-470, 480

constructions relating –s and

semigroups, 75, 82

coproduct of –s, 79, 455-456

equalizer of – maps, 80

free –, 75-76, 85-86, 122, 298,
372-373, 462

functors from –s to –s, 454-469, 484

Grothendieck group of an abelian –,

81

group or – made into a category, 208,
230, 234, 239, 246, 250, 260, 262,

264, 275, see also G-set: as

functor

kernel, cokernel of a –

homomorphism, 79

left congruence on a –, 338, 365

multiplicative – structure of a ring,

82, 83-85, 87, 200, 225, 293, 298,

450, 452

normal forms in –s, 75, 78-79, 82, 461

– of endomorphisms of an object, 49,
200, 212, 373

– of endomorphisms of IdC , 264, 502

one-sided invertible elements in a –,
78, 281, 462, 463-464

opposite –, 226, 462-463

partially ordered – of operators on
classes of algebras, 394-395

presentations of –s, 76-82, 87

product of –s, 79, 123

– ring, 87-88, 93, 294, 298, 324, 450

“Should one just say semigroup with

e ?”, 75, 503

trivial –, 90

– with cancellation, 81

monomorphism, 239-247, 249, 265, 350,

see also equalizer: maps . . .

conflicting meanings of –, 242

distinguished classes of –s, called

embeddings, inclusions, 246,
266-267

non-one-to-one –, 240, 245

–s and pullbacks, 258

–s are usually the one-to-one maps,
240, 246, 382-383

Morita theory, 202-203, 213, 269, 484

morphism, 203, see also under category

and functor

category with group –s as objects,

295

composition of –s, 203-206, 214, 216,

217, 233

domain and codomain of –, 204

identity –, 204, 214, 275, 279-284,

289-290, 291, 324, see also
Yoneda’s Lemma

– of (co)algebra objects in a category;

of representable functors,

437-438, 441, 462, 465, 467

natural numbers, 124, 134, 159, see

also growth rates

category of –, 416, 418, see also clone

functions on – induced by functors on
finite sets, 228, 236, 238

semiring of –, 502

von Neumann construction of –,

132-133, 139

‘natural transformation’, see functor:

morphisms of –s

neutral element, 10, 74, 187-189, 462,
490, see also group, monoid, rings

co–, 455-456, 469, 480

one-sided –, 468

Noetherian ring, 125, see also rings:

chain conditions

nonempty sets, inverse limits of, 308,

464

normal forms, see also van der
Waerden’s trick

– in Boolean rings, 96

– in coproducts of groups and

monoids, 60-62, 63, 79, 455

– in free abelian groups, 53-54

– in free groups, 39-40

– in free lattices, semilattices, 40, 166

– in monoids, 75, 78-79, 82, 461

– in objects with particular
presentations, 50, 65, 78-79, 82,

89

– in rings, 84-86, 89-94

problem of obtaining –, 40, 57
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– vs. unsolvable word problems, 40,

58
n-tuples, convention on, 13, 143

Nullstellensatz, 194

object, see under category
Ω-algebra, 19, 358-359-391, 413

free –, 370-379, 384-393, 397-398

one-one-ness, see monomorphism and
equalizer: maps . . .

– and functors, 373

– is not characterizable

category-theoretically, 239

– of map from X to free object on

X , 24

one-sided invertible

– element in a monoid, 78, 281, 462,
463-464

– morphism in category, 239, 244-245,

254, see also retraction

onto, see surjectivity

open questions, 41, 57, 118, 119, 167,

180, 186, 311, 365, 385, 391, 468

list of – in group theory, 52

questions I don’t know answer to, nor

whether they’ve been studied,

20, 167, 213, 331, 340, 348, 482,
488, 502

operad, 424

operation, 13, 359, 436, see also arity

associative –s and the empty string,
60, 94, 170-173, 189

co–, 377, 436, 441, see also algebra:

(co). . .

– depending on only a subset of its

indices, 411-412

derived –, 19-20, 181, 211, 389-420,
438-440, 442, 496-499

functorial –, 33-34, 105, 264, 352,

389-391, 487

idempotent –, 161, 164, 189, 423

majority vote –, 20, 494

mutually commuting –s, see

commutativity: between . . .

– on an object of a category, 436, see
also algebra: (co)–

– on a quotient set, 27

pointwise –, see product, and under
pointwise

primitive –, 19, 389, 413, 418,

420-427

projection –, 19, 413-415, 418, 425,
439-440, 496-499, see also

projection maps: from product

object

zeroary –, 14, 20, 361-362, 381, 411,

467, 478, 480-482, 488, 490, 498,
see also neutral element

opposite, see under monoid, rings,
ordered sets, category

orbit set of a G-set, 315, 317, 340, 356,
450

ordered pair, 133

ordered sets (partial and total),

111-132, 166, 187-188, 330, 331,

see also lattice, preorder, and
well-ordered set

<α-directed –, 339, 364-366, 368, 381

antichains in –, 116, 156-157

categories of –, 207, 246

chains in –, 116, 117, 152-156, 167,

171-175, 184, see also –: totally
. . . and chain conditions

cofinal subsets of –, cofinality of –,
116, 149-150, 155, 167, 174, 307

coproduct of –, 114

‘covering’ relation in –, 114

directed and inversely directed –,
157, 305-314, see also limits and

colimits: direct and inverse limits

divisibility ordering on integers etc.,

112, 120, 121, 164

duality with distributive lattices, 236,

492

duals of –, see –: opposite

extensions and linearizations of

orderings, 117, 155-156

‘filtered’ –, see –: directed

Fredman’s conjecture on –, 118-119

Galois connection between two –,

192-193, 356

group actions on –, 315

heights and widths of –, 117, 142,

157

incomparable elements in –, see
antichain

induced ordering on a subset, 112,
165

inductive –, 152-156

initial segments of –, 138, 145-146

interpolation properties, 175, 306

intervals in –, 116

isomorphisms of –, 112

isotone maps of –, 112, 113, 165-166,

395

limits and colimits of –, 492

l.u.b.’s and g.l.b.’s in –, 161-164,

170-173, 174-175, see also
semilattice, lattice
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– made into categories, 208-209, 229,

234, 239, 246, 247, 250, 252, 306,
331, 336, 338

minimal, maximal, least, greatest

elements in –, 115, 124, 126, 165,
308, 492, see also well-ordered

set, chain: condition, and lattice:

(< α-)(semi)complete

opposite –, 113, 129, 162, 226-234

pictures (‘Hasse diagrams’) of –, 116

power sets as –, 115, 201

presentations of –, 114

product of –, 114, 130, 492

reconstruction problem for finite –,

119

strict ordering relation “< ”, strict
isotone map, 113-114, 207, 315

totally (‘linearly’) ordered set,

118-119, 130, 137, 152, 156, 164

underlying – of (semi)lattices, 162,
294

ways that – arise, 201

ordinals and cardinals,
139-140-146-153, 156

– and the process of generating an

algebra, 30, 32, 102, 185,
346-347, 366-369, 371, 379, see

also solution-set condition

arithmetic of –, 143-145, 147-149

cardinality, 146, 147

comparability of cardinals, 152

inaccessible cardinals, 222

limit – and successor –, 142-145,

149-152

ordinal = limit ordinal + finite

ordinal, 346

regular –, singular –, cofinality of –,
149-150, 155, 222, 368-369, 379,

436, 441

von Neumann construction of –,
139-142

p-adic

– integers, 298-300-304, 311-313

– rationals, 301

pair, see tuple

path-lifting property in covering space,
107

permutation, 46, see also group:

symmetric

properties of –s as source of group

concept, 37, 61, 188, 200

sign of a –, 399

Péter Frankl’s question, 186
p-Lie algebra, 409

Poincaré-Birkhoff-Witt Theorem, 294,

404

pointed, see under category, set, rings

Poisson algebra, 410

polyhedra, 194

polynomial, see free: commutative
rings, symmetric: ring, and under

function

polynomial identity (“PI”), rings with,

241, 399-400

Pontryagin duality of topological

abelian groups, 236, 493

power of an object or a functor (i.e.,

product of copies), 253, 265, 387,

467, see also operation

an object with finite powers yields a

clonal category, 425

power series, see under rings

power set, 95-98, 115, 134, 234, see also

under Boolean, lattice, ordered set,
functor, and topological space

– as functor, 281

structure on – functor, 427

preorder, 120-124, 138, 189

presentation, 277-278, 281, 374-375,
384-387, 433, 446, 449, 459, 465,

see also under group, ring, etc.

bounds on numbers of generators,

relations needed, 50, 56

canonical – of an algebra, 289

every algebra is direct limit of finitely
presented algebras, 309, 333

finitely presented object, 50, 56, 90,

256, 339

normal forms in objects given by –s,

50, 65

– of a coproduct, 59

– of representing algebra for a
functor, 434, 442, 450-451

– of tensor product, 71-72, 474-476

–s of groups, 46-48-59, 81

–s of lattices, semilattices, 166

–s of monoids, 76-82, 87

–s of partially ordered sets, 114

–s of rings, 87, 88-90, 93-94

–s of sets, 98

– with empty set of relations or
generators, 50, 387, 450

primitive operation, 19, 389, 413, 418,
420-427

principal ideal domain, 310

product (of sets, algebras, objects in a

category), 62, 70, 250-252,
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255-256, 338, 362, 436, see also

power

– as adjoint, 294-295

– as domain-object of operation, 436

– as functor, 237, 252-265, 274

– as limit, 314, 331

– as representing object, 282

associativity and commutativity of –

construction, 63, 98

– as terminal object of auxiliary
category, 278

category having –s, 250, 273, see also
clone

constructing all limits from –s and
equalizers, 319-321, 331, 341-343

diagonal map into a –, 65

‘direct –’ (classical term), 66, 362

example of – not based on – of

underlying sets, 252

functors respecting –s, 252, 365, 436,

see also clone

– of algebras doesn’t depend on

variety, 65, 362

– of categories, 237, 270-273

– of chains, as lattice, 164

– of empty family, 90, 98, 250, 481

– of functors, 463-464

– of groups, 58-59, 65-68

– of monoids, 79, 123

– of partially ordered sets, 114, 130,

492

– of rings, 89, 92, 95-96

– of –s, 250

– of sets, 98-99, 133

– of too many objects, 252

second universal property of –

groups, 63-64, 93

subobject-of- – constructions, 29-34,

44, 47, 52, 76, 101-103, 104,
319-320, 341-343, 372, 383, see

also solution-set

topology on –, 102, 312, 376

varieties are closed under –s, 381,
383, 393-395

profinite, see algebra: finite . . .

projection maps

– from limit object, 302, 307, 316

– from product object, 59, 237, 250,
307, 417-418, see also operation:

projection

– from pullback object, 255

projective

– geometry, 166, 168

‘– limit’, 306, 313

– modules, and other objects, 242

proofs

handwaving in –, 3

petty details in –, 1

propositions (logical statements)

– form a preordered set, 120, 201

Galois connection between – and

models, 194, 196-197

pullbacks and pushouts, 254-258

– as (co)products in auxiliary
categories, 255

– as functors, 261

– as initial and terminal objects in
auxiliary category, 278

– as limits, colimits, 315, 335

– obtained from (co)products and
(co)equalizers, 255

relation with monomorphisms,

epimorphisms, 258

quantification, universal and existential,

10

– as conjunction and disjunction, 197

quantum mechanics, 89

quasi-small sets, etc., 223, 390, 391,

425, 428

questions, see open questions

quotient algebra, see under congruence,

group, and rings

rational functions, field of, 33

reconstruction problem for graphs, 120

recursion, 18, 26, 126-130, 138,

143-145, 146, 151-152, 153, 366,

370-371, see also Zorn’s Lemma

– using DONE, 138, 146

reflexive relation, 112

regular cardinal, see under ordinals . . .

relation (holding in an algebra), 14,

22-30, 374, see also term. Cf. other

sense of relation below

– expressed using elements of free

algebra, 49, 386

imposing –s on an algebra, 44-46,
76-78, 79, 80, 88-90, 115, 363,

447, see also presentation,
relator, coequalizer, and under
identity

– in a field, 33

– in G is identity of G-sets, 46, 399

–s and identities, 377

–s and representable functors, 387

relation (structure on a set or family of

sets), 26, 111, 503, see also ordered
set, and equivalence relation. Cf.
other sense of relation above
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antireflexive –, 113

antisymmetric –, 111

arity of –, 111

– as generalization of function, 211,

see also RelSet in Symbol
Index

composition of –s, 211

– induces Galois connection, 191,

192, 257, 331-332, 340

reflexive –, 112

restriction of – to a subset, 111

symmetric –, 121

transitive –, 112

relatively free algebra, 396-398-399

relator, 49, 72

representable functors, see also under
functor

composition of –, 448-449, 452,

464-465, 476-477, 494-495

module case, as heuristic model, 477

representing objects for –, see under

presentation

representations (of algebraic

structures), 40

Cayley’s theorem and analogs,
200-206, 230, 283

– of Boolean rings by subsets of sets,

96, 97

– of categories by sets and set maps,
206, 230, 418, 439, 443, 497

– of clonal categories by algebras, 417

– of groups and monoids by set-maps,
algebra automorphisms, etc., 41,

88, 199, 200, see also

permutation and G-set

– of partially ordered sets in power

sets, 115, 201

– of rings by linear maps (module
endomorphisms), 86, 194, 450

– of (semi)lattices, 163-164, 178-180,

182-184

universal –, 450, see also –: Cayley

. . . and van der Waerden’s trick

representing object, see functor,
representable

residually finite algebra, 58, 257, 374

respecting . . . , see mainly under limit

. . . : functors –, and Galois
connection: measuring

restriction

– of a function, 126

– of a relation, 111

– of scalars, 479

retract, retraction, 244-245, 251

– of a category, 466

– of a group, 245

rings and k-algebras, 83-97, 122-124,
298, 315, 324, 330, 353, 354, see

also Boolean, field, ideal, integers,
Lie algebra, matrices, module,

semiring, Weyl algebra, and under

abelian group, monoid, p-adic,
tensor product, variety

additive group structures of –, 78, 83,

85, 88, 93, 225, 294, 298, 450

associative, unless contrary is stated,

83

(bi)commutants in –, 194, 196

categories of –, 207

chain conditions (q.v.) on – (Artinian

and Noetherian conditions),
125-126, 129

characteristic of –, 399

commutative –, 83, 131, 190, 236,
432-436, 443, 447, 454, 478

commutators of elements in –, 294,

402-405, 407, 409, 420

congruences on –, 78

derivations on –, 402, 408-409

division –, see division ring

factor –, 78

factoring elements into irreducibles,

126

free –, 84-86, 298, 372, 399

functor from – to Lie algebras, 294,

403, 420, 450

Golod-Shafarevich construction, 56

Hensel’s Lemma, 302

ideal and subring lattices of –, 168

integral domains, 89, 301, 380, 496

invertible elements in –, 302, 353

Jordan algebras, 410

localization of commutative –, 82, 302

Morita contexts, Morita equivalent –,

202-203, 213, 269

nonassociative –, 83, see also Lie

algebra, Jordan algebra

normal forms for –, 84-86, 89-94

– of bounded functions, 105-107

– of endomorphisms (linear maps),

86, 194, 450

– of formal power series, 281, 297,

303, 311, 450

– of ‘noncommuting polynomials’, see

–: free

opposite –, 226, 478

pointed – are trivial, 482

Poisson algebras, 410
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presentations of –s, 87, 88-90, 93-94

principal ideal domains, 310

products and coproducts of –s, 89-96

restriction and extension of scalars,

479

symmetric – on abelian groups and
k-modules, 88

tensor products of –s, 91-93, 123, 478

tensor rings and algebras, 88, 294,
298, 450

– with and without “ 1 ”, 83, 470

– with involution, 190

– with polynomial identity (“PI”),

241, 399-400

Russell’s Paradox, 135

semigroup, 90, 421, 468-469, 480, 488,
see also monoid

categories of –s, 207

constructions relating –s and
monoids, 75, 82

zero and one-sided zero elements

in –s, 468

semilattice, 161-162, 164-167, 187-190,

294, 349-350, 423, see also lattice

(< α-)complete –, 170-171-180

free –, 372

homomorphism of –s, 165-167, 176

normal forms in –s, 166

representable functors to or from –s,
501

sub–, 165

underlying partially ordered set of –,
162, 166, 294

universal constructions for –s,

166-167

semiring (or ‘half-ring’), 83, 500, 502

set

category of finite –s, 228, 236, 238,

265, 269

category of –s, 207, 219, 224, 225,

230-231, 317, 318, 333-340, 357,

365, 373, 380, 395, 421, 430, 488,
491-492, 499

cofinite sub- –, 97, 213

coproduct (disjoint union) of –s,
59-60, 98, 322-323, 327, 338-340

disjoint union of –s, see –: coproduct

duality between finite –s and finite
Boolean rings, 269, 493

heuristics on generalizing from Set

to other categories, 273

large and small –s, see solution-set,
Axiom of Universes, quasi-small,

and under category

opposite of category of –s, 467

pointed –, 467

presentations of –s, 98

product of –s, 98-99, 133

representations of categories by sets

and set maps, 206, 230, 418, 439,
443, 497

structure of the product and squaring

functors on –s, 427

“– vs. class” questions, 30, 33, 137,

141, 143, 204, 218-219, 222, 391,

see also Axiom of Universes

‘sfield’, ‘skew field’, see division ring . . .

singular cardinal, see under

ordinals . . . : regular . . .

sloppy usage, see loose usage

small, see solution-set, and Axiom of

Universes

– limits, see limit . . . : categories

having . . .

solution-set condition, 342-343-347,
369, 384, 425, 453-454

S-set (S a monoid), see G-set

Stone-Čech compactification of a
topological space, 99-101-107, 150,

294, 347, 429

strict ordering, strictly isotone map, see
under ordered sets

Structure and Semantics, 425-426-428,

479, 485, 491-492, 496

“Structure is adjoint to Semantics”,

426

subcategory, see under category

subfunctor, 266-267, 382, 452, 461,

463, 464

subobject, see algebra: sub–,
monomorphism: distinguished

classes, and category: subobject

substitution into terms, see terms:
evaluation

successor ordinals and cardinals,

142-145, 149-151

super Lie algebra, 410

surjectivity, see under coequalizer and
epimorphism

– and functors, 373, 429

– is not characterizable

category-theoretically, 239

symmetric

– elements in free algebras and

coproduct algebras, 86, 131, 482

– group, 19, 32, 131

– relation, 121
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– ring on an abelian group or

module, 88

symmetry group, 49, 50

tensor product

– and adjunctions, 295-296, 297, 475

– and the Hom functor, 73, 296, 475

– as functor, 237, 274, 453

commutativity of – bifunctor, 263

“nonabelian –”, 73

– of abelian groups, 71-74

– of modules and bimodules, 71, 213,

475-476-479

– of rings and k-algebras, 91-93, 123,

478

presentation of –, 71-72, 474-476

tensor powers of a vector space, 267

tensor rings and algebras, 88, 294,
298, 450

term, 15, 19, 22, 25-29, 33, 34-40, 46,

48, 370

– algebra as free Ω-algebra, 369-371

constructions by –s modulo

equivalence relation, 25-29, 44,
47, 52, 383

evaluation of –s, 18-19, 23, 27, 38,

389-391

group theoretic –, 15-19

terminal object, see initial . . .

ternary, see arity, heap

theory, see axiomatic model classes and

varieties

“threes”, pattern of, 187-191

three subgroups theorem, 39

topological space, see also metric space,

vector space: linearly compact,
Cantor set and under abelian

group, algebra

cohomotopy groups of –s, 236, 445

compact –, 132, 177, 309, 429-430

compact –s and compactness results

of model theory, 313

connected components of –, 103

embeddings of –s, 103, 105, 106

finite –, 124

fundamental group of –, 199, 202,

211, 232, 270, 445, 501

homotopic maps between –s, 107-109,
211, 226, 229, 231, 236, 444

lattice and closure operator

associated with –, 168, 173, 181,

185

neighborhood bases in –s, 117

order-of-limits questions in –s, 330

path-lifting property, 107

power set as –, 234

product topology, 102, 312, 376

Stone-Čech compactification of –,

99-101-107, 150, 294, 347, 429

topological group, 106, 236, 501, see
also group: Lie

(universal) covering space of –,

107-108

vector bundles on –, 82

– with ACC on open sets, 132

totally ordered set, see under ordered
set

transitive relation, 112

tuple, 13, 17

convention on n- –s, 13, 143

“pair” vs. “2- –” in foundations, 133

type, see under algebra

ultrafilter, ultraproduct, 101, 503

unary, see arity

uncountability, see countability

underlying set, 10, see also functor:
forgetful

unit, see neutral element, invertible

element and under adjunction

universal constructions, see other
phrases beginning with universal,

and also free, product, coproduct,

presentation, limit, initial, empty
set, adjunction, and under Lie

algebra

universal covering space, 107-108

universal element, 24, 279-281, see also

universal property

– for representable functor, 280, 282,

291

universal property, 24-108, 238,

314-316, 331, 341, see also specific
universal constructions

existence theorems (general) for

objects with –ies, 341-348, see

also product: subobject-of- . . .

heuristics for finding objects with

left –ies, 27, 40, 42, 45, 60, 67-68,
433, 474

heuristics for finding objects with
right –ies, 67-69, 107-108

nonexistence of objects with

some –ies, 25, 33, 70, 330,

346-347, 453

– of free groups, 24-25, 30, 32, 37

right vs. left –ies, 67-70, 278, 317,

323, 354-356, 362, 369
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uniqueness of objects described

by –ies, 16, 24, 48, 77, 101, 247,
265, 278, 293

universe, 218, see also Axiom of

Universes

Urysohn’s Lemma on topological

spaces, 104, 347
U-small etc., see large . . . , and

category: large . . .

van der Waerden’s trick, 37-39, 40, 61,
256, 461

motivation of –, 37, 86

varieties and equational theories,
380-401, see also Birkhoff, clone,

and Structure

– as categories of representations of a
clonal theory, 417

categories that are not varieties, 380,

382, 383, 429

constructions under which varieties
are closed, 381, 393-394

equational theory generated by a set

of identities, 380

lattices of –, 379

Lawvere’s definitions of –, 415-416,

418
© -idempotent –, 501-502-503

subvarieties of varieties of groups and

monoids, 399, 421

subvarieties of varieties of G-sets and
R-modules, 399, 427, 430

subvarieties of varieties of rings,

399-400

trivial and nontrivial –, 492

universal constructions in varieties,

see under limit . . . , free,

adjunction, etc.

variety generated by a set of algebras,

380, 391, 392-401

“When do we consider two varieties

the same?”, 401, 497

“Which categories are equivalent to

varieties?”, 428
vector fields on manifolds, 405-407

vector space, see also tensor product

bases of –s, 151, 190, 227
category of –s, 268

duality of –s, 193, 195, 232, 235, 263,

269, 493, 495, 500
linearly compact and other

topological –s, 193, 195, 313, 493
– over Q obtained from any abelian

group, 310

von Neumann construction of natural
numbers, ordinals, cardinals,

132-133, 139-142

Vopěnka’s principle, 391
well-ordered set, 125, 130, 137-146,

152-158, see also ordinals . . .

well-ordering principle, 152
Weyl algebra, 89, 196

width of an ordered set, 117

word problems, see normal forms
Yoneda’s Lemma, Yoneda embedding,

282-285, 286, 290, 333, 390, 415,
428

– and (co)algebra objects in a

category, 436, 438, 440, 444
Zermelo-Fraenkel set theory with

Axiom of Choice, 134-137, 218-223

motivation for –, 132-133, 158-160
zeroary operation, 14, 20, 361-362, 381,

411, 467, 478, 480-482, 488, 490,

498
zero object, see under initial . . .

zero-sets of polynomials, 194, 236

ZFC, ZF, see Zermelo-Fraenkel . . .
Zorn’s Lemma, 151-152-155

– and empty set, 154

equivalence of – with formally weaker
statement, 154

Z-valued functions, abelian groups of –,

54, 232



Symbol Index

As in the Word Index, boldface numbers indicate pages where definitions are
given. If a symbol is defined in one place and used again without explanation
more than a page or so away, I show the page(s) where it is defined, and
often some of the pages where it is used or where the entity it symbolizes is
discussed; but I do not attempt to show all significant occurrences of each
subject. For that, the Word Index, with its headings and subheadings, is more
useful.

Symbols are ordered alphabetically. For Greek letters, I use their Latin
spelling, e.g., “Omega” for Ω. Other symbols are alphabetized in various
ways; e.g., ∨ and ∧ are alphabetized as “vee” and “wedge” based on their
LATEX names; the symbol =, and related symbols such as ∼=, are alpha-
betized, in an arbitrary order, under “equals”; and 7→ and ↓ are similarly
alphabetized under “arrow”. Fortunately, you do not have to know all the
details; some symbols will require more search than others, but this index is
only a few pages long.

Font-differences, capitalization, and “punctuation” such as brackets, do
not affect ordering unless everything else is equal. Operator-symbols are often
shown in combination with letters with which they are commonly used, e.g.,
X | Y is alphabetized under XY.

Category theory, introduced in Chapter 6, brings with it a proliferation
of symbols for categories. I do not record below cases where the meaning
is obvious, like Group, nor cases discussed only briefly, like GermAnal
(germs of analytic functions, which can be found in the Word Index), but only
category names used in more than one place, for which some aspect of the
definition (e.g., the associativity assumption in Ring1) or the abbreviation
(as with Ab) is not obvious.

|A| underlying set (etc.) of object A, 10, 359, 437.

A∗ set determined by A under a Galois connection,
191–197.

A/∼, A/(si = ti)i∈I quotient-set or factor-algebra of A, 27, 45, 77.

Ab category of abelian groups; prefix for “abelian” in
categories such as AbMonoid, 207, 499.

ℵ0, ℵα least (respectively, α-th) infinite cardinal, 32, 148,
149.

∀ “for all”, 10, 197.

Ar(C) the class of morphisms (‘arrows’) of the category C,
203.

525
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ariΩ, ari arity function (cf. Ω below), 19, 358.

↓ see “ (S ↓ T ), (S ↓ C), (C ↓ T ) ” below.

7→ action of a function on elements, 10.

Aut(X) automorphism group of X, 55, 199, 226–228.

β : (A, B)→ C bilinear map (temporary notation), 70–74.

Binar, Binare variety of sets with a binary operation, resp., a binary
operation and neutral element, 480, 488, 499.

C the complex numbers.

CD category of all functors D→ C, 262, 270–273.

Cpt category of pointed objects of C, 248, 259, 481, 498.

C(X, Y ) set (or in Chapter 10, algebra) of morphisms X → Y
in the category C, 204, 437, 441.

card(X) cardinality of the set X, 147.

Cat, CatU category of all U -small categories, 228.

cl general symbol for a closure operator, 180.

Cl(V), Cln(V) clonal theory of variety V, and its nth object, 417.

Clone, Clone(γ) category of all covariant (≤ γ-)clonal categories,
416–417–429, 501.

CommRing1 variety of all commutative associative rings with unity,
207, 296, 432–436, 443, 447.

deg(x) in §10.6, degree of element x in a comonoid object of
Monoid, 456–459.

∆ diagonal functor C→ CD, 294, 318, 321, 326, 330.

E(X) lattice of equivalence relations on X, 178–180, 281.

End(X) monoid of endomorphisms of X, 55, 200.

≈ equivalence of categories, 268.

∼= isomorphism (of algebras, categories, etc.).

η, ε unit and counit of an adjunction, 291.

∃ “there exists”, 10, 197.

∃1 “there exists a unique”, 44.

FΩ, FV free-algebra functors (see mainly “free” in Word
Index), 372, 386, 394.

f |X restriction of the function f to the set X, 37, 126.

Gcat see “Scat, Gcat, Pcat ” below.

Gab see “group: abelianization of” in Word Index.
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γ0, γ1, γ in Chapters 9 (for γ0, γ1) and 10 (for γ): infinite
cardinals bounding arities in a type, 379, 436.

GL(n, K) general linear group, 56, 353, 452, 484.

Gmd “underlying” monoid of the group G, 81–82, 208,
225.

H(C) in §9.6, set of all homomorphic images of algebras in
the set C, 394, 488.

hY , h
Y covariant and contravariant hom functors, C(Y,−)

and C(−, Y ), 231, 235, 238.

Hom(X, Y ) set of homomorphisms from X to Y ; mostly
superseded by C(X, Y ) after §7.1.

HtpTop category of topological spaces, with homotopy classes
of maps for morphisms, 211, 226, 229, 236.

HtpTop(pt) as above, but for pointed topological spaces, 444, 501.

IdC identity functor of the category C, 226, 264, 268,
272–273.

idX identity morphism of the object X, 204.

Kf congruence determined by the map f, 76, 79.

K[t], Z[x1, . . . , xn] polynomial algebra or ring, 33, 84.

K t , Z x1, . . . , xn free K-algebra or ring (“noncommutative polynomial
ring”), 84–86.

KS, ZS monoid algebra or group algebra, 87.

λ, µ, ρ indices in coproducts of copies of R (e.g.,
Rλ Rµ Rρ) and their elements (e.g., xλ),
456–462, 469, 482.

≤, <, ≥, 4, ≺, etc. symbols for partial orderings and preorderings,
111–132.

lim←−, lim−→ limits and colimits (including inverse and direct
limits); see mainly Word Index, 306–316–348.

lim sup limit superior, 21, 122.

M3 ternary majority vote operation (but see also next),
20, 494.

M3, N5 5-element “forbidden sublattices” in characterizations
of distributivity and modularity, 168, 174.

µ, µG, etc. explicit notation for composition operation of a group,
monoid, or category, 10, 204.

N natural numbers as subcategory of Set, 416.

N natural numbers as monoid, ordered set, etc., 416.
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Ob(C) object-set of the category C, 203.

Ω algebra type (family of operation-symbols with
specified arities), 19, 21, 358–391.

Ω-Alg variety of all algebras of type Ω, 360–366, 372–375,
383–384.

ω, ωα least infinite ordinal, respectively least ordinal of
cardinality ℵα, 139–150, 156.

1, 1L multiplicative neutral element of ring; greatest
element in a lattice, 83, 170, 481.

( )op opposite (of a partially ordered set, semigroup,
monoid, ring, or category), 113, 226, 233–234,
240.

P(C) in §9.6, set of all products of algebras in the set C;
otherwise, see P(S) below, 394, 488.

Pcat see “Scat, Gcat, Pcat ” below.

P(S) power set of S, 95–98, 112, 115, 134, 156, 163, 281.

π1(X, x0) fundamental group of the pointed topological space
(X, x0), 199, 202, 211, 232, 270, 445, 501.

POSet, POSet< categories of partially ordered sets with isotone,
respectively, strict isotone, maps, 207.

i∈I Xi, i∈I Xi product, coproduct of a family of objects, 250–252.

RBS notation indicating that B is an (R, S)-bimodule,
473.

Rλ, xρ, etc. see “λ, µ, ρ ”.

R-Mod-S variety of all (R, S)-bimodules, 473, 500.

R-Mod, Mod-R categories of left, respectively right R-modules, 207,
470.

|R|σ in §10.6, set of elements in coproduct monoid
Rλ Rµ Rρ associated with index-string σ,
456–457.

RelSet category with sets for objects, relations for
morphisms, 211, 224, 227, 228, 236, 243.

Rep(C, V) category of all representable functors from C to V,
444–503.

Ring1 variety of associative rings with unity, 207, 470.

(S ↓ T ), (S ↓ C), (C ↓ T ) comma categories, 258.

S(C) in §9.6, set of all subalgebras of algebras in the set C,
394, 488.
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Scat, Gcat, Pcat category constructed from the monoid, group, or
partially ordered set S, G, P, 208, 209, 210,
213, 230, 234.

s, sR, sd co-operations in coalgebras, 441, 471.

Set(U), Group(U), etc. explicit notation for categories of U-small objects,
220.

sf , sA symbol for the value of a term s at the tuple f,
respectively for its action on the whole algebra A,
18–19–29, 36–38, 53, 389.

Sgp universal enveloping group of the monoid S (obtained
by adjoining inverses to all elements), 80–82.

SL(n, K) special linear group, 41, 432–436, 447, 450, 484.

⊆, ⊂, ⊇, ⊃ inclusion relations, 114.

symbT map X → T taking each element of X to the symbol
representing it, 16–18, 27, 36.

T, TX, ·,−1, e, TX,Ω in Chapters 2-4, the set of all terms in a set X, and
given operation-symbols, 15–29, 36–40, 46, 129.

⊗ tensor product, 71–74, 200, 475, 476.

Tred in §3.4, set of reduced group-theoretic terms, 36.

2 diagram category with picture · → ·, 210, 276, 295,
381.

U a set-theoretic universe; see “universe” and “Axiom of
Universes” in Word Index, 218.

UΩ, UV underlying-set functors on categories of algebras (see
mainly “functors: forgetful” in Word Index), 372,
386.

t disjoint union of sets, 59, 98.

V(J) variety of Ω-algebras defined by a set J of identities,
380.

V©W variety equivalent to category of W-algebra objects of
V, and to category of V-algebra objects of W,
497–502.

Var(C) variety generated by a set C of algebras, 380,
394–395, 397–399.

∨ “join” (in a (semi)lattice); “or” (disjunction of
propositions), 10, 161, 162, 197.

∧ “meet” (in a (semi)lattice); “and” (conjunction of
propositions), 10, 26, 197.
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[x] frequently: equivalence class of x under some
equivalence relation, 27, 120.

X ∩ Y,
⋂
Xi intersection (of X and Y ; of the sets Xi ), 21, 95.

X ∪ Y,
⋃
Xi union (of X and Y ; of the sets Xi ), 21, 95.

XI the set of all maps I → X, 13.

X | Y , X | Y V object (of V) presented by generators X, relations
Y, 48, 374, 386.

[x, y] variously: commutator in a group or ring; Lie bracket;
interval in a partially ordered set, 39, 55, 116,
294.

xy conjugate of x by y, i.e., y−1x y, 39.

X0 . . . Xn−1 coproduct of objects in a category, 250.

Z the integers, 12.

Ẑ(p) the p-adic integers, 301–303.

Z x1, . . . , xn , Z[t], ZS see K t , K[t], KS, respectively.

Z, Zn the cyclic groups of infinite order; order n, 51, 73,
303–304.

0, 0L additive neutral element; least element in a lattice,
83, 170, 481.
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I hope the telegraphic descriptions given below will help you recall in most
cases roughly what the exercises are. When they don’t, you can always look
back to the page in question (shown at the left). If you find any of the
descriptions incorrect, or think of a more effective wording to briefly describe
some exercise, let me know.

1 Chapter 1: About the
course, and these notes.

" 1.1. Aims and prerequisites.

2 1.2. Approach.

" 1.3. A question a day.

3 1.4. Homework.

5 1.5. The name of the game.

" 1.6. Other reading.

6 1.7. Numeration; history; advice;

web access; corrections.

7 1.8. Acknowledgements.

10 Chapter 2: Making some
things precise.

" 2.1. Generalities.

" 2.2. What is a group?.

11 2.2:1 precise def. of homomorphism

12 2.2:2 δ(x, y) = x y−1

" 2.2:3 σ(x, y) = x y−1x

13 2.3. Indexed sets.

" 2.4. Arity.

14 2.5. Group-theoretic terms.

16 2.5:1 T ↔ T ′ (terms)

" 2.5:2 (a), (b) =⇒ (c) in def. of T ?

17 2.5:3 “(s · t)” etc. are OK

" 2.5:4 are “µ s t” etc. OK?

" 2.5:5 is symb(x) = x OK?

18 2.6. Evaluation.

" 2.6:1 construct “eval”: T → |G|
19 2.7. Terms in other families of

operations.

20 2.7:1 derived op.s of majority M3

" 2.7:2 Aut(C, +, ·, exp) = ?

21 2.7:3 testing whether β is derived op

" 2.7:4 Can s1 �
H s2 �

H . . . ?

22 Chapter 3: Free groups.

" 3.1. Motivation.

23 3.1:1 if a, b, c don’t generate F . . .

" 3.1:2 free =⇒ gen’d by {a, b, c}

25 3.1:3 no “free finite groups”

" 3.2. The logician’s approach:
construction from terms.

28 3.2:1 (x y)−1 ∼ y−1x−1

" 3.2:2 (3.2.1)-(3.2.3), (3.2.6)-(3.2.8) =⇒ above?

29 3.2:3 (3.2.1)-(3.2.3), then

(3.2.4)-(3.2.5), then (3.2.6)-(3.2.8)?

" 3.3. Free groups as subgroups of

big enough direct products.

32 3.3:1 universal prop. of J ⊆ (S3)216 ?

" 3.3:2 structure of J ⊆ (S3)6n?

33 3.3:3 no “free fields”

" 3.3:4 Is Q(X) free in some sense?

" 3.3:5 “free skew fields”?

34 3.3:6 functorial operations on groups

" 3.3:7 " " on finite groups

" 3.4. The classical construction:
groups of words.

39 3.4:1 some calculations in free group

" 3.4:2 the Hall-Witt identity

40 3.4:3 sv 6= tv in some finite G ?

" 3.4:4 two variants of above

41 3.4:5 a free group of 2× 2 matrices

42 Chapter 4: A Cook’s tour.

43 4.1. Subgroups.

44 4.1:1 norm-sgp(S) = gsg−1

" 4.1:2 norm-sgp({xn, y})
" 4.2. Imposing relations on

groups.

45 4.2:1 motivating normality

46 4.2:2 universal prop. of (G/H, [e])

" 4.3. Presentations of groups.

49 4.3:1 one group, three descriptions

" 4.3:2 endomorphisms of above group

50 4.3:3 norm. form in a, b | ab = b2a

" 4.3:4 norm. form in a, b | ab = b2a2

" 4.3:5 w, x, y | w=f(x, y), x= g(y)

" 4.3:6 group of symmetries of Z× Z
" 4.3:7 # of gen.s and rel.s for fin. gps

531
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" 4.3:8 using finite subset of rel-set

" 4.3:9 fin. gen’d but not fin. pres’d

51 4.3:10 x, y | . . . trivial?

" 4.3:11 more of the same

52 4.3:12 y−1x2y = x−2, x−1y2x = y−2

" 4.4. Abelian groups and
abelianizations.

54 4.4:1 ZX not free abelian

55 4.4:2 abelianize 4.3:1, . . . , 4.3:11

" 4.4:3 fab : Gab → Hab

56 4.4:4 in 4.3:2, is AutG→Aut(Gab) 1-1?

" 4.4:5 if H ⊆ G, what of ( )ab ?

" 4.4:6 GL(n, K)ab

" 4.4:7 ∃Gsolv? if fin.? Free solvable?

" 4.4:8 Zn needs n gens, n(n−1)/2 rels

" 4.5. The Burnside problem.

57 4.5:1 implications re Burnside prob

58 4.5:2 residual finiteness and " "

" 4.5:3 " " " Ex. 3.4:3; ∃ Gres.fin.?

" 4.6. Products and coproducts of

groups.

63 4.6:1
X
Z is free on X

" 4.6:2 (F ∗G) ∗H ∼= F ∗G ∗H
" 4.6:3 G×H ∼= H ×G, . . .

" 4.6:4 el’ts of finite order in G ∗H
64 4.6:5 m : G ∗H → G×H
65 4.6:6 G→ G×G and dual

" 4.6:7 X | some pairs commute

" 4.7. Products and coproducts of

abelian groups.

66 4.7:1 abelianizing ,

67 4.8. Right and left universal
properties.

69 4.8:1 right and left universal G-sets

" 4.8:2 G-set constr’ns using G→ {e}
70 4.8:3 no duals to “free”, “ab”

" 4.8:4 universal subset?

" 4.8:5 universal X with A×X → B ?

" 4.8:6 right and left univ. R-modules

" 4.9. Tensor products.

" 4.9:1 (linear∧bilinear) =⇒ 0

72 4.9:2 F (X)⊗ F (Y ) ∼= F (X × Y )

" 4.9:3 univ. (A, ?)→ C, (?, ?)→ C ?

" 4.9:4 bilinearity and nonabelian gps

73 4.9:5 range of a bilinear map

" 4.9:6 Hom(A⊗B,C) ∼= Hom(A,Hom(B,C))

" 4.9:7 description of −⊗ Zn

" 4.9:8 when is A⊗B = {0} ?

74 4.9:9 identities of bilinear maps

" 4.10. Monoids.

77 4.10:1 constr. of cong., vs. §3.2

" 4.10:2 inf, sup, etc. of congruences

78 4.10:3 largest congruence ⊆ X?

" 4.10:4 describe a, b | ab = e

" 4.10:5 ab = ac = dc = e

" 4.10:6 ab = ac, ba = bc, ca = cb

" 4.10:7 ab = b2a

79 4.10:8 abba = baab; abbab = baabb

80 4.10:9 Cong f ⇒ S univ? . . . CoCong ?

" 4.10:10 which H ⊆ G are equalizers?

" 4.11. Groups to monoids and

back.

81 4.11:1 embeds in gp⇐⇒ S→Sgp 1-1

" 4.11:2 Sgp for Ex’s 4.10:4-4.10:7

" 4.11:3 if S ⊆ G, is Sgp → G 1-1?

82 4.11:4 xyz = zyx = e : S, . . . , U(Sab)

" 4.11:5 semigroups � monoids

83 4.12. Rings.

86 4.12:1 symmetric el’ts in Z x, y

89 4.12:2 univ: R→ integral domain?

" 4.12:3 y x− x y = 1 (Weyl algebra)

" 4.12:4 subrings of Z× Z (×Z )

" 4.12:5 x | x2 = x ∼= Z× Z
" 4.12:6 gens and rels for R× S
" 4.12:7 2x = 1 vs. (4x = 2, 2x2 = x)

90 4.12:8 when must R be fin. pres’d?

" 4.12:9 free on ∅ etc.; Zn

" 4.12:10 similarly, but without e, 1

" 4.12:11 if 1 not preserved by homs

91 4.13. Coproducts and tensor

products of rings.

92 4.13:1 Zm ⊗ Zn, two ways

" 4.13:2 Z[i]⊗ Zp

" 4.13:3 ⊗ and field composita

" 4.13:4 C⊗ C, Q(21/3)⊗Q(21/3)

93 4.13:5 univ. prop. of ⊗ of rings

" 4.13:6 ZS ⊗ ZT
" 4.13:7 other ring structures on ⊗ ?

94 4.13:8 v.d.W. for R ∗ S (assoc rings)

" 4.13:9 centers of coproduct rings

" 4.13:10 coproducts involving Q
95 4.14. Boolean algebras and

Boolean rings.

96 4.14:1 normal form in free Bool. ring

" 4.14:2 ident’s in Bool. ring vs. P(S)

" 4.14:3 {idemp’ts} in a comm. ring

97 4.14:4 univ. rep’n of a Boolean ring

" 4.14:5 finite Boolean ring is ∼= 2S

" 4.14:6 {finite & cofinite s’sets of Z}
" 4.14:7 coproducts of Boolean rings

98 4.15. Sets.

" 4.15:1 laws of and for sets

99 4.16. Some algebraic structures
we have not looked at.

" 4.17. Stone-Čech
compactification.

101 4.17:1 X is dense in S-Č compactf’n

103 4.17:2 embeddability in compact
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" 4.17:3 leaving out “Hausdorff”

" 4.17:4 C −R has two connected cpts

" 4.17:5 curves of finite length

104 4.17:6 variants of above two

105 4.17:7 c ∈ C gives ring hom.

106 4.17:8 maximal ideals of subrings

" 4.17:9 when S-Č just adds one pt

" 4.17:10 group compactifications

107 4.18. Universal covering spaces.

111 Chapter 5: Ordered sets,
induction, and the Axiom
of Choice.

" 5.1. Partially ordered sets.

112 5.1:1 isotone bijection 6= isom’m

113 5.1:2 “≤” vs. “<”

" 5.1:3 <-respecting maps

114 5.1:4 , presentations, , etc.

115 5.1:5 universal subset-repr’ns

" 5.1:6 “least” 6= “unique minimal”

" 5.1:7 minimal presentations

117 5.1:8 {maximal el’ts} and cofinality

" 5.1:9 chains and antichains

" 5.1:10 maximal partial orderings

118 5.1:11 Fredman: 1/3≤Nx,y/N≤2/3 ?

119 5.1:12 metric on {orderings}
" 5.1:13 reconstruction problem

120 5.2. Preorders.

" 5.2:1 preorder ←→ (≈, ≤)

121 5.2:2 preorder on NN

" 5.2:3 growth rates of monoids

122 5.2:4 growth rates of free monoids

" 5.2:5 Gel’fand-Kirillov dimension

123 5.2:6 GK(S1 × S2)

" 5.2:7 GK(S) 6∈ (1, 2)

" 5.2:8 grwth rates: k-algs vs monoids

" 5.2:9 GK and transcendence degree

124 5.2:10 finite topologies as preorders

" 5.3. Induction, recursion, and
chain conditions.

126 5.3:1 factoring into irreducibles

127 5.3:2 no recursion on [0, 1]

128 5.3:3 stronger version of preceding

130 5.3:4 lexicographic order

" 5.3:5 symmetric polynomials

131 5.3:6 recursively defined ni,j

" 5.3:7 in top.sp., (all cpct)⇐⇒ ACC

132 5.3:8 factoriz’n into irred’s 6=⇒ ACC

" 5.4. The axioms of set theory.

137 5.4:1 closing a set under “∈”

" 5.5. Well-ordered sets and
ordinals.

" 5.5:1 examples of well-ordered sets

139 5.5:2 finish proof of Lemma 5.5.1

142 5.5:3 α embeds in β ⇐⇒ α ≤ β
" 5.5:4 height fn on p.o.set with DCC

" 5.5:5 indep’ce of cdns def’ing ordinal

" 5.5:6 lim. ords are l.u.b.s of members

144 5.5:7 characterizing op.s on ordinals

" 5.5:8 1 + ω 6= ω + 1, etc.

" 5.5:9 ordinal written as disj. union

145 5.5:10 ordinal arith and lex ordering

146 5.5:11 {chains in P} 6↪→ P

147 5.5:12 inf ord (and card) products

149 5.5:13 cofinality and cofinal subsets

" 5.5:14 regular cardinals

" 5.5:15 regular ordinals

150 5.5:16 cofinal s’sets of ’s of chains

" 5.5:17 natural topology on ordinals

151 5.6. Zorn’s Lemma.

153 5.6:1 “weakening” Zorn’s Lemma

154 5.6:2 set-rep. of Boolean rings

155 5.6:3 minimal prime ideals

" 5.6:4 extending partial to total order

" 5.6:5 well-ordered cofinal subsets

" 5.6:6 disjoint cofinal subsets

" 5.6:7 cofinal subsets and subchains

" 5.6:8 extending p.o. w DCC to w.o.

156 5.6:9 chains in P(S)

" 5.6:10 inf. p.o.s. ⊇ ω, ωop or antichn

" 5.6:11 partial well-orderings

157 5.6:12 e.g. w card > height · width

" 5.6:13 countable chains embed in Q
" 5.6:14 Tukey equivalence of p.o.sets

158 5.7. Thoughts on set theory.

161 Chapter 6: Lattices, closure
operators, and Galois
connections.

" 6.1. Semilattices and lattices.

162 6.1:1 axioms =⇒ ∨ arises as l.u.b.

164 6.1:2 natural non-lattices

" 6.1:3 almost-lattices

" 6.1:4 Compatibility =⇒ Id’potence

165 6.1:5 in a lattice, maximal = greatest

" 6.1:6 non-homs of lattices

" 6.1:7 affine and proj. geometries

166 6.1:8 universal (semi)lattices

" 6.1:9 free semilattices

" 6.1:10 size of free lattices

" 6.1:11 univ. set-rep’s of (semi)lats

167 6.1:12 disjoint cofinal subsemilats

" 6.1:13 genr’n by 2 proper sublats, sgps

168 6.1:14 modularity: cond’ns & eg.s

" 6.1:15 distributivity: cond’ns & eg.s

169 6.1:16 distrib. lat.s & vector-sp. bases

" 6.1:17 infinite chains and " " "

170 6.1:18 nec. & suf. cdns re preceding?
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" 6.2. Completeness.

172 6.2:1 when is {< β or co-< γ} cplt?

173 6.2:2 complete lattice of open sets

" 6.2:3 which ordinals are cplt lats?

" 6.2:4 fixed point theorem

" 6.2:5 cp. lat. w/o chains ∼= card > ω

174 6.2:6 representations in P(S)

" 6.2:7 l.u.b.s of chains ∼= cardinals

" 6.2:8 completeness and interpolation

175 6.2:9 nine kinds of interpolation

" 6.2:10 fin. interpol’n for polynomials

" 6.2:11 gen. numbers of a lattice

176 6.2:12 maps ωX → semilattice

177 6.2:13 identities for complete lattices

" 6.2:14 ∧ and ∨ of compact elements

178 6.2:15 ACC⇐⇒ all el’ts compact

" 6.2:16 representing a lattice in E(X)

179 6.2:17 getting path-sufficiency

180 6.3. Closure operators.

" 6.3:1 verify corresp.: {closed} ↔ cl

181 6.3:2 every “cl” comes from a “G”

182 6.3:3 G for generating equiv relns

" 6.3:4 building up cl(X)

183 6.3:5 verify embedding lemma

" 6.3:6 alt proof of Lemma 6.3.5(ii)

" 6.3:7 univ. prop.s of above constrns?

" 6.3:8 prin. ideals and completeness

" 6.3:9 infinite 3-generator lattice

184 6.3:10 " " " with no infinite chain?

" 6.3:11 inf chain in f.g. lat of ab gps?

" 6.3:12 proof of Lemma 6.3.6

" 6.3:13 finitary cl ops & α-gen’d ssets

185 6.3:14 finitary cl ops & compact elts

" 6.3:15 compact vs. finitely generated

" 6.3:16 find 8 closure operators

" 6.3:17 which cl ops are topologies?

" 6.3:18 cardinality of cl(X)

186 6.3:19 clSsys determines closure ops

" 6.3:20 Clofam, Clop, and Closys

" 6.3:21 {finitary} within Clop

" 6.3:22 Péter Frankl’s question

187 6.4. A pattern of threes.

191 6.5. Galois connections.

192 6.5:1 all Gal cnctns arise from R’s

193 6.5:2 simpler def of Gal connection

" 6.5:3 all cl ops arise from Gal cnctns

195 6.5:4 Gal cnctn from “≤” on Q×Q
" 6.5:5 Gal cnctn from “nonempty ∩”

" 6.5:6 topology on dual vector space

" 6.5:7 commutants, bicommutants

196 6.5:8 centralizer subgroups

199 Chapter 7: Categories and
functors.

" 7.1. What is a category?.

206 7.1:1 Cayley’s Thm for categories

" 7.2. Examples.

209 7.2:1 which categories are p.o. sets?

212 7.2:2 groups up to finite index

213 7.2:3 bimodules as morphisms

" 7.2:4 sets modulo finite sets

" 7.2:5 categories from S-sets

214 7.3. Other notations and

viewpoints.

216 7.3:1 categories without objects

218 7.4. Universes.

220 7.4:1 which maps, gps, cats are small?

221 7.4:2 {universes} is a proper class

" 7.4:3 rank, her.card, and universes

" 7.4:4 {universes} is well-ordered

" 7.4:5 Ax. of Univ’s w/o Ax. of ∞
222 7.4:6 card(U) is regular limit card

223 7.5. Functors.

227 7.5:1 G 7→ {order 2} is not a functor

" 7.5:2 G 7→ center is not a functor

" 7.5:3 G 7→ Aut(G) is not a functor

228 7.5:4 algebraic closure not a functor

" 7.5:5 functors FSet→ FSet

229 7.5:6 G 7→ Gab is not full or faithful

" 7.5:7 monoid 7→ {invertible} as funct

" 7.5:8 P 7→ Pcat as functor

230 7.5:9 full vs “onto on morphisms”

" 7.5:10 proof of Cayley for categories

" 7.5:11 concretizability questions

232 7.6. Contravariance, and

functors of several variables.

234 7.6:1 op as a functor

" 7.6:2 co- and contravariant P(−)

235 7.6:3 X 7→ {equivalence relations}
" 7.6:4 subgroups; normal subgroups

236 7.6:5 POSet and Lattice0,1

" 7.6:6 functors FSetop → FSet

" 7.6:7 FSet� RelFSet

" 7.6:8 composing contravar. functors

238 7.6:9 universal property of Ci

" 7.6:10 of categories

" 7.6:11 bifunctors FSet× FSet→ FSet

" 7.7. Properties of morphisms.

239 7.7:1 facts about isomorphism

" 7.7:2 1-1-ness, onto-ness not det’d

240 7.7:3 1-1 =⇒ mono

" 7.7:4 when mono ⇐⇒ 1-1

" 7.7:5 when mono 6=⇒ 1-1

" 7.7:6 epimorphism vs. onto

241 7.7:7 epimorphisms of groups

" 7.7:8 epimorphs of the ring Z
" 7.7:9 epi: comm.ring → ring

243 7.7:10 properties of f, g and fg



List of Exercises 535

" 7.7:11 morphisms in RelSet

244 7.7:12 f ’s that are “always onto”

" 7.7:13 retracts in Set, Ab, Gp

245 7.7:14 what combinations =⇒ ∼= ?

" 7.7:15 idpts determine retracts

246 7.7:16 {subobjects} relative to Cemb

" 7.7:17 above applied to posets

247 7.8. Special objects.

" 7.8:1 I and T are unique

" 7.8:2 epis, monos, I and T

248 7.8:3 0-objects and 0-morphisms

" 7.8:4 def’n and properties of Cpt

" 7.8:5 quasi-initial objects

249 7.8:6 free w.r.t. |G|2 etc.

" 7.8:7 free w.r.t. |GL(2,−)|
" 7.8:8 ∃ free =⇒ mono’s 1-1

250 7.8:9 and in Pcat

" 7.8:10 ( (Xij))

" 7.8:11 and in Scat

251 7.8:12 {linear maps}/{fin. rank}
" 7.8:13 retracts and (co)products

" 7.8:14 retracts of free (ab) gps

252 7.8:15 categories with large ’s

" 7.8:16 functor not respecting

" 7.8:17 free objects and ’s

" 7.8:18 for abelian torsion groups

" 7.8:19 for torsion groups?

" 7.8:20
I

with variable I

253 7.8:21 coequalizers and onto-ness

254 7.8:22 (co)equalizers and cardinality

255 7.8:23 pullbacks fr fin. ’s & eqlzrs

" 7.8:24 pullbacks as fibered products

256 7.8:25 pushouts of groups

" 7.8:26 1-1 maps w non-1-1 pushout

" 7.8:27 f.pres’td gp w no finite image

257 7.8:28 stabilizing push and pull

258 7.8:29 monomorphisms & pullbacks

" 7.8:30 comma categories

259 7.8:31 other concept of “pt-ed obj”

260 7.9. Morphisms of functors.

261 7.9:1 morphisms of equalizers

262 7.9:2 u : IdSet → UF is morphism

263 7.9:3 isomorphic constructions

264 7.9:4 morphisms among some functors

" 7.9:5 CC(IdC, IdC) commutative

265 7.9:6 find morphisms Idω → Id

" 7.9:7 isom as functors, vs ‘on each obj’

" 7.9:8 “functorially” vs “everywhere”

" 7.9:9 functor-structure on “free”

267 7.9:10 cond’ns defining subfunctor

" 7.9:11 subfunctors of IdGroup

" 7.9:12 subfunctors of ⊗n

268 7.9:13 prove criterion for equivalence

" 7.9:14 Matk ≈ k-fgMod

269 7.9:15 duality of vector spaces

" 7.9:16 FBool1 ≈ FSetop

" 7.9:17 Mn(R)-Mod ≈ R-Mod

" 7.9:18 skeleta and equivalence

" 7.9:19 Set 6≈ Setop, etc.

270 7.9:20 skeleton of π1(X)

" 7.9:21 do eqv cats have eqv subcats?

" 7.10. Properties of functor
categories.

271 7.10:1 CD×E ∼= (CD)E

" 7.10:2 other laws of exponents?

272 7.10:3 DE ×CD → CE

" 7.10:4 identity law for IdC

273 7.10:5 associativity on BC ×CD ×DE

" 7.10:6 a ◦ b 6= ab

" 7.10:7 FGF and GFG

" 7.11. Enriched categories (a

sketch).

275 7.11:1 Group as a Cat-category

277 Chapter 8: Universal
constructions.

" 8.1. Initial and terminal objects.

278 8.2. Representable functors, and

Yoneda’s Lemma.

279 8.2:1 proof of u←→ i

281 8.2:2 rt, left, 2-sdd inv’s in monoid

" 8.2:3 P(X) and E(X)

" 8.2:4 universal properties of ,

282 8.2:5 ∃ free on 1 ⇐⇒ U rep’able

" 8.2:6 functors on Lie groups

" 8.2:7 initial, terminal as rep’ing objs

283 8.2:8 verify Yoneda’s Lemma

284 8.2:9 Yoneda embedding

" 8.2:10 Yoneda and earlier exercises

285 8.2:11 G in Lemma 8.2.9 is a functor

287 8.3. Adjoint functors.

290 8.3:1 verify a←→ α

292 8.3:2 UFU and all that (verify)

293 8.3:3 set-val’d has left adj⇐⇒ rep’ble

" 8.3:4 adjoints of isomorphic functors

" 8.3:5 adjoints of equivalences

" 8.3:6 set-maps among groups

295 8.3:7 wrong adjs to and ?

" 8.3:8 Group� Group2

" 8.3:9 Set� G-Set

" 8.3:10 G1-sets and G2-sets

296 8.3:11 ⊗ and adjoints

" 8.3:12 −×X : Set→ Set

" 8.3:13 adjunctions involving R[X]

297 8.3:14 Ab×Ab→ Bil

" 8.3:15 adjoints to constant functors

" 8.3:16 ε, η for composite adjunction

298 8.4. The p-adic numbers.
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299 8.4:1 solving x2 ≡ −1 (mod 5i)

301 8.4:2 p-adics by Cauchy sequences

" 8.4:3 Q̂(p) from Ẑ(p)

" 8.4:4 infinite base-p expressions

302 8.4:5 n−1 ∈ Ẑ(p) if p 6 |n
304 8.4:6 End(Zp∞ ) ∼= Ẑ(p)

305 8.5. Direct and inverse limits.
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" 8.5:16 lim←− Zn = Ẑ(p) = Ẑ
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06001. 6, 99
14. Paul Halmos, Naive Set Theory, Van Nostrand University Series in Undergraduate

Mathematics, 1960; Springer Undergraduate Texts in Mathematics, 1974. MR 22 #

5575, MR 56 #11794. 134, 135
15. David Hobby and Ralph McKenzie, The structure of finite algebras, Contemp. Math.,

76, 1988, 203 pp. MR 89m :08001. 503
16. F. William Lawvere, Functorial Semantics of Algebraic Theories, doctoral thesis,

Columbia University, 1963. (Summarized without proofs, under the same title, in

Proc. Nat. Acad. Sci. U. S. A., 50 (1963) 869-872. MR 28 #2143.) 415, 430
17. F. William Lawvere, The category of categories as a foundation for mathematics,

pp. 1-20 in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) ed. S. Eilenberg

et al. Springer-Verlag, 1966. MR 34 #7332. (Note corrections to this paper in the MR

review.) 222

539



540 References

18. Carl E. Linderholm, Mathematics Made Difficult, World Publishing, N.Y., 1972. (Out

of print.) MR 58 #26623. 6
19. Saunders Mac Lane, Categories for the Working Mathematician, Springer GTM, v.5,

1971. MR 50 #7275. 6, 7, 219, 243, 258, 274, 275, 317, 325, 343, 347, 353, 354, 385
20. Ralph McKenzie, George McNulty and Walter Taylor, Algebras, Lattices, Varieties,

volume 1, Wadsworth and Brooks/Cole, 1987. MR 88e :08001. 5, 6, 363
21. J. Donald Monk, Introduction to Set Theory, McGraw-Hill, 1969. MR 44 #3877.

134
22. Richard S. Pierce, Introduction to the Theory of Abstract Algebras, Holt Rinehart

and Winston, Athena Series, 1968. MR 37 #2655. 5, 6
23. Robert L. Vaught, Set Theory, an Introduction, Birkhäuser, 1985; second edition
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120. G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Inventiones

Math. 6 (1968) 41-55. MR 38 #233. 54

121. A. Ju. Ol’̌sanskii, An infinite group with subgroups of prime orders, Izv. Akad. Nauk
SSSR Ser. Mat. 44 (1980) 309–321, 479. MR 82a :20035. 58

122. Donald Passman, The Algebraic Structure of Group Rings, Wiley Series in Pure and

Applied Mathematics, 1977; Robert E. Krieger Publishing, Melbourne, FL, 1985.
MR 81d :16001, MR 86j :16001. 88

123. Marcin Peczarski, The Gold Partition Conjecture, Order 23 (2006) 89-95. MR 2007i :

06005. 119
124. A. G. Pinus, Vopenka’s principle and skeletons of varieties (Russian), Izv. Vyssh.

Uchebn. Zaved. Mat. (1993) no.3, 68-71, translation in Russian Math (Iz. VUZ) 37
(1993) 66-69. MR 95j :08005. 391
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